
J. Functional Programming 9 (1): 77–91, January 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

77

de Bruijn notation as a nested datatype

RICHARD S. BIRD

Programming Research Group, Oxford University,

Wolfson Building, Parks Road, Oxford OX1 3QD, UK

ROSS PATERSON

Department of Computer Science, City University,

Northampton Square, London EC1V 0HB, UK

“I have no data yet. It is a capital mistake to

theorise before one has data.”

Sir Arthur Conan Doyle

The Adventures of Sherlock Holmes

Abstract

de Bruijn notation is a coding of lambda terms in which each occurrence of a bound variable x

is replaced by a natural number, indicating the ‘distance’ from the occurrence to the abstraction

that introduced x. One might suppose that in any datatype for representing de Bruijn terms,

the distance restriction on numbers would have to maintained as an explicit datatype invariant.

However, by using a nested (or non-regular) datatype, we can define a representation in which

all terms are well-formed, so that the invariant is enforced automatically by the type system.

Programming with nested types is only a little more difficult than programming with regular

types, provided we stick to well-established structuring techniques. These involve expressing

inductively defined functions in terms of an appropriate fold function for the type, and using

fusion laws to establish their properties. In particular, the definition of lambda abstraction

and beta reduction is particularly simple, and the proof of their associated properties is

entirely mechanical.

Capsule Review

Many functional languages (certainly ML and Haskell) allow nested data types, a recursive

data type in which the recursive occurrence on the right hand side of the definition is applied

to different arguments than the left hand side. (The Introduction of the paper elaborates.)

But such types are almost unusable unless the language supports polymorphic recursion, in

which a function can call itself recursively at a different type to the “parent” call. Abstracting

such functions into folds (as is commonly done with ordinary recursive functions) requires

the fold to take a polymorphic function as its argument. Finally, it turns out to be essential to

abstract over type constructors, not only over types.

This fascinating paper shows that if these extensions are supported, then nested data

types become genuinely useful. Though a particular example (de Bruijn notation), Bird and

Paterson show that nested data types can express and statically enforce useful invariants –

which is, of course, what types systems are for.

In short, this paper demonstrates by example that some relatively modest extensions to the

Hindley-Milner type system have practical utility. Whether this is an isolated example, or a

member of a large and compelling class of applications, remains to be seen.

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

78 R. S. Bird and R. Paterson

1 Introduction

A standard representation of lambda terms, with variables of type v, in Haskell

involves essentially the following datatype:

data Term v = Var v | App (Term v,Term v) | Lam v (Term v)

The problem with the standard representation is that while abstraction is easy

to implement, application is not. Application of a lambda term Lam x b to an

argument t involves substituting t for all free occurrences of x in b. Care has to

be taken to avoid the capture of free variables in t by bound variables in b. To

overcome this problem, de Bruijn (1972) proposed a notation for lambda expressions

in which bound variables do not occur. In his notation, no variable appears after

the constructor Lam , and bound variables appear as natural numbers. The number

assigned to an occurrence of a bound variable x is the depth of nesting of Lam terms

between that occurrence and the (closest) binding occurrence of x. For example,

λx.x (λy.x y (λz.x y z))

translates to

λ.0 (λ.1 0 (λ.2 1 0))

This example is taken from Paulson (1996), which discusses de Bruijn notation in

detail.

If one wants to represent lambda terms involving both bound and free variables in

the de Bruijn style, then the declaration of Term v has to be changed. One possibility,

used in Paulson (1996), is to have two kinds of variable: free variables drawn from

v, and bound variables drawn from Int . Another possibility is to use a datatype

declaration

data Term v = Var v | App (Term v,Term v) | Lam (Term (Incr v))

data Incr v = Zero | Succ v

In the body of a lambda abstraction, the set of variables is augmented with an extra

element, the variable bound by the lambda. This variable is denoted by Zero; each

free variable x is renamed Succ x inside the lambda. For example, the terms λx.x

and λx.λy.x are represented as

Lam (Var Zero) and Lam (Lam (Var (Succ Zero)))

The term λx.λy.x y z, containing a free variable z, may be represented as the following

element of Term Char:

Lam (Lam (App (App (Var (Succ Zero),Var Zero),Var (Succ (Succ ‘z’)))))

The type Term is an example of a nested datatype (Bird and Meertens, 1998) because

its definition has a recursive use with a different argument from the left-hand side.

Such definitions are also sometimes called non-regular.

Our aim in this paper is to study this novel representation of lambda terms, and

to give the implementations of abstraction and application. Useful and interesting

examples of nested datatypes have been rather thin on the ground until recently,

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

de Bruijn notation as a nested datatype 79

and de Bruijn notation gives us an excellent opportunity to explore the theory

in the context of a specific example. We believe that the right way to proceed

into the largely uncharted territory of nested types is to stick to the structuring

principles provided by the now well-established theory of regular datatypes. This

theory is reviewed briefly in section 2. In section 3 we introduce the type of lambda

terms, and set up appropriate machinery for defining functions over this type. The

implementations of abstraction and application are given in section 4. In the final

section, we will generalise what we have learnt to cover an extension of de Bruijn’s

notation.

Another aim of the paper concerns proof. In our view, equational properties

of functions are most easily proved when functions are defined as combinations

of other functions, using functional composition rather than application as the

primary combining form. As a consequence, proof by induction is replaced by

appeal to general equational laws that make up standard theory. This material is

also reviewed briefly in section 2. Proofs of the various equations were generated

using the simple automatic calculator described in Bird (1998); we include a selection

of them.

All programs in typewriter font are expressed in Hugs 1.3c (Jones, 1998), an

extension of Haskell that provides a more flexible typing discipline.

2 Preliminaries

Let us begin, not with Term , but with the simpler inductive datatype of binary trees

(which is equivalent to Term without the difficult Lam case):

data BinTree a = Leaf a | Fork (Pair (BinTree a))

type Pair a = (a,a)

By default, Haskell allows Leaf and Fork to be non-strict functions, so the dec-

laration above captures partial and infinite trees as well as finite ones. However,

although all functions defined in this paper are legal Haskell (extended with a more

general typing discipline), we are only concerned with datatypes that are flat sets,

and functions that are total in the set-theoretic sense. Thus, all functions are con-

sidered to be strict, as in ML. This will enable us to state equational laws without

mentioning strictness conditions explicitly.

2.1 Functors

For each datatype constructor1, there is a corresponding action on functions, which

preserves the shape of a data structure while replacing elements within it. The classic

example is the map function on lists, and functional programmers call these actions

mapping functions. For the type constructor Pair , the mapping function is

mapP :: (a -> b) -> Pair a -> Pair b

mapP f (x, y) = (f x, f y)

1 We do not consider type constructors that include function types.

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

80 R. S. Bird and R. Paterson

The mapping function on binary trees is:

mapB :: (a -> b) -> BinTree a -> BinTree b

mapB f (Leaf x) = (Leaf . f) x

mapB f (Fork p) = (Fork . mapP (mapB f)) p

The slightly unusual form of the right-hand sides is intended to suggest the function-

level equations

mapB f · Leaf = Leaf · f (1)

mapB f · Fork = Fork · mapP (mapB f) (2)

Category theorists refer to the combination of type constructor and map function

as a functor. Hence the following laws, satisfied by any mapping function, are called

functor laws:

mapB id = id (3)

mapB (f · g) = mapB f · mapB g (4)

A further property, called naturality, plays an important role in many calculations.

A polymorphic function f ::M a→ N a, where M and N are given type constructors,

may be viewed as a collection of functions, one for each instantiation of the type

variable a. Because f is polymorphic, i.e. defined independently of a, these instances

are related by the following naturality condition:

mapN k · f = f · mapM k (5)

for all functions k, where mapM and mapN are the map functions for the type con-

structors M and N, respectively. Such functions f are called natural transformations.

As one example, any function of type

flatten :: BinTree a -> [a]

is a natural transformation, with naturality property

map f · flatten = flatten · mapB f (6)

Similarly, the naturality of the BinTree constructors Leaf :: a → BinTree a and

Fork :: Pair (BinTree a) → BinTree a is expressed by equations (1) and (2), which

define the action mapB . Note that the action on functions corresponding to the

identity type constructor is the identity, and a composition of type constructors

corresponds to a composition of actions.

2.2 Folds

The second general operator generalises the foldr function on lists. For binary trees,

the operator is

foldB :: (a -> b) -> (Pair b -> b) -> BinTree a -> b

foldB l f (Leaf x) = l x

foldB l f (Fork p) = (f . mapP (foldB l f)) p

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

de Bruijn notation as a nested datatype 81

The fold operator takes a function argument for each constructor of the datatype.

Its action to replace the constructors in its input with the corresponding functions.

Often the effect is to reduce the data structure to a summary value, as in the first

two of the following examples:

size = foldB (const 1) (uncurry (+))

height = foldB (const 0) maxp

where maxp (x, y) = 1 + max x y

flatten = foldB wrap (uncurry (++))

where wrap x = [x]

A fundamental property of all fold operators is that they produce the unique

function satisfying the above defining equations. From this follows a trio of useful

calculational laws. The simplest is the identity law, which for binary trees is

foldB Leaf Fork = id (7)

The other two laws are more powerful, and heavily used in calculations. The fusion

law states that

h · foldB l f = foldB l′ f′ ⇐
{
h · l = l′
h · f = f′ · mapP h

(8)

The map-fusion law states that

foldB l f · mapB h = foldB (l · h) f (9)

An immediate consequence of map-fusion and the identity law is an alternative

definition of mapB as a fold:

mapB h = foldB (Leaf · h) Fork (10)

The map operator for each regular datatype may be defined as fold in this way, but

this does not hold for nested datatypes.

Fusion laws, functor properties, and naturality conditions, are all we need for a

powerful generic equational theory of inductive datatypes. For further details, see

Bird and de Moor (1997).

2.3 Monads

Monad operations provide a useful way of structuring many programs. Functional

programmers are introduced to monads as a type constructor with a certain binding

operation. Category theorists use a function-level definition, which is also more

convenient for calculations. A monad is defined as a type constructor M with a

mapping function mapM and two operations

unit :: a→M a

join :: M (M a)→M a

These natural transformations are required to satisfy the following coherence laws:

join · mapM unit = id (11)

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

82 R. S. Bird and R. Paterson

join · unit = id (12)

join · mapM join = join · join (13)

In total, there are seven laws available for reasoning about a monad: the three

coherence laws, the two naturality laws for unit and join , and the two functor laws

for mapM , the mapping function associated with M.

A standard example of a monad is the list type constructor, with unit returning

a singleton list, and concat as the join operation. Binary trees also form a monad,

with unit Leaf and the following join function:

joinB :: BinTree (BinTree a) -> BinTree a

joinB = foldB id Fork

As we will see, lambda terms also form a monad; the unit and join operations on

lambda terms will be needed in the definition of lambda abstraction and application.

See Bird (1998) for further discussion of monads and monad laws, and the different

ways one can describe them.

3 de Bruijn notation

We can follow the same steps with the type Term a of lambda terms over a type a:

data Term v = Var v | App (Pair (Term v)) | Lam (Term (Incr v))

data Incr v = Zero | Succ v

3.1 Maps

The first step is to identify the map operators for the newly introduced types. The

mapping function corresponding to Incr is straightforward:

mapI :: (a -> b) -> Incr a -> Incr b

mapI f Zero = Zero

mapI f (Succ x) = (Succ . f) x

As we might expect, Term is more interesting:

mapT :: (a -> b) -> Term a -> Term b

mapT f (Var x) = (Var . f) x

mapT f (App p) = (App . mapP (mapT f)) p

mapT f (Lam t) = (Lam . mapT (mapI f)) t

Note the change of argument of mapT in the Lam case: the required mapping

function for Term (Incr a) is mapT (mapI f). As a result, mapT leaves bound variables

unchanged, and replaces only free variables. In the nested definition, bound variables

have become part of the shape of a term.

Note also that the argument of mapT in the Lam case also has a different

type, namely Incr a → Incr b, but this is an instance of the declared signature. The

definition of mapT makes use of polymorphic recursion; it is the first function in this

paper whose type signature cannot be omitted.

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

de Bruijn notation as a nested datatype 83

3.2 Folds

The definition of the fold function for Term follows from the principle of replacing

constructors by functions:

foldT v a l (Var x) = v x

foldT v a l (App p) = (a . mapP (foldT v a l)) p

foldT v a l (Lam t) = (l . foldT v a l) t

Unfortunately, the last line of this definition will not pass a standard Haskell

typechecker: if foldT v a l is applied to a term of type Term V for some type V , then

the foldT v a l on the right side is applied to a term of type Term (Incr V). Hence

the argument functions v, a and l must be applicable at a range of different types;

effectively, they must be polymorphic. Haskell’s language of types cannot express

this without an extension called rank-2 type signatures (McCracken, 1984). Such

signatures have been implemented in GHC and also in Hugs 1.3c (Peyton Jones

et al. , 1998; Jones, 1998). In the syntax of Hugs 1.3c, foldT can be made acceptable

by adding the following type signature:

foldT :: (forall a. a -> n a) ->

(forall a. Pair (n a) -> n a) ->

(forall a. n (Incr a) -> n a) ->

Term b -> n b

Here the variable n denotes an arbitrary type constructor.

As a consequence of the arguments being natural transformations, foldT v a l is a

natural transformation, with associated property

mapN k · foldT v a l = foldT v a l · mapT k (14)

The naturality law of foldT does not hold for regular datatypes, such as binary trees

or lists, because the argument of the fold is not required to be natural.

The above naturality condition implies that no instance of foldT can manipulate

the values of free variables. As a result, we cannot define all the functions we would

like on terms as instances of foldT . This phenomenon motivates a more general

definition of the fold operator on nested datatypes such as Term; we will call it

gfold for generalised fold:

gfoldT :: (forall a. m a -> n a) ->

(forall a. Pair (n a) -> n a) ->

(forall a. n (Incr a) -> n a) ->

(forall a. Incr (m a) -> m (Incr a)) ->

Term (m b) -> n b

gfoldT v a l k (Var x) = v x

gfoldT v a l k (App p) = (a . mapP (gfoldT v a l k)) p

gfoldT v a l k (Lam t) = (l . gfoldT v a l k . mapT k) t

The two additional ingredients in the definition of gfoldT are, firstly, that the

argument of v is generalised from a to ma for an arbitrary type constructor m and,

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

84 R. S. Bird and R. Paterson

secondly, that an extra argument k is provided for the fold. To explain the role of

the extra function k, observe that a lambda term with variables drawn from mb has

type

Term (Incr (mb))

Applying mapT k to this lambda term produces an element of type

Term (m (Incr b))

Applying gfoldT v a l k to this element produces an element of type

n (Incr b)

This is the correct type for an argument of l. More details of generalised folds and

their properties may be found in a companion paper (Bird and Paterson, 1998).

The arguments to gfoldT are natural transformations, and the result is also a

natural transformation. Thus, if gfoldT v a l k :: Term (M b)→ N b, we have

mapN k · gfoldT v a l k = gfoldT v a l k · mapT (mapM k)

for all k, where mapM and mapN are the mapping functions associated with the

type constructors M and N.

The advantage of the generalised fold resides in the extra degree of freedom for

selecting the type constructor m. In theory, we can take m = Id , the identity type

constructor, and so obtain

foldT v a l = gfoldT v a l id (15)

as a special case. Thus gfoldT generalises foldT . Another instance of gfoldT takes

both m and n to be constant type constructors, delivering specific types for all

arguments. However, type constructor polymorphism in Haskell is limited, in that

type constructor variables may only be instantiated to datatype constructors (possibly

partially applied). The alternative to expressing these special cases by installing Id

and Const as new datatype constructors is to define specialised versions of gfoldT .

For example, the following version corresponds to the constant type constructors

case:

kfoldT :: (a -> b) -> (Pair b -> b) -> (b -> b) ->

(Incr a -> a) ->

Term a -> b

kfoldT v a l k (Var x) = v x

kfoldT v a l k (App p) = (a . mapP (kfoldT v a l k)) p

kfoldT v a l k (Lam t) = (l . kfoldT v a l k . mapT k) t

Note that kfoldT has exactly the same definition as gfoldT , but a different (more

specific) type. For example, we can convert a lambda term to a string by

showT :: Term String -> String

showT = kfoldT id showP (’L’:) showI

where showP (x,y) = "(" ++ x ++ " " ++ y ++ ")"

showI Zero = "0"

showI (Succ x) = ’S’:x

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

de Bruijn notation as a nested datatype 85

In particular, we can use showT to convert an element of type Term Char to a string

in which individual character variables are printed without their quotes:

showTC :: Term Char -> String

showTC = showT . mapT wrap

where wrap x = [x]

For example, applying showTC to

Lam (App (Var Zero,App (Var (Succ ‘x’),Var (Succ ‘y’))))

produces the string L(0(x’y’)).

The function gfoldT satisfies similar fusion laws to those discussed above for

binary trees. Such laws are proved from the fact that gfoldT is the unique function

satisfying its defining equation. (This can be established by induction over terms.)

In particular, the identity law states that

gfoldT Var App Lam id = id (16)

The map-fusion law states that

gfoldT v a l k · mapT h = gfoldT (v · h) a l k′ ⇐ k · mapI h = h · k′
The fold-fusion law is the following: suppose we have the typing

gfoldT v a l k :: Term (M a)→ N a

Then

h · gfoldT v a l k = gfoldT v′ a′ l′ (mapM k′ · k) (17)

⇐

h · v = v′
h · a = a′ · mapP h

h · l = l′ · h · mapN k′

The proof consists of simple calculations to show that h · gfoldT v a l k satisfies the

defining equations of gfoldT v′ a′ l′ (mapM k′ · k). The Lam case is the longest:

h · gfoldT v a l k · Lam

= {definition of gfoldT }
h · l · gfoldT v a l k · mapT k

= {assumption}
l′ · h · mapN k′ · gfoldT v a l k · mapT k

= {naturality}
l′ · h · gfoldT v a l k · mapT (mapM k′) · mapT k

= {functor}
l′ · h · gfoldT v a l k · mapT (mapM k′ · k)

3.3 A monad

The type constructor Term is also a monad, with Var as the unit operator, and

joinT defined by

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

86 R. S. Bird and R. Paterson

joinT :: Term (Term a) -> Term a

joinT = gfoldT id App Lam distT

distT :: Incr (Term a) -> Term (Incr a)

distT Zero = Var Zero

distT (Succ x) = mapT Succ x

The function distT replaces Succs on terms by Succs on variables. It satisfies the

following properties2, easily established by cases:

distT · mapI Var = Var (18)

distT · mapI joinT = joinT · mapT distT · distT (19)

Using these equations, and the fusion laws for gfoldT , we can prove the coherence

laws for the monad operations on Term:

joinT · Var = id (20)

joinT · mapT Var = id (21)

joinT · mapT joinT = joinT · joinT (22)

For example, we give the proof of equation (22):

joinT · mapT joinT

= {definition of joinT }
gfoldT id App Lam distT · mapT joinT

= {map fusion, by distribution law (19)}
gfoldT (id · joinT) App Lam (mapT distT · distT)

= {identity}
gfoldT (joinT · id) App Lam (mapT distT · distT)

= {fusion (backwards), since joinT · Lam = Lam · joinT · mapT distT }
joinT · gfoldT id App Lam distT

= {definition of joinT }
joinT · joinT

4 Abstraction and application

It is time now to return to the main problem in hand, namely, to give the imple-

mentations of abstraction and application.

Abstracting with respect to a free variable x is easy: each occurrence of x in a

term is replaced by Zero, and each occurrence of a variable y 6= x is replaced by

Succ y. This is implemented by:

abstract :: Eq a => a -> Term a -> Term a

abstract x = Lam . mapT (match x)

2 These equations are part of the statement that distT is a distributive law (Barr and Wells, 1984)
between the monads on Term and Incr .

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

de Bruijn notation as a nested datatype 87

match :: Eq a => a -> a -> Incr a

match x y = if x == y then Zero else Succ y

The definition of application is also quite short. We define application as a function

that takes a term t and the body b of a lambda abstraction, and replaces every

occurrence of Zero (the nameless variable bound by the abstraction) in b by t:

apply :: Term a -> Term (Incr a) -> Term a

apply t = joinT . mapT (subst t . mapI Var)

The function mapT (subst t · mapI Var) returns an element of Term (Term a), a term

of terms. The function joinT ‘flattens’ such elements into ordinary terms.

The actual substitution is done by the function subst t, a left inverse of match t:

subst :: a -> Incr a -> a

subst x Zero = x

subst x (Succ y) = y

Note that the type of subst implies the following ‘free theorem’ (Wadler, 1989):

f · subst x = subst (f x) · mapI f (23)

To check this definition of apply , let us prove that substituting an abstracted

variable returns the original term:

apply (Var x) · mapT (match x)

= {definitions}
joinT · mapT (subst (Var x) · mapI Var) · mapT (match x)

= {law (23)}
joinT · mapT (Var · subst x) · mapT (match x)

= {functor}
joinT · mapT (Var · subst x · match x)

= {functor, monad law (21)}
mapT (subst x · match x)

= {definitions of subst , match}
mapT id

= {functor}
id

5 An extension of de Bruijn’s notation

Substitution on de Bruijn terms transforms arguments as well as function bodies,

thus precluding sharing. Consider the example term from section 1, with the variables

rewritten in unary notation:

λ.0 (λ.S0 0 (λ.SS0 S0 0))

If this term is applied to the term λ.0 S0, the result is

(λ.0 S0) (λ.(λ.0 SS0) 0 (λ.(λ.0 SSS0) S0 0))

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

88 R. S. Bird and R. Paterson

where the three versions of the argument are underlined. There is a generalisation

of de Bruijn notation in which S can be applied to any term, not just a variable

(Paterson, 1991). Its effect is to escape the scope of the matching λ. With this looser

representation of terms, one can avoid transforming arguments while substituting.

In the above example, substitution yields

(λ.0 S0) (λ.S(λ.0 S0) 0 (λ.SS(λ.0 S0) S0 0))

In effect, we have postponed pushing the S’s down to the variables.

We still require that each S or 0 have a matching lambda. This constraint is

captured by the following definition:

data TermE a = VarE a

| AppE (Pair (TermE a))

| LamE (TermE (Incr (TermE a)))

Note that TermE is doubly nested. A similar definition can be used to model

quasiquotation (literal data with an escape operator) as in Scheme (Clinger and

Rees, 1991) or multi-stage programming languages like MetaML (Taha and Sheard,

1997).

Though TermE is more complex, we can follow the same steps as for BinTree

and Term . The mapping function for TermE is given by:

mapE :: (a -> b) -> TermE a -> TermE b

mapE f (VarE x) = (VarE . f) x

mapE f (AppE p) = (AppE . mapP (mapE f)) p

mapE f (LamE t) = (LamE . mapE (mapI (mapE f))) t

The generalised fold operator is

gfoldE :: (forall a. m a -> n a) ->

(forall a. Pair (n a) -> n a) ->

(forall a. n (Incr (n a)) -> n a) ->

(forall a. Incr a -> m (Incr a)) ->

TermE (m b) -> n b

gfoldE v a l k (VarE x) = v x

gfoldE v a l k (AppE p) = (a . mapP (gfoldE v a l k)) p

gfoldE v a l k (LamE t) = (l . gfoldE v a l k .

mapE (k . mapI (gfoldE v a l k))) t

Note the change in type for the last argument k: a lambda abstraction for extended

terms with variables of type mb has type

TermE (Incr (TermE (mb)))

Applying mapE (mapI (gfoldE v a l k)) to a value of this type produces an element of

type

TermE (Incr (n b))

Applying mapE k to this element produces an element of type

TermE (m (Incr (n b)))

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

de Bruijn notation as a nested datatype 89

A second recursive application of gfoldE v a l k now produces an element of the type

required by l, namely,

n (Incr (n b))

The identity law for extended terms is

gfoldE ′ VarE AppE LamE id = id (24)

The map-fusion law is

gfoldE v a l (h · k) · mapE h = gfoldE (v · h) a l k (25)

The fusion law for gfoldE v a l k :: TermE (M a)→ N a is

h · gfoldE v a l k = gfoldE v′ a′ l′ (mapM k′ · k) (26)

⇐

h · v = v′
h · a = a′ · mapP h

h · l = l′ · h · mapN (k′ · mapI h)

Extended terms also comprise a monad, with unit VarE and join operator defined

by:

joinE :: TermE (TermE a) -> TermE a

joinE = gfoldE id AppE LamE VarE

Verification of the monad laws is straightforward. For example, we will prove that

joinE · mapE joinE = joinE · joinE (27)

We have

joinE · mapE joinE

= {definition of joinE}
gfoldE id AppE LamE VarE · mapE joinE

= {definition of joinE}
gfoldE id AppE LamE (joinE · VarE · VarE) · mapE joinE

= {map fusion}
gfoldE joinE AppE LamE (VarE · VarE)

= {naturality of VarE}
gfoldE joinE AppE LamE (mapE VarE · VarE)

= {fusion (backwards)}
joinE · gfoldE id AppE LamE VarE

= {definition of joinE}
joinE · joinE

With the definitions above, we can define abstraction and application:

abstractE :: Eq a => a -> TermE a -> TermE a

abstractE x = LamE . mapE (mapI VarE . match x)

applyE :: TermE a -> TermE (Incr (TermE a)) -> TermE a

applyE t = joinE . mapE (subst t)

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

90 R. S. Bird and R. Paterson

Finally, let us see how to convert extended terms into ordinary ones. We want a

function

cvtE :: TermE a -> Term a

We will define cvtE as an instance of gfoldE . Typing considerations dictate that

m = Id and n = Term in the type assignment for gfoldE . Once again Haskell forces

us to define a variant gfoldE ′, whose definition is the same as that of gfoldE , but

with m specialised to Id . We define

cvtE = gfoldE’ Var App (Lam . joinT . mapT distT) id

To check this definition, we can show that cvtE is a monad morphism, that is, it

satisfies the equations:

cvtE · VarE = Var (28)

cvtE · joinE = joinT · mapT cvtE · cvtE (29)

The first is immediate from the definition, and the second is an appeal to fusion:

cvtE · joinE

= {definition of joinE}
cvtE · gfoldE id AppE LamE VarE

= {fusion}
gfoldE cvtE App (Lam · joinT · mapT distT) (mapE id · VarE)

= {identity}
gfoldE cvtE App (Lam · joinT · mapT distT) VarE

= {map fusion (backwards)}
gfoldE id App (Lam · joinT · mapT distT) (cvtE · VarE) · mapE cvtE

= {definition of cvtE}
gfoldE id App (Lam · joinT · mapT distT) Var · mapE cvtE

= {identity}
gfoldE id App (Lam · joinT · mapT distT) (Var · id) · mapE cvtE

= {fusion (backwards)}
joinT · gfoldE ′ Var App (Lam · joinT · mapT distT) id · mapE cvtE

= {definition of cvtE}
joinT · cvtE · mapE cvtE

= {naturality of cvtE}
joinT · mapT cvtE · cvtE

This equation is used in the proof that substitution on extended terms correctly

mirrors substitution on de Bruijn terms:

cvtE · applyE t = apply (cvtE t) · cvtBodyE (30)

where cvtBodyE converts an extended abstraction body to a simple one:

cvtBodyE :: TermE (Incr (TermE a)) -> Term (Incr a)

cvtBodyE = joinT . mapT distT . cvtE . mapE (mapI cvtE)

The proof is lengthy but routine, and we omit it.

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

de Bruijn notation as a nested datatype 91

6 Conclusion

Our representation of de Bruijn terms illustrates the ability of nested datatypes to

express constraints on data structures, so that they can be enforced by the type

checker. It has also served as a test case for the extension to nested datatypes of

structuring principles developed for regular datatypes, using maps, folds and monads.

In the case of de Bruijn terms, these operators do most of the work, including

handling bound variables, so that the definition of application and abstraction is

particularly simple. Moreover, with programs structured in this way most proofs

are mechanical, and were indeed generated using the simple automatic calculator

described in Bird (1998).

Programs that manipulate nested types require a number of recently explored

extensions of the Hindley-Milner type system. The limited form of type constructor

polymorphism provided by Haskell has been an occasional hindrance, forcing us

to define specialised versions of polymorphic functions, or new datatypes that are

equivalent to existing types; in both cases an opportunity for reuse is lost. It might be

reasonable to design a language in which these restrictions were lifted, at the cost of

explicit abstraction and instantiation with respect to type constructors, but not types.

Acknowledgements

Oege de Moor suggested using a nested datatype for lambda terms. An anonymous

referee suggested a number of improvements.

References

Barr, M. and Wells, C. (1984) Toposes, triples and theories. Grundlehren der Mathematischen
Wissenschaften, no. 278. Springer-Verlag.

Bird, R. and de Moor, O. (1997) The Algebra of Programming. Prentice Hall.

Bird, R. (1998) Introduction to Functional Programming using Haskell. Prentice Hall.

Bird, R. and Paterson, R. (1998) Generalised folds for nested datatypes. Submitted.

Bird, R. S. and Meertens, L. (1998) Nested datatypes. Mathematics of Program Construction:
Lecture Notes in Computer Science 1422, pp. 52–67. Springer-Verlag.

Clinger, W. and Rees, J. (1991) Revised4 report on the algorithmic language Scheme. ACM
Lisp pointers, IV(July–September).

de Bruijn, N. G. (1972) Lambda calculus notation with nameless dummies. Indagationes
Mathematicae, 34, 381–392.

Jones, M. (1998) A technical summary of the new features in Hugs 1.3c. Unpublished.

McCracken, N. J. (1984) The typechecking of programs with implicit type structure. Semantics
of Data Types: Lecture Notes in Computer Science 173, pp. 301–315. Springer-Verlag.

Paterson, R. A. (1991) Non-deterministic lambda-calculus: A core for integrated languages.
Declarative programming, Sassbachwalden. Springer-Verlag.

Paulson, L. C. (1996) ML for the Working Programmer (2nd edn). Cambridge University
Press.

Peyton Jones, S. et al. (1998) The Glasgow Haskell Compiler. Department of Computer
Science, University of Glasgow.

Taha, W. and Sheard, T. (1997) Multi-stage programming with explicit annotations. ACM
Symposium on Partial Evaluation and Semantics-based Program Manipulation, pp. 203–217.

Wadler, P. (1989) Theorems for free! 4th Conference on Functional Programming Languages

and Computer Architecture, pp. 347–359. IFIP.

https://doi.org/10.1017/S0956796899003366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003366

