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UNICITY THEOREMS FOR MEROMORPHIC
OR ENTIRE FUNCTIONS

Hong-XuN YI

In this paper, we prove that there exist three finite sets S; (j = 1, 2, 3) such that
any two non-constant meromorphic functions f and g satisfying E¢(S;) = E,4(S;)
for j =1, 2, 3 must be identical. As a particular case of the above result, we obtain
that there exist two finite sets S; (7 = 1, 2) such that any two non-constant entire
functions f and g satisfying E;(S;) = E,(S;) for j = 1, 2 must be identical,
which answers a question posed by Gross.

1. INTRODUCTION

By a meromorphic function we shall always mean a meromorphic function in the
complex plane. We use the usual notation of Nevanlinna theory of meromorphic func-
tions as explained in [5]. We use E to denote any set of positive real numbers of finite
linear measure, not necessarily the same at each occurrence. We denote by S(r, f) any
quantity satisfying S(r, f) = o(T(r, f)) (r = 0, r ¢ E).

For any set § and any meromorphic function f let

Es(S)= J{z1 f(z) —a=10},

acSs

where each zero of f — a with multiplicity m is repeated m times in E¢(S) (see [1]).
Nevanlinna proved the following well-known theorem.
THEOREM A. (See [6, 4].) Let S; = {e;} (j =1, 2, 3, 4), where a,, a2, a3 and
as are four distinct complex numbers (a; = oo is allowed). Suppose that f and g
are non-constant meromorphic functions satisfying Ef(S;) = E,(S;) for j =1, 2, 3,4.
Then either f = g, or f is a linear fractional transformation of g, two of the values,

say a; and ay, must be Picard values, and the cross ratio (a,, az, a3, as) = —1.

Using Theorem A, the present author proved the following results.
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THEOREM B. (See [7].) If, in addition to the assumptions of Theorem A,

(20.3 —a; — az)a4 + (20.10.2 —ajaz — azas)

(a2 — a1)(as — as)

# _3’ 0’ 3a

then f=g.

THEOREM C. (See [7].) Let S; = {a;} (7 =1, 2, 3), where a;, a; and a3 are
three distinct finite complex numbers. Suppose that f and g are two non-constant
entire functions satisfying E;(S;) = E,(S;) for j =1,2,3. If

2a3 —a; —as
o Ta #-3,0,3,
then f =g.

In [3] Gross also proved that there exist three finite sets S; (7 =1, 2, 3) such
that any two non-constant entire functions f and g satisfying E¢(S;) = E,(S;) for
7 =1, 2, 3 must be identical, and asked the following question (see [3, Question 6]): Can
one find two finite sets S; (j =1, 2) such that any two non-constant entire functions
f and g satisfying E(S;) = E4(S;) for j =1, 2 must be identical? Now it is natural
to ask the following question: Can one find three finite sets S; (j =1, 2, 3) such that
any two non-constant meromorphic functions f and g satisfying E;(S;) = E4(S;) for
j =1, 2, 3 must be identical?

Throughout this paper we shall use w to denote the constant exp ((2n1)/(n)),
where n is a positive integer and n > 6.

In this paper we answer the above questions. In fact, we prove more generally the
following theorems.

THEOREM 1. Let $; = {1, w, w?, ..., w"" '}, Sz = {a, b} and Ss = {0}, where
a and b are constants such that ab # 0, a™ # b", a®™ # 1, b>™ # 1 and a™b™ # 1.
Suppose that f and g are non-constant meromorphic functions satisfying Ez(S;) =
Ey(S;) for j=1,2,3. Then f=g.

THEOREM 2. Let S, and S; be defined as in Theorem 1, and let S5 = {oo}.
Suppose that f and g are non-constant meromorphic functions satisfying E;(S;) =
E,(S;) for j=1,2,3. Then f=g.

From Theorem 2 we immediately obtain the following result, which answers the
question posed by Goss.

THEOREM 3. Let S; and S; be defined as in Theorem 1. Suppose that f and
g are non-constant entire functions satisfying E(S;) = Eg4(S;) for j = 1,2. Then
f=g.

The following interesting result will be needed in the proof of our theorems.
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THEOREM 4. Let S, and Ss be defined as in Theorem 2. Suppose that f and
g are non-constant meromorphic functions satisfying E¢(S;) = E4(S;) for j = 1, 3.
Then either f = cg, where ¢® =1, or fg =d, where d* =1.

2. SOME LEMMAS

LEMMA 1. (See [8].) Let f and g be two non-constant meromorphic functions,
and let ¢1, ¢2 and c3 be three non-zero constants. If ¢; f + c29 = ¢3, then
1

T(r, f) < W(r, ?) + N(r, %) + N(r, f) + S(r, f).

LEMMA 2. (See[6,2].) Let fi1, f2,.-., fm be linearly independent meromorphic
m
functions satisfying 3, fj=1. Thenfor k=1,2,..., m we have
i=1

T(r, £0) < 3N (v, ) + NGr, £)+ NG, D) - SN, )

j=1 f’ j=1

- N(r, %) +o(T(r)) (r ¢ E),

where D denotes the Wronskain

.fl .f2 fm
(] (] (]
D= 1 2 m
}i;.'_'i)' ) '};(;.'_'{)' """" 'f'(;,;:;i
and T(r) denotes the maximum of T'(r, f;),j=1,2, ..., m.

LEMMA 3. (See[9].) Let fi, f2 and fs be three meromorphic functions satisfying
2 fi=1,andlet g1 = —fs/f2, g2 =1/f2 and gs = —f1/fa. I f1, f2 and fs are

=1
linearly independent, then g,, go and gs are linearly independent.

3

3. PROOF OF THEOREM 4

By the assumption, from Nevanlinna’s second fundamental theorem, we have

1
g-wt

(1) (n=1)T(r,9) < Y. N ( ) + N(r, g) + S(r, g)
k=0

n—1

-5 N(r, }le—,,) + N(r, f) + S(r, 9)

<(n+1)T(r, f) + S(r, 9)-

https://doi.org/10.1017/50004972700016324 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700016324

260 H-X. Yi (4]

Thus

(2) I(r, 9) = O(T(r, )) (r ¢ E).
Again by the assumption, we obtain

@) fr-1=eMgm -,

where h is an entire function. From (1) and (3), we have

T(r, eh) = T(r, 5:—:——;—)

< T(r, f*)+ T(r, g") + O(1)
= nT(r, )+ nT(r, g) + O(1)

< (ne 2ot DVt 1)+ 56, 1)
Thus
(4) T('I‘, eh) = O(T(rr f)) (7' ¢ E)

Let us put fi = f*, fo = e®, fs = —ekg™, and let T(r) denote the maximum of
T(r, f;), 3 =1,2, 3. From (2), (3) and (4), we obtain

(5) ij =1
and
(6) T(r) = O(T(r, f)) (r ¢ E).

Suppose that fi1, f and fs are linearly independent. Applying Lemma 2 to the
functions f; (j =1, 2, 3), from (5) and (6) we have

(r, f1)<EN(r, f,) N(r, -115)+N(r, D)= N(r, f2) = N(r, f3)

(7)
+o(T(r, f)) (r ¢ E),
where
h f2 fs
(8) =i 2 f|
#oR
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We note that

O ) ) )

and

@ w(n3)san(n ) -am(n2) v (s 1) -am ().

From (5) and (8) we get

_|f2 £
el PO
and hence
(11) N(r, D) - N(r, f2)— N(r, f3) < N(r, (g")") — N(r, g™)

= 3N (r, g) = 2N(r, f).
From (7), (9), (10) and (11) we deduce

(12) nT(r, f) < 2W(r, ;) + 2W(r, %) +2N(r, g) + o(T(r, f))

< 2T(r, f) + 4T(r, g) + o(T(r, f)) (v & E).

Let g1 = —fs/fa=g", 92=1/f2 =e™™ and g3 = —f1/f = —e % f*. From (5)

we obtain
s
D 95=1.
=1

By Lemma 3 we know that g;, g2 and gs are linearly independent. In the same manner

as above, we have

(13) nT(r, g) < 4T(r, f) + 2T(r, g) + o(T(r, f)) (r & E).
Combining (12) and (13) we get

(14) (n —6)I(r, f) + (n —6)T(r, g) < o(T(r, f)) (r ¢ E).

Since n > 6, (14) is absurd. Hence f;, f; and f; are linearly dependent. Then, there
exist three constants (c1, ¢2, ¢3) # (0, 0, 0) such that

(15) afi te2fatesfs =0.
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If ¢; =0, from (15) we have ¢ #0, c¢s #0 and

fi=——F
cs
and hence
n C2
g =
s
which is impossible. Thus ¢; # 0 and
(16) h=-2f-2f,
c1 (3]

Now combining (5) and (16) we get

(17) (l-g)fz+(1—2—:)f3=l.

We discuss the following three cases.
(a) Assume ¢; # ¢z and ¢; # cs. From (17) we have

(18) ‘ (1—9)g"+e"‘=1—2.

By Lemma 1 and (18) we obtain

aT(r, g) < W(r, %) + S(r, g)
< T("', g) + S(’I‘, 9)1

which is impossible.

(b) Assume ¢; = cs. From (17) we have ¢; # ¢, and

—_ a
f=asa
that is,
h__ A
(19) ¢ =0 et
From (5) and (19) we get
(51 C2
2 n _ n — - .
(20) f €1 —¢ c1—¢c

https://doi.org/10.1017/50004972700016324 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700016324

(7] Unicity theorems for meromorphic or entire functions

If ¢ # 0, by Lemma 1 we have

nT(r, f) < W(r, ;) +W(r, %) +N(r, f)+ S(r, f)

< 2T(r, f) + T(r, g) + S(r, f),

and
nT(,0) <H(r, 3) + W (r, 1) + Wi, )+ 5 9)
< T(r, f)+2T(r, g) + S(=, 9).
Hence,

(n—3)I(r, f) + (n—3)T(r, g) < S(r, f) + S(r, 9),

263

which is impossible. Thus ¢; = 0. From (20) we deduce f" = g™ and f = cg, where

c*=1.

(c) Assume ¢; = c;. From (17) we have ¢; # ¢3 and

(21) fs= e
From (5) and (21) we get
—_—— €3
h+f= o
that is
(22) frret=——2
€1 — C3
If e3 # 0, applying Lemma 1 to (22), we have
— 1
WT(r, ) <W(r 3 )+, )

< T(r1 f) +S(Ts f)’

which is impossible. Thus ¢3 = 0. By (21) and (22) we deduce f* = —e*, g" = —e™?

and f*¢g™ =1. Thus fg =d, where d” =1.
This completes the proof of Theorem 4.
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4. PROOF OF THEOREM 2
By the assumption Ey(S;) = Ey4(S;) (7 =1, 3), we have from Theorem 4 that
f =cg, where ¢® =1, or fg =d, where d® = 1. We discuss the following two cases.
(a) Suppose that

(23) f=cg

where ¢ =1.

We discuss the following three subcases.

{a21) Assume that a is not a Picard value of f, then there exists z¢ such that
f(20) = a. By Ey(Sz) = Ey(S2), we obtain g(z0) = a or g(20) = b.

If g(z0) = a, by (23) we have a = ca. Thus ¢ =1,and f=g.

If g(20) = b, by (23) we have a = cb. Thus a™ = ¢™b™ = b™, which contradicts the
assumption.

(a2) Assume that b is not a Picard value of f. In the same manner as above, we
have f=g.

(as) Assume that a and b are Picard values of f. By E¢(S;) = E,(S:), we know
that a and b are Picard values of g. Again by (23), we know that ca and cb are Picard
values of f. Since a meromorphic function has at most two Picard values, then a = ca
or a = cb.

If a = ca, then c =1, and f = g. If a = ¢b, then a® = c™b™ = b™, which
contradicts the assumption.

(b) Suppose that

(24) f.q = d’

where d™* = 1.

By the proof of Theorem 4, it is easy to see that 0 and oo are Picard values of
f. Since a meromorphic function has at most two Picard values, then a and b are not
Picard values of f. Thus there exists zo such that f(z0) = a. By E4(S,) = E,(S2),
we obtain g(zo) = a or g(z) = b.

If g(z0) = a, by (24) we have a? = d. Thus @>® = d™ = 1, which contradicts the

assumption.

If g(20) = b, by (24) we have ab = d. Thus a™b" = d" = 1, which is also a
contradiction.

This completes the proof of Theorem 2. 0

5. PROOF OF THEOREM 1

Let Sq = {c, d} and S5 = {co}, where ¢ =1/a and d = 1/b. By the assumption,
it is easy to see that ed #0, c® #d™, ¢ # 1, d®» #1 and c"d" # 1.
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Let F = 1/f and G = 1/g. By Ef(SJ) = EH(SJ) (7 =1, 2,3), we obtain

Er(S;) = Ec(S;) (j =1, 4, 5). Applying Theorem 2 to the meromorphic functions F
and G, we have F = G. Thus f = g, which proves Theorem 1. 0
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