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UNICITY THEOREMS FOR MEROMORPHIC
OR ENTIRE FUNCTIONS

HONG-XUN Yi

In this paper, we prove that there exist three finite sets Sj (j = 1, 2, 3) such that
any two non-constant meromorphic functions / and g satisfying Ef{Sj) = Eg(Sj)
for j = 1,2,3 must be identical. As a particular case of the above result, we obtain
that there exist two finite sets Sj {j = 1, 2) such that any two non-constant entire
functions / and g satisfying Ej(Sj) = Eg(Sj) for j = 1, 2 must be identical,
which answers a question posed by Gross.

1. INTRODUCTION

By a meromorphic function we shall always mean a meromorphic function in the
complex plane. We use the usual notation of Nevanlinna theory of meromorphic func-
tions as explained in [5]. We use E to denote any set of positive real numbers of finite
linear measure, not necessarily the same at each occurrence. We denote by S(r, f) any
quantity satisfying S(r, f) = o[T[r, / )) (r -> oo, r £ E).

For any set S and any meromorphic function / let

Ef(S)=\J{z\f(z)-a = 0},
a€S

where each zero of / — a with multiplicity m is repeated m times in E/(S) (see [1]).
Nevanlinna proved the following well-known theorem.

THEOREM A. (See [6, 4].) Lei Sj = {a;} (j = 1, 2, 3, 4), where a1} a2, a3 and
a.4 are four distinct complex numbers (dj = oo is allowed). Suppose that f and g
are non-constant meromorphic functions satisfying Ef(Sj) = Eg(Sj) for j = 1, 2, 3, 4.
Then either f = g, or f is a linear fractional transformation of g, two of the values,
say ai and a-i, must be Picard values, and the cross ratio (aj, 02, 03, 04) = — 1.

Using Theorem A, the present author proved the following results.
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THEOREM B . (See [7].) If, in addition to the assumptions of Theorem A,

(2a3 - a i -o 2 )a 4 + (2a!g2 - a^s - a2a3)
—

zfz — ̂  (J, J,
(a2 - a i ) (a 4 - as)

then f = g.

THEOREM C. (See [7].) Let Sj = {a,j} (J = 1, 2, 3), where oi, a2 and a3 are
three distinct Unite complex numbers. Suppose that f and g are two non-constant
entire functions satisfying Ej(Sj) = Eg(Sj) for j = 1, 2, 3. If

2 a 3 ~ a i " f l 2 * -3 , 0, 3,
a2 - ai

then f = g .

In [3] Gross also proved that there exist three finite sets Sj (j = 1, 2, 3) such
that any two non-constant entire functions / and g satisfying Ef(Sj) — Eg(Sj) for
j = 1,2,3 must be identical, and asked the following question (see [3, Question 6]): Can
one find two finite sets Sj (jf = 1, 2) such that any two non-constant entire functions
/ and g satisfying E/(Sj) = Eg(Sj) for j =1,2 must be identical? Now it is natural
to ask the following question: Can one find three finite sets Sj (j = 1, 2, 3) such that
any two non-const ant meromorphic functions / and g satisfying Ef(Sj) = Eg(Sj) for
j = 1, 2, 3 must be identical?

Throughout this paper we shall use w to denote the constant exp ((2TTI)/(TI)),

where n is a positive integer and n > 6.
In this paper we answer the above questions. In fact, we prove more generally the

following theorems.

THEOREM 1 . Let Sx = {1, w, w2, ..., to""1}, S2 = {a, 6} and 5S = {0}, wiiere
a and b are constants such that ab ^ 0, an ^ bn, a2n ^ 1, 62n ^ 1 and anbn / 1.
Suppose that f and g are non-constant meromorphic functions satisfying Ef(Sj) =
Ea{Sj) for j = 1, 2, 3. Then f = g.

THEOREM 2 . Let Si and S2 be defined as in Theorem 1, and let S3 = {oo}.
Suppose that f and g are non-constant meromorphic functions satisfying Ef(Sj) =
Eg(Sj) for j = 1, 2, 3. Then f = g.

From Theorem 2 we immediately obtain the following result, which answers the
question posed by Goss.

THEOREM 3 . Let Si and S2 be defined as in Theorem 1. Suppose that f and

g are non-constant entire functions satisfying Ef(Sj) = Eg(Sj) for j = 1, 2 . Then

f = g.

The following interesting result will be needed in the proof of our theorems.
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THEOREM 4 • Let Si and S3 be defined as in Theorem 2. Suppose that f and
g are non-constant meromorphic functions satisfying Ef(Sj) = Eg(Sj) for j = 1, 3.
Then either f = eg, where cn = 1, or fg = d, where <f* = 1.

2. SOME LEMMAS

LEMMA 1 . (See [8].) Let f and g be two non-constant meromorphic functions,

and let ci, C2 and Cs be three non-zero constants. If c\f + C2</ = C3, then

, V) +N(r, f) + S(r, /) .T(r, f) <

LEMMA 2 . (See [6, 2].) Let / i , /2, • • •, fm be Hnearly independent meromorphic
m

/unctions satisfying ^ fj = 1 • Then for k = 1,2, ... ,m we have
i

r, y) + N(r, fk) + N(r, D)-

where D denotes the Wronskain

D =

h
fL

/
(TTI—l) /("**—l) / ( m — l )

1 /2 • • • /m

and T ( r ) denotes the maximum of T(r, fj),j = l,2,...,m.

LEMMA 3 . (See [9].) Let / i , / 2 and /j be three meromorphic functions satisfying
J2

3 = 1

fj = 1, and let g\ = ~hlh, g-i. = I//2 and g3 = - / i / / 2 - If / 1 , h and f3 are

linearly independent, then and g$ are Hnearly independent.

3. PROOF OF THEOREM 4

By the assumption, from Nevanlinna's second fundamental theorem, we have

n-l

(1) (n - 1)T{T, 9)<YlN (r, -L-) + N(r, g) + S(r, g)

fc=o

(n + l)T(r,/)-
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Thus

(2) T(r, g) = O(T{r, /)) (r i E).

Again by the assumption, we obtain

(3) / " - 1 = eh(gn - 1),

where h is an entire function. From (1) and (3), we have

Thus

(4) T(r,eh)=O(T(r,f)) (r <£ E).

Let us put / i = / n , / 2 = ek, /j = —ehgn, and let T(r) denote the maximum of

T(r, fj), j = 1,2,3. From (2), (3) and (4), we obtain

(5)

and

(6) T(r) = O(T(r,f)) (r $ E).

T(r, h) < Y,N{T, j^j -N(T, i ) + N{r, D) - N(r, f2) - N(r, f3)

Suppose that / j , fa and /j are linearly independent. Applying Lemma 2 to the
functions fj {j = 1, 2, 3), from (5) and (6) we have

(7)

where

(8)

o(T(r,f))

D =
/i h h
n n n
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We note that

(9)

and

(10)

From (5) and (8) we get

and hence

-;>

D =
fi f'z

(11) N(T, D) - N(r, /,) - N(r, /,) < N(r, (gn)") - N(r, 5 '

= 2N(r, g) = 2N(r, / ) .

From (7), (9), (10) and (11) we deduce

(12) nT(r, f)

2T(r, / ) + 4T(r,

2N{r, g) + o(T(r,

r, /)) (r ^ £J).

Let gi = -hlh = 9n, 92 = l//a = e-h and g3 = -Ulh = -e'hfn. From (5)
we obtain

By Lemma 3 we know that gi, gi and </j are linearly independent. In the same manner
as above, we have

(13) nT(r, g) < 4T(r, / ) + 2T(r, </) + o(r(r, /)) (r $ E).

Combining (12) and (13) we get

(14) (n - 6)T(r, / ) + (n - 6)T(r, g) < o(r(r, /)) (r g B).

Since n > 6, (14) is absurd. Hence / i , /2 and /j are linearly dependent. Then, there
exist three constants (cj, C2, cj) ^ (0, 0, 0) such that

(15) + c 2 / 2 + c j / s =0 .
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If ci = 0, from (15) we have c2 ^ 0, c3 ^ 0 and

and hence

which is impossible. Thus ci ^ 0 and

(16) / l = -^/2_£i/s.
C\ C\

Now combining (5) and (16) we get

(17) (i_££)/2 + (i_f*)/3 = 1 .
\ Cl/ \ Cl/

We discuss the following three cases.

(a) Assume ci ^ c2 and ci ^ C3. From (17) we have

(18) ( l - ^
V ci

By Lemma 1 and (18) we obtain

< T{r, g) + S{r, g),

which is impossible.

(b) Assume ci = C3. From (17) we have ci ^ c2 and

h =

that is,

(19)

From (5) and (19) we get

(20)
- c2 ci - c2
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If C2 7̂  0, by Lemma 1 we have

nT(r, /) < 7f(r, I ) +N(T, V) + N(r, f) + S(r, f)

< 2T(r, /) + T(r, g) + S(r, / ) ,

and

nT(r, g) < N(T, I ) + N (r, 1 ) + N(r, g) + 5(r, 5 )

< T(r, / ) + 2T(r, 5) + 5(r, </).

Hence,

(n - 3)T(r, / ) + (n - 3)T(r, , ) < 5(r, / ) + S(r, g),

which is impossible. Thus c^ = 0. From (20) we deduce fn = gn and / = eg, where
cn = 1.

(c) Assume ci = C2. From (17) we have ci ^ cs and

(21) / , = C

-c3

From (5) and (21) we get

- c 3 '

that is

C3(22)
C\ — C3

If cz ^ 0, applying Lemma 1 to (22), we have

nT(r,f)<N(r, I ) + S(r,

< r(r, /) + 5(r, /),

which is impossible. Thus c3 = 0. By (21) and (22) we deduce / " = — eh, gn — -e~h

and fngn - 1. Thus fg = d, where <f* = 1.

This completes the proof of Theorem 4. D
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4. P R O O F OF THEOREM 2

By the assumption Ef(Sj) = Eg(Sj) (j = 1, 3), we have from Theorem 4 that
/ = eg, where cn — 1, or fg = d, where cF1 = 1. We discuss the following two cases.

(a) Suppose that

(23) / = eg,

where cn = 1.

We discuss the following three subcases.

( a i ) Assume that a is not a Picard value of / , then there exists ZQ such that

f(z0) = a. By Ef(S2) = Eg(S2), we obtain g(zo) = a oi g(zo) = b.

If g(z0) = a, by (23) we have a = ca. Thus c = 1, and f = g.
If g(z0) = b, by (23) we have a — cb. Thus o" = cnbn = bn, which contradicts the

assumption.
(a2 ) Assume that 6 is not a Picard value of / . In the same manner as above, we

have f = g •
(a.3 ) Assume that a and b are Picard values of / . By 2?/(S2) = Eg(S2), we know

that a and b are Picard values of g. Again by (23), we know that ca and cb are Picard
values of / . Since a meromorphic function has at most two Picard values, then a = ca
or a = cb.

If a — ca, then c = 1, and / = g. If a = cb, then a" = cnbn = 6n, which
contradicts the assumption.

(b) Suppose that

(24) fg = d,

where dn = 1.
By the proof of Theorem 4, it is easy to see that 0 and 00 are Picard values of

/ . Since a meromorphic function has at most two Picard values, then a and 6 are not
Picard values of / . Thus there exists z0 such that f(z0) = a. By Ef(S2) = Eg(S2),
we obtain g(zo) — a or 5(20) = b.

If g(zQ) = a, by (24) we have a2 = d. Thus a2n = d" = 1, which contradicts the
assumption.

If g(z0) = b, by (24) we have ab = d. Thus anbn = <f* = 1, which is also a
contradiction.

This completes the proof of Theorem 2. D

5. PROOF OF THEOREM 1

Let 54 = {c, d} and 5s = {00}, where c = I /a and d = 1/6. By the assumption,
it is easy to see that cd ± 0, cn ± d", c2n ^ 1, d?n ^ 1 and cndn £ 1.
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Let F = 1/f and G = l/g. By Ef(Sj) = Eg(Sj) (.7 = 1 , 2 , 3 ) , we obtain

Ep(Sj) = EG(SJ) (j = 1, 4, 5). Applying Theorem 2 to the meromorphic functions F

and G, we have F = G. Thus / = g, which proves Theorem 1. U
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