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Abstract. The results in the N -body simulations in Giersz & Heggie (1996) show that although
the masses segregate as expected during core collapse, after core collapse there is self-similar
evolution with very little further evidence of mass segregation even though the system has not
reached equipartition. Binary stars halt core collapse and it is possible that they also halt the
tendency toward equipartition. To investigate this problem, we construct two models. One model
is a two-component model which assumes that binary stars form in the region dominated by
heavy stars. The other model is a single mass model which assumes that binary stars form only
in the region of the core. In both models, when the binary heating term is included, we find the
post-collapse evolution to be self-similar. The aim of our work is to combine these two models
to form a two-component model which assumes that binary formation only occurs in the core.
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1. Two-Component Model
In our first model, we consider a two-component system with individual masses m2 >

m1 . The total mass of the heavy stars and the total mass of the light stars are M2 and
M1 respectively. We build our two-component model from equation (1) in Spitzer (1969).
We assume that the heavy stars are uniformly distributed in the sphere characterized by
the half-mass radius of the heavy stars, r2 . Similar assumptions are made with the light
stars, where the half-mass radius is r1 . We use the binary heating term derived in Heggie
& Hut (2003) and assume that binary stars form throughout the region of heavy stars.
From these assumptions, we derive the equations for our dynamical system,

ṙ1(r1 , r2) = f(r1 , r2)
φ( r2

r1
)

teq (r1 , r2)
, (1.1)
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The second term on the right in Eqn. (1.2) is due to binary heating.
In Fig. 1(i) & (ii), we show the phase portraits for r2 vs. r1 . We use an example in

which the system is Spitzer stable, where m2/m1 = 2 and M2/M1 = 0.1. In the case
where binary heating is excluded, we find two lines of equilibria (depicted by the dashed
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(iii) Single Mass Model: r
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 vs. t,

where binary heating is ignored.

10
0

10
2

10
4

10
0

10
5

time (Nbody)

r c &
 r

h

(iv) Single Mass Model: r
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 vs. t,

where binary heating is included.

Figure 1. From left to right: Phase portraits for the two-component model (i) ignoring binary
heating and (ii) including binary heating and the graphs of rh (dashed) and rc (solid) vs. t in
the single mass model (iii) ignoring binary heating and (iv) including binary heating.

lines in Fig. 1(i)). The upper line is stable and the lower line is unstable. When we include
binary stars, the system reaches what was the stable line of equilibria in the case without
binary stars. When this line is reached, the system is in quasi-equilibrium.

2. Single Mass Model
The second model is a single mass model which assumes that binary stars only form in

the core of the cluster. To model this system, we use approximations based on Lynden-
Bell & Eggleton (1980) and again the binary heating term found in Heggie & Hut (2003).
From this, we get the equations for our model
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In this model, all but the first term in equation (2.2) are caused by binary heating.
The evolution of the half-mass radius and the core radius over time is shown in

Fig. 1(iii) & (iv). As expected, the core collapses when the binary heating term is ignored.
When binary heating is included, the core radius collapses to a minimum value and then
the post-collapse evolution is self-similar.

3. Further Work
We intend to combine these two models to create a new model which will include mass

segregation and will assume that binary stars exist only in the core. From this model we
can determine whether the influence of binary stars causes the post-collapse evolution to
be self-similar.
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