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VARIANCE MINIMIZATION - RELATIONSHIP BETWEEN
COMPLETION-TIME VARIANCE AND WAITING-TIME VARIANCE
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Abstract

The completion-time variance (CTV) and the waiting-time variance (WTV) are two per-
formance measures which are commonly used in optimization of single-machine scheduling
systems. This paper shows that when the number of jobs is large the two measures are
nearly equivalent in a probabilistic environment.

1. Introduction

The model of scheduling jobs to minimize their completion-time variance was initially
formulated by Merten and Muller [14] in 1972, motivated by the file-organization
problem in a computing system, where it is desirable to provide uniform response
times to users' requests to retrieve data files. It is known that many other optimal
scheduling problems espouse the same mathematical model. These include just-in-
time (JIT) production, commercial service systems, scheduling of data transmissions
from a satellite to an earth station, and any other situations where a uniform treatment
of jobs is desirable. For example, in a JIT manufacturing setting, a critical task is to
minimize the earliness as well as the tardiness of job completion times from their due
date. Another example is in commercial service systems, where delays in providing
services are the major source of complaints, while getting too many jobs done well
ahead of their due time would lead to unnecessary high cost and wastage of resources.
It can be shown that, if the due date involved is also a decision variable that the
decision maker wishes to determine, and if in the problem large deviations of job
completion times from the due date are highly undesirable, then the problem can be
formulated by a variance minimization model. The reason is that the optimal due
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date should be equal to the mean completion time of the optimal job schedule for the
variance minimization model. For a comprehensive review on these problems, see
Baker and Scudder [2] and Cheng and Gupta [4].

CTV and WT V are two commonly used performance measures involved in vari-
ance minimization studies. See, for example, Bagchi [1], Cai [3], De, Ghosh, and
Wells [5], Eilon and Chowdhury [6], Merten and Muller [14], Schrage [15] and
Vani and Raghavachari [16]. Merten and Muller have shown (Theorem H in [14])
that, if a sequence A. = {/,, i 2 , . . . , /„} minimizes CTV, then its antithetical sequence
•̂' = Un. «n-i. • • • i 'i} minimizes WTV, and vice versa. Nevertheless, A. and A,' are two

solutions which are totally different in the order that they sequence the jobs. So far it is
still unclear whether or not a solution is good for one measure even if it is the best with
respect to the other measure. In fact, such a question relates to a fundamental issue
- the equivalence of performance measures - in machine-scheduling studies. There
have been some significant results which have identified the equivalence between a
number of performance measures (see Rinnooy Kan [11], French [7], and Gerchak
and Magazine [8]). However, it appears that the equivalence relationship between
CTV and WTV still remains as an open problem.

This paper will study this problem within the framework of probabilistic analysis.
We shall show that the two measures are approximately equivalent when the problem
instances are randomly distributed. Theoretically, one of our main results is that, in
such a 'random' situation, the relative error between CTV and WTV tends towards
zero 'in probability' at a rate of order n'1 for any sequence k as the number of jobs,
n, increases to infinity. Through applying Merten and Muller's Theorem H, we shall
further show that this result implies that, for any given A. and its antithetical sequence
V, both | c r v ^ m ) | and l ^ w - ^ W l tend to zero in probability at the rate

This finding is significant, because it indicates that the quality (as measured by
performance measure CTV or WTV) of a pair of sequences k and k' is actually
nearly the same. This equivalence, together with the well-known result established
by Theorem H of Merten and Muller [14] that A.' is optimal to WT V iff k is optimal
to CTV, suggests that a sequence minimizing one criterion (WTV or CTV) will
also approximately minimize the other criterion (CTV or WTV) in a probabilistic
environment. Therefore in a two-criteria problem in which both CTV and WTV are
to be minimized simultaneously, it suffices to find an optimal solution to one criterion
only, as such a solution will be also an approximate solution to the other criterion.
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2. Problem formulation

We are given a set jV = {1, 2 , . . . , « } , « > 1, of independent and simultaneously
available jobs which are to be processed nonpreemptively on a single machine. Job
/ requires a positive integer processing time pt and is assigned a positive integer
weight Uj, V/ e Jf. The problem is to find a sequence to process the jobs so that the
variance of job-completion times or the variance of job waiting times is minimized.
To be precise, let Fl be the set of all permutations of the first n integers, and let
X = {/j, i2,.. •, in] e n be a sequence in which integer ik being at the k-th position
denotes that job ik is the &-th to be processed. Then, the problem is:

min\CTV(k) = - } H , ( C , - C ) 2 } , (2.1)
I '=• J

or:

min j WTV(k) = i £u,(Wi - W)2\ , (2.2)

where

C, = ^ pit : the completion time of job / under A,
ik<i

Wj = 2_[ Pit '• m e waiting time of job / under k,

1 "
C = — 2_. u> Ci '• m e mean completion time,

i=i

I "
W = — 2_, u< W; : t n e mean waiting time,

and

n

U = y~] w; : the sum of weights.
; = i

It may be shown that inserted idle time between jobs on the machine can reduce
neither CTV nor WTV. Thus we assume that the machine starts processing from
time zero without idleness until all jobs have been completed.

We are concerned with the relationship, in an average sense, between CTV and
WTV. For this purpose, we consider throughout this paper that all the problem
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parameters are drawn randomly and independently. The relative errors between CTV
and WTV under a given sequence k e Fl are defined as

\CTV(k) - WTV(k)\

or

We shall prove that for any sequence k e fl, as n ->• oo, rc(A) and rw(k) tend to
zero 'in probability' in the sense that for any e > 0,

Urn P {rc(k) > e) = 0 (2.5)
n->oo

and

MmP{rw(k) >€} = 0. (2.6)
n-+oo

Furthermore, the convergence rates of rc(k) and rw(k) are of order «"' in the sense of
(3.3) of the next section.

Before we carry out the proof, let us now note two important implications of the
results given by (2.3) - (2.6) above.

First, (2.5) and (2.6) show that CTV(k) is asymptotically equivalent to WTV(k)
for all k. As a result, an optimal solution to CTV should be approximately a good
solution to WTV (and vice versa). Here we use a relative error to describe the
goodness of an approximate solution. This is a common practice in analyzing the sub-
optimality of approximate solutions. Some well-known examples in the scheduling
literature include Karp [12], Lawler [13], Rinnooy Kan [10], Ibarra and Kim [9], to
name just a few.

Secondly, since Theorem H of Merten and Muller [14] established that CTV(k)
= WTV(k') and CTV(k') = WTV(k), where k' and k are mutually antithetical, it
is not hard to see that (2.3) and (2.5) imply

n\\CTV(k')-CTV(k)\ 1
h m P r-rvn\ >e\=0, (2.7)
«-><» [ CTV(k) \

while (2.4) and (2.6) imply

,TV«-^VCT|ft
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Also, the convergence rates are of order n~l as well.
Equations (2.7) and (2.8) indicate that any pair of sequences k and k' are nearly

the same in terms of the quality as measured by CT V or WT V. Consequently, if a
sequence k is optimal for CTV (or WTV), then its antithetical sequence k' is also
approximately optimal for CTV (or WTV).

3. Probabilistic analysis

Assume that p t , . . . , pn are drawn from a discrete uniform distribution over integer
values (1, 2 , . . . , a], that is, /?, is equally likely to take each one of 1, 2 , . . . , a, so that

P(p,. = k) = I/a, it = 1 ,2, . . . , a. (3.1)

Such a distribution will be denoted by DU[1, a]. Similarly we assume that u i , . . . , un

are independently drawn from a DU[1,b], and we further assume that ux,..., un

are independent of p \ , . . . , pn- Let p denote a random variable with a DU[1,a]
distribution and u a random variable with a DU[1, b] distribution. It can be easily
calculated that

. 1 _ a + 1
i ~ = 2 '

.2 1 (a + l)(2a + 1)

- tf (,, = ( ° + ' f + " - <£±£ . !(>> - 1).

In general, the &-th moment of /? is given by E(pk) = £ J = 1 j
k „• Similarly, E(M) =

£±i, E(M2) = (fc+'H2*+')) etc. To state our results, let us introduce the following
definition.

DEFINITION. Let Xn be a sequence of random variables and an a sequence of numbers.
If

lim liminf P (( = 1, (3.2)

then we say that {Xn/an} is bounded 'in probability' and write Xn = Op(an).

We now present our main result.
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THEOREM 1. If the processing times p t , . . . , pn and weights u\, ...,un satisfy the
above assumptions, then for any sequence X,

rc(k) = Op(l/n) and rw(k) = Op(l/n). (3.3)

Note that (2.5) and (2.6) are immediate consequences of (3.3).
In order to prove this Theorem, let us first prove several lemmas. Without loss

of generality we assume, in all our proofs, that k = ( 1 , . . . , « } . This can always
be achieved by relabeling p u ..., pn and uu ... ,un if necessary. We will prove the
theorem for rc(k) only as the proof for rw(k) is very similar.
The following lemma establishes an upper bound on rc(k) for any given pt and «,,
i = 1 ,2 , . . . , « .

LEMMA 1.

( 3 -4 )

where p = ^ E " = i " ' A -

PROOF. Note that Wt = Ct - pi and W = C - p . Hence

WTV{k) = \jY. U^W' ~ W? = JJ E "' (C- - A - C + pfJJ

= CTV(X) - | £>,«:, C)(p, p) +

Thus by the Cauchy-Schwarz inequality,

\WTV(k)-CTV(k)\< ^J"

2
1

= 2

After dividing the above inequality by CT V(k) and using (2.3), the proof is complete.

https://doi.org/10.1017/S0334270000000503 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000503


132 S.Zhou andX. Cai

In the next two lemmas, we examine the limit of (3.4) as n —> oo.

LEMMA 2.

- 2^«.-(P/ ~ P) -+ E(M) Var(p) =
"7= 24

in probability as n —> oo.

PROOF. Applying the law of large numbers, we obtain

" " 7 = i

= E(«)E(p)

and

n % i

in probability. Hence

1 "

E(«)E(p2) -
E(M)

- E2(p)) =

in probability, which proves the lemma.

LEMMA 3.

n3 *-.

(a

Var(p)

96

[7]

(3.5)

(3.6)

in probability as n —> oo.
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PROOF. First rewrite

( x 2

Z^uiQl . (3.7)
i=i /

We then calculate

E(Q) = E(p, + • • • + Pi) =

~ ' -l)E(«)E(p). (3.8)

Thus

E ( — Y^UiCi ] -» -E (M)E(p ) . (3.9)

Furthermore,

= i E(p2) + i(i - 1) E2(p) = /[E(p2) - E2(p)] + i2 E2(p)

«2E2(p) (3.10)

and for i < j ,

E(jC,Cj) = E [ ( p , + • • • + Pi){px + ••• +

= i E(p2) + i (7 - 1) E2(p) = i Var(p) + ij E2(p). (3.11)

Hence

n(n + 1) Var(p) + in(« + 1)(2« + 1)E2(p)j
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and

E
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-n3E(u)E2(p)

E(Cf) + 2 Y, E2(«) E(QCj)

[9]

(3.12)

= E(M2) I -n(n + 1) Var(p) + -n(n + l)(2n
6

E2(«) To(«3) Var(p) + (j + O(«

It follows from (3.8) and (3.13) that

Varl

= -E 2 (« )E 2 ( /> )+O(« 3 ) -

(3.13)

which implies

This, together with (3.9) and Lemma A. 1 as given in the Appendix, shows that

(3.14)

in probability.
In order to calculate the variance of ^2 ui C2, we need the following higher moments

ofC,:
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= i E(p3) + 3i(i - 1) E(p2) i{i - 1)0 - 2) E3(p),

= i E(p4) + 4i(i - 1) E(p3) E(p) + 3i(» - 1) E(p2) E(p2)

+ 6i(i - UO - 2) E(p2) E2(p) +1(» - 1)0 -

135

(3.15)

(3.16)

and for i < y,

E(CfCJ) = E [C,?(C,- + p i + l + ••• + pj)2]

= E [Cf] + 2E [C,3(p,+1 + ... + [Cf(pi
i+l

pj)2]

= E [C,4] + 2 E [Cf] (j - i) E(p) + E [C,2] E [(p,+1 + • • • + Pj)
2]. (3.17)

It follows that

- I 5 E4

5
and by (3.15)-(3.17) together with (3.10),

E(C2C2) = J^ {E(C4) + 2E(p) E(C3)(y - Q + E(C2) E |

= E4(p) J 2 i4 + 2E(p) E3(p) 52(; - I)I3

-02E2(p)] + O(n5)

-1)0-2)0-3)

(3.18)

(At 71 2'2'\

(3.19)

where the third equality used the result of Lemma A.2 in the Appendix. Combining
(3.18M3.19) with (3.12) we obtain

Var - E
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= E(u2) \^n5 E\p) + O(/z4)l + 2 E2(«) \^n6 E »

Thus

which together with (3.12) and Lemma A. 1 in the Appendix, yields

4 £ u,Cf -> i E(«) E2(p) (3.20)
n 1=1 •*

in probability. Finally, a combination of (3.14) and (3.20) with (3.7) leads to

in probability. This completes the proof of (3.6).

Having established these lemmas, we can now prove Theorem 1.

PROOF OF THEOREM 1. Combining Lemmas 2 and 3, we get

T" i «.-(Ci - O 2 24(a + \)2(b + 1)

in probability as n —> oo. This shows that

•*te)-

4(a - 1)
a + 1 -

(3.22)
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which together with (3.4) implies rc(k) = Op ( i ) . On the other hand, letting

_ CTV(k) - WTV(k)
€c(X) = CTV(k) '

we have

= \CTV(k) - WTV(k)\ CTVjk) = rc(k)
rw{ CTV(k) WTV(k) \-ec{k)'

Since rc(k) = \ec(k)\ = Op (£) -> 0 as n -> oo, (3.23) gives rw{k) = Op (±) as
required.

4. Concluding remarks

In this paper we carried out a probabilistic analysis of the relationship between the
CTV measure and the WTV measure. We have shown that, when the processing
times and weights are randomly drawn evenly over certain ranges, the two measures
are nearly equivalent; for any sequence k, the relative error rc(k) or rw(k) tends
towards zero at the rate of n~l. Hence if a sequence k is optimal to one measure, it
will be an approximate optimum to the other measure.

Morever, an interesting finding is that the range limits (that is, a and b) have little
effects on the limiting upper bound of the relative error, especially when the range is
wide. This can be seen from (3.21), which shows that the limit on the right side never
exceeds 4 and is close to 4 when a, the range for the processing times, is large. The
relative error, when n is large, is close to zero no matter what a or b are.

The assumption that the parameters involved in a problem under consideration
follow a uniform distribution has been widely used in the literature of probabilistic
analysis. While we have adopted a discrete uniform distribution - for being consistent
with the common practice of taking integer-valued parameters in scheduling problems
— the same results will hold for continuous uniform distributions as well. In fact
our proofs are valid for any type of distribution, provided certain conditions on the
moments of the distribution are met. But unlike the uniform distribution (whether
discrete or continuous), the limiting upper bound of the relative error may be signi-
ficantly influenced by the parameters of the distribution. This would make (3.3) less
meaningful if such a bound is large compared with n, which may occur when the
processing times are too skewed.

The theoretical findings provide us with a deep understanding of the problem,
which will be of significance in decision making. At least a decision maker can now
be formally assured that, if the problem to be dealt with is not ill-conditioned, in the
sense that the problem instances are relatively evenly distributed, then an optimal
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decision under one measure will be also a good decision under the other measure.
This is the objective pursued in equivalence studies (Gerchak and Magazine [8]).

Appendix

LEMMA A.I. Let Xn be a sequence of random variables. Ifasn-+ oo, E(Xn) -» A
and Var(Xn) -*• 0, then Xn -> A in probability.

PROOF.

(Xn - A)2 = [(Xn - E(Xn)) + (E(Xn) - A)]2 < 2 [(Xn - E(Xn))
2 + (E(Xn) - A)2].

Hence

E [(Xn - A)2] < 2 Var(Xn) + 2(E(Xn) - A)2 -> 0,

which implies Xn -> A in probability by Chebyshev's inequality.

LEMMA A.2. For any nonnegative integers a and fi,

t<f^<n
l V~1' ~ (a + p + 2)l" + vn /

as n —> oo.

PROOF. Note that the sum is obviously a polynomial in n. Hence it suffices to show

as n -> oo. To prove this, we may use a simple integral approximation

/ / x"(y- xfdxdy = f xa( [ (y- x)fidy) dx
J J0<x<y<\ JO \Jx /

= I X
^0 P +

dx =

The lemma is thus proven.
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