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Abstract We consider the Sturm–Liouville equation

−y′′ + qy = λy on [0, 1],

subject to the boundary conditions

y(0) cos α = y′(0) sin α, α ∈ [0, π),

and
y′

y
(1) = aλ + b −

N∑
k=1

bk

λ − ck
.

Topics treated include existence and asymptotics of eigenvalues, oscillation of eigenfunctions, and
transformations between such problems.
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1. Introduction

We consider the regular Sturm–Liouville equation

−y′′ + qy = λy on [0, 1], (1.1)

subject to the boundary conditions

y(0) cos α = y′(0) sinα, α ∈ [0, π), (1.2)

and

(y′/y)(1) = f(λ) (1.3)
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for a class of functions f . The case when f is constant is the ‘standard’ Sturm–Liouville
problem on which there is a vast literature. Cases where f is affine or bilinear make up the
majority of the literature on so-called ‘eigenvalue-dependent boundary conditions’ and we
refer to [14,26] and the many references cited therein for some of this activity. Alternative
settings have also been studied: for example, see [15–17] for singular equations; [9,12,22]
for higher-order (and matrix) equations; and [5,19,27] for partial differential equations.
There have also been several investigations of (1.1)–(1.3) where f is a more general
(usually rational) function (see, for example, [3,21,23,25] and references cited therein).

Our study is the first of two parts on problems involving a particular class RN of
rational f of the form

f(λ) = aλ + b −
N∑

k=1

bk

λ − ck
(1.4)

admitting a rather rich spectral theory. In fact these f will also belong to a class usu-
ally associated with the names of Herglotz or Nevanlinna. Boundary-value problems as
above involving functions f of this (and more-general) type have been analysed in, for
example, [10,11,13,24]. These papers (and those cited earlier) have focused mainly on
operator-theoretic formulations in Hilbert, Pontryagin or Krein spaces, usually leading
to expansion theorems (see also the second part of our study, where further attention
to this aspect will be given). Here we shall use differential equation techniques to derive
properties of the eigenvalues and eigenfunctions generalizing classical Sturm theory.

A key tool in our analysis will be a modification of a transformation which was first used
to our knowledge by Darboux (see [18, p. 132]), and which has subsequently been explored
in [1,7,8]. These papers focus on transformation of the differential equation (1.1), but
for us the effect on the boundary conditions will be crucial. Moreover, if an original
boundary condition is Dirichlet, then the cited works produce a transformed problem
which is singular, whereas we ensure regularity. This is an important difference since
non-Dirichlet conditions transform to Dirichlet, and repeated transformations will be
needed. It turns out that each class RN is the union of two subclasses R+

N and R0
N and

our transformation will provide direct links between these subclasses for various values of
N . This fact and the connections with Herglotz–Nevanlinna functions are derived in § 2.

Section 3 contains an analysis of existence, oscillation and comparison theory, mainly
via Prüfer methods. In contrast with the usual Sturm theorem, which gives one eigenvalue
per oscillation count, here N ‘extra’ eigenvalues appear with arbitrary oscillation counts
(for example, all could be equal). In § 4 we show that if the transformation of the previous
paragraph is applied to (1.1)–(1.3), then the new spectrum contains the old eigenvalues
(except possibly the first one). Using the oscillation theory of § 3, we show that these are
the only eigenvalues of the new problem, so the transformation is isospectral (with the
exception above). The new problem is ‘simpler’ than the original one, and after at most
2N + 1 transformations we eventually produce a standard problem, i.e. with constant
boundary conditions (Corollary 4.2). In § 5, we discuss eigenvalue asymptotics, again via
repeated transformations. An alternative approach, based on the ‘asymptotic problem’
given in [4] for a special case, is also considered.
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2. Preliminaries

We consider the class RN of rational functions f as in (1.4) where all the coefficients are
real and a � 0, bk > 0 and c1 < c2 < · · · < cN , N � 0.

Recall that f : C → C is a Herglotz–Nevanlinna function if f(z̄) = f(z) and f maps
the closed upper half-plane into itself.

Lemma 2.1. A rational function f with simple real poles is a Herglotz–Nevanlinna
function if and only if f ∈ RN for some N .

Proof. If f ∈ RN , then each summand is evidently Herglotz–Nevanlinna, and hence
so is f . Conversely, simplicity of the poles allows a partial fraction expansion of the form

f(λ) = p(λ) + aλ + b −
N∑

k=1

bk

λ − ck
,

where p is a polynomial whose terms all have degree at least two, and the remaining
summands contain coefficients unrestricted in sign. Since f maps the upper half-plane
into itself, we can let λ tend to ∞ along appropriate rays to see that p must vanish and
a must be positive. Finally, letting λ tend to ck we obtain positivity of bk. �

Let R+
N (respectively, R0

N ) denote the subclass of RN for which a > 0 (respectively,
a = 0). The following properties are easily established.

Lemma 2.2. Let f ∈ RN . Then

(i) f ′(λ) > 0 for each real λ, where f(λ) is finite;

(ii) limλ→ck± f(λ) = ∓∞; and

(iii) if f ∈ R+
N , then limλ→±∞ f(λ) = ±∞, while if f ∈ R0

N , then f(λ) → b from below
(respectively, above) as λ → ∞ (respectively, −∞).

The graph of a typical member of RN is shown in Figure 1.
Given a function f ∈ RN , and a constant µ < c1, we define

F (λ) =
µ − λ

f(λ) − f(µ)
− f(µ), (2.1)

extending this definition by continuity where possible, so F (ck) = −f(µ), 1 � k � N ,
and F (µ) = −f ′(µ)−1 − f(µ). The principal result of this section shows, in particular,
that if f ∈ RN , then F ∈ RM , i.e.

F (λ) = Aλ + B −
M∑

k=1

Bk

λ − Ck
, (2.2)

where M is N − 1 or N depending on the value of a.
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Figure 1. f(λ).

Theorem 2.3. In the notation above,

(i) if f ∈ R+
N , then F ∈ R0

N and µ < c1 < C1 < c2 < · · · < cN < CN ; and

(ii) if f ∈ R0
N , then F ∈ R+

N−1 and µ < c1 < C1 < c2 < · · · < CN−1 < cN .

Proof. We calculate

F (λ) = −
∏N

k=1(λ − ck)
r(λ)

− f(µ) (2.3)

=
p(λ)
r(λ)

, (2.4)

where p(λ) is a polynomial of degree at most N ,

r(λ) = a
N∏

k=1

(λ − ck) +
N∑

k=1

ek

N∏
j=1, j �=k

(λ − cj) (2.5)

is a polynomial of degree N (respectively, N − 1) if a > 0 (respectively, a = 0) and
ek = bk/(µ − ck) < 0.

It is easy to check that

sgn(r(ck)) = (−1)N−k+1, k = 1, . . . , N,

and thus r has roots µk ∈ (ck, ck+1), k = 1, . . . , N − 1. When a = 0, these must be all
the roots of r since its degree is N − 1. When a > 0, we see that r(cN ) < 0 and that r

has a > 0 as its leading coefficient. Hence there is an additional root µN > cN , and now
the µk, k = 1, . . . , N , form all the roots of r. All of these roots are simple so the rational
function F has simple poles comprising µ, µk, k = 1, . . . , N , interlacing the poles of f in
the manner described.
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From this it readily follows that F can be expressed in the form (2.2) where A = 0
and M = N when a > 0, and, when a = 0, M = N − 1 and A = −(

∑N
k=1 ek)−1 > 0

by (2.5). The poles of F are precisely the roots of f(λ) = f(µ) (except λ = µ), so the
basic properties of f show that

f(λ) − f(µ) → 0 ± as λ → Ck ± .

Thus the original definition of F gives

lim
λ→Ck±

F (λ) = ∓∞,

which forces Bk > 0, k = 1, . . . , M . �

Remark 2.4. By composing these transformations we can map RN into R0
0, which will

enable us to convert eigenvalue problems with boundary conditions in RN into standard
problems with boundary conditions independent of λ.

Remark 2.5. Routine algebraic calculations can be used to give A, B, etc., in terms
of a, b, etc. For example,

f ∈ R+
N =⇒ A = 0, B = −1

a
− f(µ), (2.6)

f ∈ R0
N =⇒ A = −

( N∑
k=1

ek

)−1

. (2.7)

3. Eigenvalues: existence and oscillation theory

We consider here the existence of eigenvalues and the associated oscillation theory for
the problem (1.1)–(1.3) where f ∈ RN . If α = 0, we interpret (1.2) as y(0) = 0. Our
approach will be via Prüfer theory, and to this end for a given λ we consider the solution
y(λ, x) of (1.1), (1.2) and define θ(λ, x) via the initial-value problem

θ′ = cos2 θ + (λ − q) sin2 θ, θ(λ, 0) = α, (3.1)

which leads to

cot θ(λ, x) =
y′(λ, x)
y(λ, x)

.

In particular the eigencondition (1.3) becomes

cot θ(λ, 1) = f(λ). (3.2)

Standard properties of the Prüfer angle θ (for example, that for a given x, θ(λ, x) is
continuous and increasing in λ, and that limλ→−∞ θ(λ, 1) = 0 and limλ→+∞ θ(λ, 1) = ∞)
can be found in, for example, [2]. The graph of cot θ(λ, 1) is displayed in Figure 2.

Geometrically, the real eigenvalues of (1.1)–(1.3) correspond to the λ-values at which
the graphs of cot θ(λ, 1) and f(λ) intersect. (If these graphs share a common vertical
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Figure 2. cot θ(λ, 1).

asymptote ck, say, then λ = ck is an eigenvalue for the terminal condition y(1) = 0.)
Since cot θ(λ, 1) and f(λ) are, respectively, decreasing and increasing on each branch,
there is a sequence of simple intersections of these two graphs.

More precisely, we define y(x, λ) to be a non-zero solution of (1.1), (1.2), analytic in
λ ∈ C, and we write ω(λ) = y′(1, λ) − f(λ)y(1, λ). By definition, λ is an eigenvalue of
(1.1)–(1.3) if ω(λ) = 0, and we call λ a simple eigenvalue if, in addition, ωλ(λ) �= 0,
where the suffix denotes differentiation with respect to λ. To discuss the poles of f we
use Ω(λ) = y(1, λ) − y′(1, λ)/f(λ) instead of ω(λ). Specifically, λ = ck is an eigenvalue if
y(1, λ) = 0, and is a simple eigenvalue if, in addition, yλ(1, λ) �= 0.

Theorem 3.1.

(i) The eigenvalues of (1.1)–(1.3) are real, simple and form a sequence λ0 < λ1 < · · ·
accumulating only at ∞ and with λ0 < c1.

(ii) If b is decreased and ck, q are increased, then each λj is increased.

(iii) If a > 0 is decreased and bk is increased, then each positive λj > ck is increased.

Proof. (i) Suppose λ is a non-real eigenvalue. Then (1.1)–(1.3) hold with y �= 0, and
also

−ȳ′′ + qȳ = λy, (3.3)

(ȳ′/ȳ)(0) = cot α

and
(ȳ′/ȳ)(1) = f(λ) = f(λ̄),

since f is Herglotz–Nevanlinna. Thus λ̄ is also an eigenvalue and without loss we shall
assume Im λ > 0.
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Now by the standard procedure of multiplying (1.1) by ȳ, (3.3) by y, integrating and
subtracting, we obtain

(−y′ȳ + yȳ′)(1) = (λ − λ̄)
∫ 1

0
|y|2,

which we shall call Lagrange’s formula for (1.1) and (3.3). The right-hand side is positive
imaginary but the left-hand side is (f(λ) − f(λ))|y(1)|2, which is negative imaginary
since f is Herglotz–Nevanlinna. This contradiction establishes reality of the eigenvalues.

To prove simplicity, suppose ω(λ) = ωλ(λ) = 0 for some λ, which by the above rea-
soning we take to be real, and hence without loss of generality we also assume y to be
real. From (1.1)–(1.3) we obtain

−y′′
λ + qyλ = λyλ + y, (3.4)

(y′
λ/yλ)(0) = cot α

and

y′
λ

y
(1) = f ′(λ) + f(λ)

yλ

y
(1). (3.5)

By Lagrange’s formula for (1.1) and (3.4) we have

(−y′yλ + yy′
λ)(1) = −

∫ 1

0
y2. (3.6)

The right-hand side is negative, whereas by (3.5) the left-hand side is

y(1)2
[
−f(λ)

yλ

y
(1) + f ′(λ) + f(λ)

yλ

y
(1)

]
= y(1)2f ′(λ),

which is positive by Lemma 2.2 (i), and we obtain a contradiction. If λ = ck is a non-
simple eigenvalue, then y(ck) = yλ(1, ck) = 0, so the left-hand side of (3.6) vanishes but
the right-hand side is negative, and again we have a contradiction.

The final contention follows from the geometry of the cot θ and f graphs.
(ii) We note that a decrease in b or an increase in any of ck, 1 � k � N , causes f(λ)

to decrease, while an increase in q causes θ(λ, 1) to increase (see (3.2)). The net effect is
an increase in each λj . The proof of (iii) is similar. �

Closer examination of the graphs reveals some interesting interlacing relationships
which we shall now explore. We define λD

i , i = 0, 1, . . . , to be the eigenvalues for the
standard Sturm–Liouville problem consisting of (1.1)–(1.2) and the Dirichlet condition
y(1) = 0. We also use the notation λcD

i to denote the sequence consisting of all cj and
λD

k in non-decreasing order (counted by multiplicity if cj = λD
k for some j and k). Let kj

be the number of points ci � λj .
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Figure 3. f(λ) (——) and cot θ(λ, 1) (·······).

Analysis of the f and cot θ graphs (cf. Figure 3) now yields the following theorem.

Theorem 3.2.

(i) The λi interlace the λcD
j in the sense that λ0 < λcD

0 � λ1 � λcD
1 � · · · .

(i) Where defined, ckj � λj < ckj+1.

(iii) Setting λD
−1 = −∞ we have λD

j−1−kj
< λj � λD

j−kj
, for all j � 0.

We can now deduce the oscillation properties of the eigenfunctions. Note that if λ ∈
(λD

i−1, λ
D
i ], then a solution of (1.1)–(1.2) has i zeros in (0, 1). Thus the oscillation number

(i.e. the number of zeros in (0, 1) of an eigenfunction) associated with such an eigenvalue
can be found by determining the interval (λD

i−1, λ
D
i ] into which it falls.

Corollary 3.3. Let ωj be the oscillation number associated with λj . Then ωj = j−kj

and, in particular, ω0 = 0 and ωj = j − N when λj > cN .

4. Transformations between problems

The aim of this section is to describe a transformation, with certain eigenvalue-preserving
properties, from a problem of the type (1.1)–(1.3) to a ‘simpler’ one with a new potential
q̂ in place of q and with f(λ) replaced by F (λ) constructed in § 2. In this context ‘simpler’
means that F has either fewer terms or fewer poles than f . By iteration of the procedure
one can transform (1.1)–(1.3) to a standard Sturm–Liouville problem whose eigenvalues
are those of the original problem except for finitely many. For brevity we denote the
oscillation number of a function y on (0, 1) by osc(y).

Theorem 4.1. For the problem (1.1)–(1.3) suppose the eigenvalues are λ0 < λ1 < · · ·
with corresponding eigenfunctions y0, y1, . . . . Let

µ = λ0 if α > 0,

µ < λ0 if α = 0,
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and let w be the solution of (1.1) with λ = µ, w(1) = 1 and w′(1) = f(µ). Define

z = (w′/w) and q̂ = q − 2z′.

Let F (λ) be as in (2.1) and define γ ∈ [0, π) by cot γ = −z(0) if α = 0 and γ = 0 if
α > 0. Then the eigenvalues of the problem

−y′′ + q̂y = λy, (4.1)

(y′/y)(0) = cot γ, (4.2)

(y′/y)(1) = F (λ) (4.3)

are λj , with corresponding eigenfunctions uj = y′
j −zyj , where j � 1 for α > 0 and j � 0

for α = 0.

Proof. We begin by showing that w has no zeros in [0, 1]. This is clear when α > 0,
for then w = y0, which has no zeros in (0, 1), and, moreover, (w′/w)(0) = cot α and
(w′/w)(1) = f(λ0), both of which are finite.

When α = 0, we note that y0(0) = 0 but y0 has no zeros in (0, 1) and y0(1) �= 0
since λ0 < λD

0 . Now consider the Prüfer differential equation (3.1) with λ = µ < λ0

and subject to the terminal condition θ(µ, 1) = cot−1 f(λ0) ∈ (0, π). Since µ < λ0,
we obtain a positive initial value θ(µ, 0) ∈ (0, π). (Recall that θ(µ, x) cannot decrease
through multiples of π as x decreases.) If we now replace the terminal condition by
θ(µ, 1) = cot−1 f(µ) > cot−1 f(λ0), we see that θ(µ, 0) increases again but must remain
within (0, π) provided we choose the terminal angle to be less than π.

Thus the solution ψ(x) of the Prüfer equation with λ = µ and terminal condition
ψ(1) = cot−1 f(µ) takes values only in (0, π) for all x ∈ [0, 1]. This establishes that w has
no zeros in [0, 1], and consequently z and γ as given in the statement are well defined.

For the case α > 0 we shall define ψ(x) = θ(λ0, x). Thus

ψ(0) =

{
α α > 0,

π − γ α = 0.

Throughout the proof, when we refer to j, we mean j � 1 if α > 0 and j � 0 for
α = 0. As in [6], direct calculation shows that the functions uj satisfy (4.1) and (4.2)
and further that

u′
j

uj
=

µ − λj

(y′
j/yj) − z

− z on [0, 1], (4.4)

so uj also satisfies (4.3). Thus the λj are indeed eigenvalues for (4.1)–(4.3) and it remains
to show that they constitute all the eigenvalues.

Let φ(λ, x) be the Prüfer angle generated by (4.1) with φ(λ, 0) = γ as in (4.2). In a
similar manner let θ(λ, x) be generated by (1.1) with θ(λ, 0) = α as in (1.2). Note that

u′
j

uj
(x) = cot φ(λj , x),

y′
j

yj
(x) = cot θ(λj , x)
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and z(x) = cot ψ(x). Thus we see from (4.4) that

cot φ(λj , x) =
µ − λj

cot θ(λj , x) − cot ψ(x)
− cot ψ(x). (4.5)

Recall that ψ(x) ∈ (0, π) for all x ∈ [0, 1]. Since λj > µ when j � 1, we have θ(λj , x) >

ψ(x) on (0, 1] if α > 0, while 0 = θ(λj , 0) < ψ(0) for α = 0.
Further, we see from the Prüfer equation for θ that if cot θ(λj , x) = cot ψ(x) for some

x, then (d/dx)(θ(λj , x) − ψ(x)) > 0 from (3.1), since sin2 ψ(x) > 0. Thus θ(λj , x) − ψ(x)
increases through multiples of π. From (4.4) it follows that uj has a zero at x ∈ (0, 1)
(or, equivalently, cotφ(λj , x) is undefined) if and only if θ(λj , x) = ψ(x) + mπ for some
positive (respectively, non-negative) integer m, for α > 0 (respectively, α = 0). Thus,
since φ(λj , x) increases through multiples of π, osc(uj) = n if and only if

nπ < θ(λj , 1) − ψ(1) � (n + 1)π if α > 0,

(n − 1)π < θ(λj , 1) − ψ(1) � nπ if α = 0.

By Theorem 3.2 (iii), λj ∈ (λD
i−1, λ

D
i ], where i = j − kj and so iπ < θ(λj , 1) � (i + 1)π,

from which we obtain (i − 1)π < θ(λj , 1) − ψ(1) < (i + 1)π. Thus osc(uj) is i − 1 or
i, for α > 0, and i or i + 1, for α = 0, according to whether θ(λj , 1) − ψ(1) � iπ or
θ(λj , 1) − ψ(1) > iπ. In terms of f and cot θ(λ, 1) (recall that f(µ) = z(1) = cot ψ(1)),
we see that osc(uj) is i− 1 or i, for α > 0, and i or i+1, for α = 0, according to whether
f(µ) � cot θ(λj , 1) or f(µ) > cot θ(λj , 1).

We recall the expressions for f(λ) and F (λ) from § 2:

f(λ) = aλ + b −
N∑

k=1

bk

λ − ck
, F (λ) = Aλ + B −

M∑
k=1

Bk

λ − Ck
,

where A = 0, M = N if a > 0 and A > 0, M = N − 1 if a = 0. Recall also that the Ck

are the solutions other than λ = µ of f(λ) = f(µ).
Now when a > 0, we have for j large enough to ensure λj > CN > cN ,

(y′
j/yj)(1) = cot θ(λj , 1) = f(λj) > f(CN ) = f(µ),

so osc(uj) = osc(yj) − 1, which equals j − N − 1 by Corollary 3.3, for α > 0. Similarly
for α = 0, osc(uj) = osc(yj) = j − N . On the other hand, if we regard λj as the kth
eigenvalue (k � 0) of (4.1)–(4.3) listed in increasing order, Corollary 3.3 shows that the
oscillation number associated with λj is k − N , so k = j − 1 for α > 0, and k = j for
α = 0. Hence the λj , j � 1 for α > 0 and j � 0 for α = 0, constitute all the eigenvalues
of (4.1)–(4.3).

When a = 0, we have for j large enough to ensure λj > cN ,

(y′
j/yj)(1) = cot θ(λj , 1) = f(λj) < b < f(µ),

showing that osc(uj) = osc(yj) = j−N , for α > 0, while for α = 0, osc(uj) = osc(yj)+1 =
j − N + 1. The argument concludes as before, since in this case M = N − 1. �
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By iterating these constructions, we arrive at the following corollary.

Corollary 4.2. Given (1.1)–(1.3) with f ∈ RN , there exists a Sturm–Liouville prob-
lem −y′′ + q0y = µy subject to (y′/y)(j) = cot αj , j = 0, 1, with eigenvalues µ0 < µ1 <

· · · , where

(i) α0 = 0 and µj = λj+N+1 if α > 0, f ∈ R+
N ;

(ii) α0 = 0 and µj = λj+N if α = 0, f ∈ R0
N ; and

(iii) α0 > 0 and µj = λj+N otherwise.

5. Asymptotics of eigenvalues

Our aim in this section is to show how eigenvalue asymptotics for the problem (1.1)–
(1.3) can be derived from those for ‘standard’ Sturm–Liouville problems (with constant
boundary conditions). It is well known that asymptotics for the latter are available to
any order, depending on the smoothness of q (cf. [20, p. 23]). For q ∈ L1, we have the
following well-known estimates (see, for example, [4, Theorem A3]).

Theorem 5.1. If λ′
j denote the eigenvalues of the problem (1.1) with ρ = y′/y constant

at 0 and 1, then

λ′
j = j2π2 + o(j2) (5.1)

as j → ∞. In fact,

λ′
j = (j + D)2π2 +

∫ 1

0
q − 2[ρ∗]10 + o(1/j),

where D is half the number of Dirichlet conditions specified, ρ∗ = ρ if ρ is finite, and
ρ∗ = 0 otherwise.

Successive applications of the transformations of § 4, as in Corollary 4.2, lead to the
following corollary.

Corollary 5.2. For the problem (1.1)–(1.3), (5.1) holds with λ′
j replaced by λj .

Higher-order asymptotics may be obtained via the same technique, although since
one has to keep track of the boundary terms at each stage, an inductive argument is
appropriate as below.

Theorem 5.3.

(i) If f ∈ R0
N , then, as j → ∞,

λj =




(j − N)2π2 +
∫ 1

0
q − 2b + 2 cot α + o(1/j), α �= 0,

(j + 1
2 − N)2π2 +

∫ 1

0
q − 2b + o(1/j), α = 0.

(5.2)
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(ii) If f ∈ R+
N , then, as j → ∞,

λj =




(j − 1
2 − N)2π2 +

∫ 1

0
q + 2 cot α + (2/a) + o(1/j), α �= 0,

(j − N)2π2 +
∫ 1

0
q + (2/a) + o(1/j), α = 0.

(5.3)

Proof. When N = 0, (i) and (ii) follow from Theorem 5.1 and [4], so we can assume
that (i) and (ii) hold for 0, 1, . . . , N .

(i) Suppose α > 0 and f ∈ R0
N+1. Then F ∈ R+

N and denoting the other trans-
formed quantities by carets, we have q̂ = q − 2z′ and α̂ = 0. By (5.3) and the inductive
hypothesis,

λj+1 = (j − N)2π2 +
∫ 1

0
q̂ + (2/â) + o(1/j),

so by (2.7)

λj = (j − (N + 1))2π2 +
∫ 1

0
q − 2[f(λ0) − cot α + Σek] + o(1/j)

= (j − (N + 1))2π2 +
∫ 1

0
q − 2b + 2 cot α + o(1/j)

as µ = λ0. This establishes (5.2) for N + 1 and α > 0.
Now suppose α = 0 instead. Then α̂ > 0 and we use (5.3) and (2.7) to obtain

λj = (j − 1
2 − N)2π2 +

∫ 1

0
q̂ + 2 cot α̂ + (2/â) + o(1/j)

= (j + 1
2 − (N + 1))2π2 +

∫ 1

0
q − 2[f(µ) − z(0) + z(0) + Σek] + o(1/j)

= (j + 1
2 − (N + 1))2π2 +

∫ 1

0
q − 2b + o(1/j),

which establishes (5.2) for N + 1 and α = 0.
(ii) Consider the case when f ∈ R+

N+1. Then F ∈ R0
N+1 and we may apply the results

just established in (i). When α > 0 we have α̂ = 0 and we use (5.2) with N + 1 in place
of N to give

λj+1 = (j + 1
2 − (N + 1))2π2 +

∫ 1

0
q̂ − 2b̂ + o(1/j),

so by (2.6)

λj = (j − 1
2 − (N + 1))2π2 +

∫ 1

0
q − 2[f(λ0) − cot α − (a−1 + f(λ0))] + o(1/j)

= (j − 1
2 − (N + 1))2π2 +

∫ 1

0
q + 2 cot α + (2/a) + o(1/j)
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thus establishing (5.3) for N + 1 and α > 0. Finally, when α = 0 we use (5.2) and (2.6)
to see that

λj = (j − (N + 1))2π2 +
∫ 1

0
q̂ − 2b̂ + 2 cot α̂ + o(1/j)

= (j − (N + 1))2π2 +
∫ 1

0
q − 2[f(µ) − z(0) − (a−1 + f(µ)) + z(0)] + o(1/j)

= (j − (N + 1))2π2 +
∫ 1

0
q + (2/a) + o(1/j)

as in (5.3). �

An alternative approach, at least to this order, can be given via a simpler ‘asymptotic’
problem whose eigenvalues are ultimately close (but not equal) to those of (1.1)–(1.3). We
define this asymptotic problem by (1.1), (1.2) and the ‘asymptotic boundary condition’

(y′/y)(1) = b if f ∈ R0
N ,

y(1) = 0 if f ∈ R+
N .

We label the eigenvalues of this problem by oscillation count as λA
0 < λA

1 < · · · . The first
result concerns the interlacing of the sequences λA

j , λD
j and λj .

Theorem 5.4. For the problem (1.1)–(1.3), let j be large enough to ensure λj > cN .

(i) If f ∈ R0
N , then λA

j−N < λj � λD
j−N < λA

j−N+1.

(ii) If f ∈ R+
N , then λA

j−N−1 < λj < λA
j−N .

Proof. Part (i) is a simple consequence of the superpositioning of the graphs of f(λ)
and cot θ(λ, 1). Part (ii) follows from Theorem 3.2 (iii) and λA

j = λD
j . �

Sharper estimates involving λA
j and λD

j can be given as follows.

Theorem 5.5. For the problem (1.1)–(1.3),

(i) if f ∈ R0
N , then λj − λA

j−N = O(1/j2); and

(ii) if f ∈ R+
N , then λj − λD

j−N−1 = (2/a) + O(1/j2).

Proof. Let g(λ) = aλ+ b and denote by µn the solution in (λD
n−1, λ

D
n ) of cot θ(λ, 1) =

g(λ). Note that f(λ) < g(λ) for λ � 1, so λn+N > µn for n � 1. We claim that
λn+N − µn = O(1/n2) as n → ∞. To this end, consider

cot θ(λn+N , 1) − cot θ(µn, 1) = f(λn+N ) − g(µn)

= a(λn+N − µn) + O(1/n2)
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using Theorem 3.2 (iii). From this it follows that, for some ξn ∈ (µn, λn+N ),

d
dλ

cot θ(ξn, 1)(λn+N − µn) = a(λn+N − µn) + O(1/n2),

λn+N − µn =
O(1/n2)

a − (d/dλ) cot θ(ξn, 1)
.

Now (d/dλ) cot θ(ξn, 1) � −ε < 0 is proven in [4, p. 63, eqn (3.8) and those that follow]
and this establishes our claim.

From this, (i) follows directly, and for (ii) we refer to [4, Theorem 5.3], which gives
µn − λA

n−1 = (2/a) + O(n−2) for the case at hand. �

Theorem 5.3 is now a simple consequence of this result and Theorem 5.1. Higher-order
asymptotics could in principle be derived by this technique also, but one would need
more accurate Taylor expansions of f(λ) and cot θ(λ, 1).
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24. A. V. Štraus, On spectral functions of differential operators, Izv. Akad. Nauk SSSR Ser.
Mat. 19 (1955), 201–220.

25. C. Tretter, On λ-nonlinear boundary eigenvalue problems, Mathematics Research,
vol. 71 (Akademie, 1993).

26. J. Walter, Regular eigenvalue problems with eigenparameter in the boundary conditions,
Math. Z. 133 (1973), 301–312.

27. E. M. E. Zayed and S. F. M. Ibrahim, An expansion theorem for an eigenvalue problem
on an arbitrary multiply connected domain with an eigenparameter in a general type of
boundary conditions, Acta Math. Sinica (NS) 11 (1995), 399–407.

https://doi.org/10.1017/S0013091501000773 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000773

