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Abstract. We study finiteness conditions on essential extensions of simple
modules over the quantum plane, the quantised Weyl algebra and Noetherian down-up
algebras. The results achieved improve the ones obtained by Carvalho et al. (Carvalho
et al., Injective modules over down-up algebras, Glasgow Math. J. 52A (2010), 53–59)
for down-up algebras.
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1. Introduction. In this paper we consider the following property of a Noetherian
ring A:

(�) Injective hulls of simple left A-modules are locally Artinian.

Property (�) has an interesting history. Indeed, it was shown by Jategaonkar [12] and
Roseblade [20] that if G is a polycylic-by-finite group, then the group ring RG has
property (�) whenever R is the ring of integers, or is a field that is algebraic over a
finite field; see also [18, Section 12.2]. This result is a key step in the positive solution
of a problem of Hall [9]. Hall questioned whether every finitely generated abelian-by-
(polycylic-by-finite) group is residually finite. In [20] a module M is called monolithic
if it has a unique minimal submodule. Note that A has property (�) if and only if
every finitely generated monolithic A-module is Artinian. We have revived the older
and shorter terminology in the title of this paper. Jategaonkar showed in [11] that a
fully bounded Noetherian ring R satisfies property (�), and used this fact to show
that Jacobson’s conjecture holds for R. In particular, Noetherian rings satisfying a
polynomial identity (PI rings) have property (�).

Returning to the group ring situation, suppose G is a polycylic-by-finite group,
K is a field, A = KG and E is the injective hull of a finite-dimensional A-module.
It was shown by Brown [3] that if K has characteristic zero, then E is locally finite
dimensional, and this fact and some Hopf algebra theory was used by Donkin [8] to
show that E is in fact Artinian. Note that injective comodules over co-algebras are
always locally finite dimensional. Similar results were obtained, when K has positive
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characteristic, by the second author [15] using methods that more closely follow the
argument used for commutative rings in [21].

The first examples of Noetherian rings for which property (�) does not hold were
given by the second author for group algebras and enveloping algebras, see [16, 17]
and [6, Example 7.15]. On the other hand Dahlberg [7] showed that injective hulls of
simple modules over U(sl(2)) are locally Artinian.

Interest in property (�) was renewed recently by a question of P. F. Smith to the
first author, see [5]. He asked whether Noetherian down-up algebras have property
(�). Given a field K and α, β, γ arbitrary elements of K , the associative algebra A =
A(α, β, γ ) over K with generators d and u and defining relations

(R1) d2u = αdud + βud2 + γ d

(R2) du2 = αudu + βu2d + γ u

is called a down-up algebra. Down-up algebras were introduced by Benkart and Roby
[1]. In [13] it is shown that A(α, β, γ ) is Noetherian if and only if β �= 0. Some examples
of down-up algebras with property (�) were given in [5]. In this paper, we study
Noetherian down-up algebras having property (�), and in particular we exhibit the
first examples that do not have this property. These examples are constructed using
the fact that when γ = 0, (resp. γ = 1) the quantum plane, (resp. the quantised Weyl
algebra) is an image of A.

An interesting class of down-up algebras arises in the following way. For η �= 0,
let Aη be the algebra with generators h, e, f and relations

he − eh = e,

hf − f h = −f,

ef − ηf e = h.

Then Aη is isomorphic to a down-up algebra A(1 + η,−η, 1) and conversely any down-
up algebra A(α, β, γ ) with β �= 0 �= γ and α + β = 1 has the above form. Note that
A1 � U(sl(2)) and A−1 � U(osp(1, 2)). When η is not a root of unity, we have been
unable to determine whether property (�) holds. However, we resolve the issue in all
other cases. Our main result is as follows.

THEOREM 1.1. Suppose that A = A(α, β, γ ) is a Noetherian down-up algebra, and
assume that if α + β = 1 and γ �= 0, then β is a root of unity. Then any finitely generated
monolithic A-module is Artinian if and only if the roots of X2 − αX − β are roots of
unity.

We remark that a characterisation of property (�) for Noetherian rings remains
rather elusive. Even a comparison of the examples for the quantum plane and quantised
Weyl algebra does not seem easy to make, see Section 4 for further remarks. Thus, it
seems worthwhile to study examples of rings with low GK-dimension, and down-up
algebras provide an interesting test-case for property (�). Much current research in
non-commutative algebraic geometry also centers on low-dimensional algebras, and
in particular down-up algebras have been studied as non-commutative threefolds by
Kulkarni in [14].
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2. Preliminaries. If r ∈ K and x and y are elements of a K-algebra, then we
set [x, y]r = xy − ryx. Throughout this paper we will assume that the equation 0 =
X2 − αX − β has roots r, s ∈ K . Suppose q ∈ K is non-zero and consider the algebra
B(q) = K [a, b] generated by a, b subject to the relation ab = qba. In addition, let C(q) =
K [a, b] denote the algebra generated by a, b subject to the relation ab − qba = 1. The
algebras B(q), C(q) are known as the coordinate algebra of the quantum plane and the
quantised Weyl algebra, respectively.

LEMMA 2.1.

(a) The algebra B(r) is a homomorphic image of A = A(α, β, 0).
(b) If s �= 1 the algebra C(r) is a homomorphic image of A = A(α, β, 1).

Proof. If γ = 0, relations (R1) and (R2) can be written in the form

[d, [d, u]r]s = [[d, u]r, u]s = 0.

Thus, both relations follow from the relation [d, u]r = 0, so there is a map from A =
A(α, β, 0) onto B(r) sending d to a and u to b.

On the other hand, if γ �= 0, we can assume γ = 1. If s �= 1, let t ∈ K be such that
t(1 − s) = 1. Relations (R1) and (R2) can now be written in the form

[d, [d, u]r − t]s = [[d, u]r − t, u]s = 0.

Since [ta, b]r − t = 0 in C(r), there is an homomorphism from A onto C(r) sending d
to ta and u to b. �

The above Lemma will be used, together with the results of the next two
subsections, to produce examples of down-up algebras that do not satisfy property (�).
However, note that if exactly one of the roots of the equation X2 − αX − β = 0 is equal
to 1, then the Lemma tells us only that the first Weyl algebra is a homomorphic image
of A = A(α, β, 1). In this case the Lemma is of no use in constructing counterexamples.

3. The coordinate ring of the quantum plane. If q is an element of K , which is
not a root of unity, we show that B = B(q) does not satisfy property (�). Consider
the left ideals I = B(ab − 1)(a − 1) ⊂ J = B(a − 1), and set M = B/I, V = J/I and
W = B/J. Then there is an exact sequence

0 −→ V −→ M −→ W −→ 0.

THEOREM 3.1.

(a) The module M is a non-Artinian essential extension of the simple submodule V.
(b) The submodules of W are linearly ordered by inclusion, and are pairwise non-

isomorphic.
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Proof. Step 1. V is simple. Clearly V is generated by the element v0 = (a − 1) + I .
For n ≥ 0, set

vn = bnv0, v−n = anv0.

Then using abv0 = v0, we obtain for all n ≥ 0,

avn+1 = qnvn, bv−n−1 = q−n−1v−n. (1)

Furthermore, for all integers n,

abvn = qnvn. (2)

It is easy to see that V is spanned by the set X = {vn|n ∈ �}, and it follows from equation
(2) that the set X is linearly independent. Equation (2) also implies that any submodule
of V is spanned by a subset of X. Then simplicity of V follows from equation (1).

Step 2. Proof of (b). Clearly W is generated by the element w0 = 1 + J and
spanned over K by the set Y = {wn|n ≥ 0}, where wn = bnw0. Furthermore, for all
n ≥ 0,

awn = qnwn. (3)

As in the proof of Step 1, Y is linearly independent. Equation (3) also implies that any
submodule of W is spanned by a subset of Y. Now for all n ≥ 0 set

Wn = span{wm|m ≥ n} = Bwn.

Consideration of the action of b now shows that a complete list of non-zero submodules
of W is

W = W0 ⊃ W1 ⊃ W2 . . . .

In order to complete the proof of (b) we observe that a acts as multiplication by qn on
the unique simple quotient of Wn.

Step 3. There is no element v ∈ V such that (a − qm)v = vm. If v ∈ V is non-zero, we
can write v as a linear combination of basis elements, v = ∑d

i=c λivi, where λc and λd

are non-zero elements. Then we set |v| = d − c. From equation (1), it follows that
|(a − qm)v| = d − c + 1. Clearly, this gives the assertion.

Step 4. Proof of (a). Set mn = bn + I for n ≥ 0. Then mn maps onto wn under the
natural map M −→ W. Thus, the set {vn, mp|n, p ∈ �, p ≥ 0} is a basis for M. Since
am0 = m0 + v0, it follows that

amn = qnbnam0

= qn(mn + vn).

Suppose that m = ∑
i∈I λimi + v is a non-zero element of M. We assume that v ∈ V ,

I is non-empty and λi is a non-zero scalar for all i ∈ I. Then we show by induction on
|I| that Bm ∩ V is non-zero. Suppose that n ∈ I , and without loss λn = 1. If |I| = 1,

then Bm ∩ V contains

(a − qn)(mn + v) = qnvn + (a − qn)v,
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and by Step 3, this is non-zero. Similarly, if |I| > 1, then Bm contains (a − qn)m and we
have (a − qn)m = ∑

j∈J μjmj + v′ with J = I\{n}, v′ ∈ V, and μj �= 0 for j ∈ J. Thus,
the result follows by induction. �

4. The quantised Weyl algebra. Throughout this section assume that q is an
element of K , which is not a root of unity. We show that the quantised Weyl algebra
C = C(q) does not have property (�). We begin with some comments that may serve to
motivate our construction. Observe that in Theorem 3.1, the submodules of W = Bw0

have the form Bnkw0 for some normal element n of B. An analogous statement holds for
the Example from [6] mentioned in the Introduction. Now the element n = ab − ba ∈ C
is normal, and we can in fact repeat this strategy. However, note that n has degree two
with respect to a natural filtration on C, whereas in the earlier examples the normal
element had degree one. For this reason, we have not attempted to give a more unified
treatment of our results.

It is reasonable to look for a C-module W such that W = K [n] as a K [n]-module
with (ni) a submodule of W for each i. Note that C̄ = C/Cn � K [a±1], and that if such
a module W exists, then each factor (ni)/(ni+1) is a one-dimensional C̄-module. Based
on these considerations, it is not hard to determine the possibilities for W , and with a
little experimentation, arrive at the required non-Artinian monolithic module.

Consider the K-vector space M with basis {vi, wi : i, j ∈ �}, and let V = spanK{vi :
i ∈ �}, W = M/V. Define linear operators a and b on V by

av0 = 0, (4)

avn = qn − 1
q − 1

vn−1, (5)

bvn = vn+1. (6)

Next, extend the action of a and b to M by setting

awn = qn(wn + wn+1) (7)

and

bwn = q−n

1 − q
wn + (−1)nv0. (8)

We then have

(ab − ba)wn = −1
q
wn+1, (9)

(ab − qba)wn = wn. (10)

It is now easy to see that M is a C-module, and V is a submodule of M.

LEMMA 4.1. The C-module V is simple.
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Proof. Since any element of V is of the form v = a0v0 + a1v1 + · · · + anvn for some
ai ∈ K , by equation (5) we deduce that v0 ∈ Cv for any non-zero v ∈ V . Hence, V is
simple and also V = Cv0. �

THEOREM 4.2.
(a) The module M is a non-Artinian essential extension of the simple submodule V.
(b) The submodules of W are linearly ordered by inclusion, and are pairwise non-

isomorphic.

Proof. First we prove (b). By equation (8) any submodule of W is spanned by a
subset of {wn : n ∈ �0}. For any n ∈ � set Wn = span{wm : m ≥ n}. Consideration on
the actions of a and b shows that the complete list of non-zero submodules of W is

W = W0 ⊃ W1 ⊃ W2 ⊃ . . . .

Since b acts as a multiplication by
q−n

1 − q
on the unique simple quotient of Wn, the

proof of (b) is complete.
Next we prove (a). By Lemma 4.1, V is simple and by (b) M is not Artinian. The

rest of the proof consists of the following three steps.
(i) Given n ∈ �, by (8)

(
b − q−n

1 − q

)
wn = (−1)nv0 ∈ V ∩ Cwn, (11)

so Cwn ∩ V �= 0.
(ii) For any n ∈ � and v ∈ V , C(wn + v) ∩ V �= 0. Indeed

(
b − q−n

1 − q

)
(wn + v) = (−1)nv0 +

(
b − q−n

1 − q

)
v. (12)

So we must show that we can not have v ∈ V\{0} such that
(

b − q−n

1 − q

)
v = (−1)n+1v0.

This follows that if v = λ0v0 + · · · + λmvm, for some λ0, . . . , λm ∈ K with λm �= 0, then
the coefficient of vm+1 in (b − q−n

1−q )v is non-zero.
(iii) Let m ∈ M\V . We show that Cm ∩ V �= 0. This will complete the proof.

Without loss of generality we can write m = wn + λn−1wn−1 + · · · + λ0w0 + v for some
v ∈ V and λ0, . . . , λn−1 ∈ K . Then

(
b − q−n

1−q

)
m is a linear combination of wn−1, . . . , w0,

and the vi with i ∈ �. Either we are in case (i) or (ii) or if not, then we apply
(
b − q−k

1−q

)
for a suitable k and repeat the process. �

5. A positive result. Let A = A(α, β, γ ) be a down-up algebra and set f (X) =
X2 − αX − β. Suppose that f (X) = (X − r)2, where r is a primitive nth root of unity.
Thus, α = 2r and β = −r2. The goal of this section is to prove the following.

THEOREM 5.1. A finitely generated essential extension of a simple A-module is
Artinian.
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Suppose first that char(K) = p, and let Z′ = [dnp, unp, (du − rud + γ

r−1 )n]. Using
[10, Theorem 4.4] and [22, Lemma 2.2], it is easy to see that A is finitely generated over
the central subalgebra Z′. Therefore, A is PI and property (�) holds. For the rest of this
section we assume that char(K) = 0.

We denote the Krull dimension of ring B by K.dim B. If r = γ = 1, then A is
isomorphic to the enveloping algebra of the Lie algebra sl(2), and Theorem 5.1 holds
by [7]. The proof depends on the fact that K.dim A = 2, and does not immediately
adapt to our situation. A key step in our proof is the fact that a certain localisation of
A has the Krull dimension 2; see Proposition 5.5.

We establish some preliminaries. Let x = ud, y = du, R = K [x, y] the commutative
polynomial ring and σ the automorphism of R defined by the rules σ (x) = y and
σ (y) = αy + βx + γ . By [5, Corollary 3.2] we may assume that r �= 1. Hence, case 3 of
[4, Section 1.4] holds and we set

w1 = (2β + α)ud + (α − 2)du + 2γ ;

w2 = 2du − 2ud

so that σ (w1) = rw1 and σ (w2) = rw2 + w1. Set w = w1/2(r − 1) = −rud + du + ε,
where ε = γ /(r − 1).

LEMMA 5.2. A = A/Aw is a PI algebra.

Proof. Denote the images of u and d in A by u and d, respectively. Then A is
generated by u and d and we have that

−rud + du + ε = 0.

It follows that A is isomorphic to the quantised Weyl algebra if γ �= 0 and to the
coordinate ring of a quantum plane if γ = 0. Since r is a primitive nth root of unity for
n > 1, it is well known that these algebras are PI. �

Recall that given a ring D, an automorphism σ of D and a central element a ∈ D,
the generalised Weyl algebra D(σ, a) is the ring extension of D generated by X+

and X−, subject to the relations: X+b = σ (b)X+ and bX− = X−σ (b) for all b ∈ D,
X−X+ = a, X+X− = σ (a). The Noetherian down-up algebras can the presented as
generalised Weyl algebras. In fact, set as before, x = ud, y = du and R = K [x, y] the
commutative polynomial ring and define the automorphism σ of R such that σ (x) =
y and σ (y) = αy + βx + γ . The Noetherian down-up algebra is isomorphic to the
generalised Weyl algebra R(σ, x) under the isomorphism taking X+ to d and X− to u,
see [13].

We need the following result of Bavula and van Oystaeyen [2, Theorem 1.2].

THEOREM 5.3. Let D be a commutative Noetherian ring with K.dim D = m and let
T = D(σ, a) be the generalised Weyl algebra. Then K.dim T = m unless there is a height
m maximal ideal P of D such that one of the following holds:

(a) σ n(P) = P, for some n > 0;
(b) a ∈ σ n(P) for infinitely many n.

If there is an ideal P as above such that (a) or (b) holds, then K.dim T = m + 1.
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Given λ0, λ1 ∈ K and n ∈ �, there is a unique λn ∈ K such that

λn = αλn−1 + βλn−2 + γ.

For all n ∈ � we have, see [4, Lemma 2.3],

σ−n(x − λ0, y − λ1) = (x − λn, y − λn+1),

where (x − λ0, y − λ1) denotes the ideal generated by x − λ0 and y − λ1.

LEMMA 5.4. If M is a maximal ideal of R such that x ∈ σ n(M) for infinitely many
n, then σ n(M) = M for some n > 0.

Proof. We can assume that x ∈ M, that is M = (x − λ0, y − λ1) with λ0 = 0. The
solution to the recursive relation is then given by

λn = c1(rn − 1) + c2nrn

for some fixed c1, c2 ∈ K . If λn = 0, then nc2 = c1(1 − r−n), but the right side of this
equation can take only finitely values. Hence, c2 = 0 and the sequence {λn} is periodic.
Clearly, this gives the result. �

Since w is a normal element of A, the set {wn|n ≥ 0} satisfies the Ore condition.
We denote by Aw, Rw the localisations of A and R with respect to this set.

PROPOSITION 5.5. K.dim Aw = 2.

Proof. Note that Aw = Rw(σ, x) is a generalised Weyl algebra, so by Lemma 5.4
and Theorem 5.3, we need to show that for any maximal ideal P of Rw and n > 0,

we have σ n(P) �= P. We show that equivalently if M is a maximal ideal of R such that
σ n(M) = M, then w ∈ M. Indeed, if M = (w1 − a1, w2 − a2), then from [4, Lemma
2.2(ii)] we have a1 = 0 and the result follows. �

Proof of Theorem 5.1. Let V be a simple A-module and M a finitely generated
essential extension of V . There are two cases.

If wV = 0, then by the same argument used in [5, Section 1.5], it is enough to show
that N = annM(Aw) is Artinian. However, N is a module over the PI algebra A/Aw,
and PI algebras have property (�) as noted in the Introduction.

If wV �= 0, then since wn is central, there exists λ ∈ K , λ �= 0 such that (wn − λ)V =
0. By [19, Theorem 3.15 ] P = (wn − λ)A is prime. By a similar argument as before we
can assume PM = 0. Let g, h ∈ K [w] be such that

1 = gw + h(wn − λ).

This implies that M = wM and annM(w) = 0, otherwise wV = 0. So M is an Aw-
module, which is annihilated by Pw. Since K.dim Aw = 2 and Pw is a non-zero prime
ideal, Aw/Pw is a prime of the Krull dimension one and the result follows from [16,
Proposition 5.5]. �
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6. Down-up algebras.

Proof of Theorem 1.1. If the roots of X2 − αX − β = 0 are both equal to one or
distinct roots of unity, it follows from [5, Corollary 3.2] that any finitely generated
monolithic A-module is Artinian. By Theorem 5.1, the same holds if both roots of the
quadratic equation are equal roots of unity.

Suppose that the roots of X2 − αX − β = 0 are not both roots of unity. Note that
if 1 is a root of this equation, then the other root is −β. By Lemma 2.1, either the
coordinate algebra of the quantum plane B(q) or the quantised Weyl algebra C(q)
(with q not a root of 1) is a homomorphic image of A depending on γ = 0 or γ �= 0,
respectively. Hence, by Theorems 3.1 and 4.2 it follows that A does not satisfy condition
(�). �
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