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Summary

Invasive alien species represent a multifaceted management problem in terms of threats to
biodiversity and ecosystems and their impacts on agriculture and human well-being. Ambrosia
artemisiifolia is an invasive alien plant in Europe that affects the human population as its
already highly allergenic pollen can interact with air pollutants, resulting in detrimental effects
on health. In this context, the invasive beetle Ophraella communa was proposed as a biocontrol
agent ofA. artemisiifolia, as it feeds on its leaves, leading to a decrease in pollen production. This
paper takes advantage of the different co-occurrence classes obtained by the ecological niche
models inferred for both of these species based on current and future climatic conditions. We
integrate them with spatial data regarding major air pollutants (nitrogen dioxide and fine
particulate matter). We couple this information with European human population density data
at a narrow territorial scale to infer current and future statistically significant hotspots of health
risk. The Netherlands and the UK host the widest hotspots within their national territory for
both current (7.09% and 3.54%, respectively) and future (15.04% and 6.70%, respectively)
scenarios. Considering the alarming results obtained for some areas, the monitoring and
biocontrol of A. artemisiifolia should be applied as a European strategy.

Introduction

Invasive alien species (IAS) can impact agricultural and livestock systems (Gil et al. 2017), whole
ecosystems (Milanović et al. 2020) and human health (Mazza & Tricarico 2018). All of these
issues may be caused by potentially just one IAS becoming established successfully in a specific
area; the constraints reported by the biotic–abiotic–movement diagram (Soberon & Peterson
2005) well summarize this complexity. Abiotic factors such as temperature and precipitation
heavily influence the distribution of many species (Lewis et al. 2017). The accessibility of areas is
an important factor in the colonization of areas by an IAS (Arim et al. 2006); human-mediated
transportation plays an essential role in this regard (Ascensão & Capinha 2017). In addition, the
co-occurrence of species that may ecologically interact with an IAS becoming established in a
certain area is a fundamental point to consider when attempting to manage an invasion
(Buttenschøn et al. 2010, Lommen et al. 2017).

The study of plant invasions and their ecological implications has gained significant attention
in recent years, as global environmental changes continue to reshape ecosystems worldwide.
Plant invasions, which refer to the establishment and rapid spread of non-native plant species in
ecosystems, pose a substantial threat to biodiversity, ecosystem functioning and ecosystem
services (Pyšek et al. 2010, Vilà et al. 2011). Understanding how environmental changes
influence the success and impacts of plant invasions is crucial for developing effective
management strategies and mitigating the negative consequences of such invasions. Numerous
studies have highlighted the role of environmental changes, including climate change, land-use
modifications and alterations in disturbance regimes, as key drivers of plant invasions (Dukes &
Mooney 1999, Simberloff et al. 2013, Seebens et al. 2017). These changes can create novel
ecological conditions, providing favourable opportunities for non-native plants to establish and
outcompete native species. However, the specific mechanisms by which environmental changes
influence plant invasions are complex and multifaceted, requiring further investigation.

The establishment of IAS can be explained by the great influence exerted by propagule
pressure (i.e., the quantity and frequency of introductions of individuals or reproductive units).
Numerous studies have highlighted the crucial role of this phenomenon in determining the
invasion success and ecological impacts of IAS (Colautti &MacIsaac 2004, Lockwood et al. 2005,
Blackburn et al. 2011). The abundance and frequency of introductions can enhance genetic
diversity, facilitate adaptation to new habitats and overcome stochastic events and ecological
barriers, ultimately promoting the successful establishment of IAS (Lockwood et al. 2005,
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Simberloff 2009). Therefore, understanding and managing
propagule pressure are vital for effective prevention and control
strategies aimed at mitigating the impacts of IAS on ecosystems
and biodiversity conservation, especially in the context of other
ecological pressures. Indeed, as a cross-cutting phenomenon,
climate change affects both abiotic and biotic factors and may
favour the establishment of IAS (De Simone et al. 2020, Iannella
et al. 2021a). For example, amongst many others, the common
ragweed Ambrosia artemisiifolia L., an IAS from North America,
has been established in Europe since the nineteenth century (Hegi
1918, Chauvel et al. 2006), damaging agriculture (Barnes et al.
2018) and human health (Bonini et al. 2016) with its highly
allergenic pollen (Plank et al. 2016, Cardarelli et al. 2018).
Moreover, A. artemisiifolia is a pioneer plant that emerges from a
durable, dense soil seed bank, especially if the ground is disturbed,
such as in agricultural contexts (Simard et al. 2020); it is also
observed to grow outside agricultural areas, colonizing cities and
causing serious human health problems. Numerous studies have
drawn attention to the accelerated invasion of this species, its
increased pollen production (Ziska & Caulfield 2000, Wayne et al.
2002, Bullock et al. 2012, Chapman et al. 2016), as well as its late
pollen production, dependent in turn on the habitats in which it
occurs (Fumanal et al. 2007), with related negative effects on
human well-being stemming from its earlier and longer pollen
seasons (see Beggs & Bambrick 2005). In addition, evidence for the
long-distance dispersal of A. artemisiifolia pollen suggests its
remarkable capability for extensive transportation (and, thus,
pollinosis outbreaks) and concurrent great seed dispersal, with
subsequent establishment in new areas (Šikoparija et al. 2013,
Grewling et al. 2019). Climate change is also worsening this issue
(Hamaoui-Laguel et al. 2015).

Many efforts have been made to control (or even eradicate) this
species (Vincent et al. 1992, SMARTER Project 2016). Some
researchers proposed using the ragweed leaf beetle Ophraella
communa LeSage (Chrysomelidae, Galerucinae), an IAS itself that
feeds on A. artemisiifolia, to control the plant (Zhou et al. 2014,
Sun et al. 2017). In fact, O. communa defoliates and leads to a
decrease in common ragweed pollen production, concurrently
causing a reduced level of damage to cultivated plants with which
A. artemisiifolia usually co-occurs (e.g., sunflower crops; Dernovici
et al. 2006). This last point has raised the interest of researchers
over the past 30 years, especially after O. communa’s proposal as a
biological control agent for ragweed in Australia was rejected
(Palmer & Goeden 1991). Today, its potential use is being
re-assessed (Müller-Schärer et al. 2023). Indeed, despite extensive
tests having been conducted to ensure the host specificity of
O. communa in various regions of its secondary range, there are
still concerns regarding the actual risk of infestation that could
affect sunflowers or other Asteraceae crops (Jin et al. 2023).
These concerns also derive from the fact that O. communa feeds
on other plants, such as cockleburs (e.g., Xanthium strumarium
L.), giant ragweed (Ambrosia trifida L.), the IAS feverfew
(Parthenium hysterophorus L.) and species of commercial
interest, such as the Jerusalem artichoke (Helianthus tuberosus
L.; Jin et al. 2023).

The ragweed leaf beetle O. communa, native to the south-
eastern area of North America, was first found in two European
countries in 2013 feeding on A. artemisiifolia, fortuitously
demonstrating its potential for biological control (Müller-
Schärer et al. 2014). In fact, this oligophagous species feeds on
several Asteraceae, including A. artemisiifolia, on which it lays its
eggs and its larvae develop. This species is also found in other

secondary ranges than Europe, such as some Asian countries
(China, South Korea and Japan; Meng & Li 2005, Nishide et al.
2015, Kim 2018).

Europe represents the study area of the present research, where
the two target species, A. artemisiifolia andO. communa, co-occur.
Iannella et al. (2019a) investigated the simultaneous invasion
dynamics of these two species in Europe. Recognizing the potential
of O. communa as a biological control agent for the invasive
A. artemisiifolia, the researchers employed a multifaceted
approach, combining ecological niche modelling (ENM), remote
sensing and geographic information system (GIS) techniques. The
objective was to assess the effectiveness of this biocontrol strategy
under three distinct future climatic scenarios. The research not
only laid the groundwork for more in-depth studies, but also
identified specific European regions where the co-occurrence of
these two species would be probable in the future. Such insights are
crucial for pinpointing areas where biocontrol interventions could
yield themost significant benefits. However, a notable finding from
their study was the prediction that, in some European countries,
A. artemisiifolia is poised for a more extensive expansion than
O. communa in future scenarios. This suggests potential challenges
in solely relying on O. communa as an effective biological control
agent, emphasizing the need for continuous monitoring and
possibly the integration of other control measures. In this
research, we go deeper in assessing the impacts of A. artemisiifolia
allergenicity in both current and future scenarios, using ground
and remotely sensed information regarding environmental factors
acting as adjuvants of common ragweed’s allergenicity. Some air
pollutants may interact with airborne pollens, increasing the
negative impacts on human health, with nitrogen dioxide (NO2)
and fine particulate matter (PM) recognized to be the main drivers
of this (Reinmuth-Selzle et al. 2017, Oduber et al. 2019). NO2 is a
common by-product of combustion derived from human activities
(e.g., vehicular traffic, industry and household activities) and
increases the allergenicity of A. artemisiifolia pollens (Ghiani et al.
2012, Zhao et al. 2016, Reinmuth-Selzle et al. 2017). In addition, its
non-homogeneous diffusion and clustering behaviour (Misra et al.
2021) and its influence on A. artemisiifolia pollen release per
inflorescence (Cheng et al. 2023) make it a detrimental pollutant
for human health. Atmospheric PM, made up of primary and
secondary particles, is one of the main atmospheric pollutants.
Primary PM is generated by road transport, combustion (mainly
coal burning) and other industrial processes, while secondary PM
is generated through chemical reactions between different primary
particulates in the atmosphere. Particulates are classified into
different categories based on their aerodynamic diameters. The
fine PM (PM2.5, particle size 0.1–2.5 μm) considered in this study
can penetrate the alveoli and terminal bronchioles. PM exposure
has significant effects on people with asthma and allergic rhinitis
(Dunlop et al. 2016, Luo et al. 2020, Pawankar et al. 2020), but the
mechanism by which PM affects people with these diseases is
not fully understood (Wu et al. 2018). Its interaction with
A. artemisiifolia pollen has also been studied (Gleason et al. 2014,
Magyar et al. 2022), indicating higher levels of pollen sensitization
when they co-occur.

We first assessed the overlap of NO2 and PM2.5 concentrations
in European territory with a co-occurrence of A. artemisiifolia and
O. communa in current and future scenarios, considering both
climate change scenarios and variations in pollutant emissions.We
chose to use the previous climate change predictions from Iannella
et al. (2019a) since they are the results (and can act as a proxy; see
Rasmussen et al. 2017) of CO2 and a warmer climate, variables that
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have positive relationships with pollen production (Hamaoui-
Laguel et al. 2015, El Kelish et al. 2014).

Then, we mapped the areas of significant threat to human
health, considering population density and evaluating risk for each
European country. Finally, we carried out a hotspot analysis to
assess European regions in which a statistically significantly high
risk of potential allergenicity of A. artemisiifolia could occur.

Methods

Geographical data and spatial analyses

All of the spatial processes are based on the geographical data of
Iannella et al. (2019a; available upon request). The vector data
deriving from the intersection of the three-class climatic ecological
niche models inferred for the two target species were used as a base
for the analyses performed in the present research. Specifically,
these maps are composed of all of the combinations of three
suitability classes (class 1: low suitability; class 2: medium
suitability; class 3: high suitability, which represent the 0.33–
0.66–0.99 suitability intervals, respectively, as reported in Fig. S1a,
together with the target species’ occurrences). Consequently,
certain combinations (such asO. communa scoring the lowest class
(1)–A. artemisiifolia scoring the highest class (3) or others, such as
1–2 and 2–3, corresponding to the O. communa–A. artemisiifolia
combination) pose the highest risk to human health. This is
because O. communa may lack the suitable climatic conditions
necessary for co-occurrence and, therefore, cannot effectively act as
a biological control agent for A. artemisiifolia. These spatial data
were gathered for the current and the 2050 future climatic
scenarios (specifically, Representative Concentration Pathway 8.5,
hereafter named RCP8.5).

Spatial data for air pollutants were obtained from the European
Environment Agency (EEA) geospatial data catalogue (https://
sdi.eea.europa.eu/catalogue/srv/eng/catalog.search#/home). Two
of the most dangerous air pollutants for health were chosen for
the current scenario (with 2018 being the last year available),
namely NO2 and fine PM (PM2.5; Fig. S1b,c). These also represent
the only pollutants for which future estimates are available to date
based on RCP8.5 (Colette et al. 2013). Thus, an RCP8.5-based
future data spatialization was performed, following the indications
of Colette et al. (2013), so as to perform spatial analyses based on
consistent data (i.e., projections of both climatic suitability-based
co-occurrence maps and pollutant distributions).

Demographic data arranged according to the Nomenclature of
Territorial Units for Statistics (NUTS3) classification were
obtained from the Eurostat web portal (https://appsso.eurostat.e
c.europa.eu) for both the current and future years (in our case,
2018 and 2050). NUTS3 represents a hierarchical system of
subdivision of the economic territory of the European Union (EU)
and the UK for the collection, development and harmonization of
European statistics at the regional level. Furthermore, due to the
withdrawal of the UK from the EU, data for future demographic
projections were obtained from the UK Office for National
Statistics (https://www.ons.gov.uk/peoplepopulationandcommuni
ty/populationandmigration/populationprojections/). These data
are represented in Fig. S1d.

We processed pollutant data based on the classification of the
EEA (Ortiz et al. 2020), which suggests division into six classes of
increasing concentration. This permitted us to operate with
comparable spatial classes of health risk for both NO2 and PM2.5.
In addition, considering that the same number of classes was given

from Iannella et al. (2019a) for health risk, an appropriate index
was built regarding both the species co-occurrence and the air
pollutants.We calculated this as the sum of both pollutants and co-
occurrence suitability classes for each feature. Finally, the results
obtained were weighted according to the demographic value (i.e.,
multiplying it by the corresponding human population density
value; Fig. 1), thus taking into account the exposure of a high
(or low) number of individuals, considering the fact that more
human-dense areas bear a higher probability of health issues.

The hotspot analysis was carried out in ArcGIS Pro 3.0, which
identifies statistically significant hotspots and coldspots using the
Getis–Ord Gi* (Ord & Getis 1995, Getis & Ord 2010) statistic.
Consideration of the scale of analysis, the distribution of the data,
outliers and potential biases is crucial to ensure reliable and
meaningful results are obtained when utilizing the Getis–Ord Gi*
statistic in spatial analysis (Haining 1993). For instance, this
statistic can be influenced by the presence of spatial biases (e.g.,
unequal population densities or sampling biases), which can
introduce artefacts and affect the reliability of hotspot or coldspot
detection (Fotheringham & Wong 1991). Thus, we incorporated
into the process the false rate detection correction (ESRI Inc. 2022),
a procedure to potentially adjust the critical p-value thresholds,
accounting for multiple testing and spatial dependency. The
incorporation of this supplementary algorithm to assess statistical
significance and uncertainty improves the stability and interpre-
tation of the spatial statistics (Anselin 1996). Moreover, given the
complete coverage of the spatial data we used in relation to our
study area and the nature of the data themselves (continuous
rasters), any possible spatial bias is further lowered.

The Getis–Ord Gi* statistic analysis thus results in p-values
determining the statistical significance of the hotspot or coldspot
and a coupled z-value, referring to the ‘strength’ of the spatial
feature, as in studies of biogeography (Iannella et al. 2019b, 2020),
nature conservation (Iannella et al. 2021b), economics (Sánchez-
Martín et al. 2019) and human health (De Giglio et al. 2019).

To encompass all of the possible spatial patterns in terms of
variability of the target species co-occurrence classes, the chosen
atmospheric pollutants (NO2 and PM2.5) and the population
density, the species’ co-occurrence- and air pollutants-based index,
calculated as described above, was used to infer the hotspots. The
‘inverse distance’ spatial conceptualization sub-algorithm available
in the hotspot analysis of ArcGIS Pro 3.0 was used to down-weigh
the influence of features based on distance decay (i.e., all features
impact or influence each other, but the farther away a feature is, the
smaller the impact it has; this sub-procedure was chosen as it
particularly well suited for analysing continuous data; ESRI
Developer 2011). In this case, the features considered by the
hotspot analysis are the products of the index we built, which is
the value reported for all of the territorial units deriving from the
NUTS3 database.

Finally, we assessed possible statistically significant differences
in the z-values obtained from the hotspot analysis performed for
both current and future scenarios for each country considered.

Abbreviations used

To optimize layout, country names reported in the figures
are abbreviated as follows: Albania (AL), Austria (AT), Belgium
(BE), Bulgaria (BG), Croatia (HR), Czechia (CZ), Denmark (DK),
Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece
(EL), Hungary (HU), Iceland (IS), Ireland (IE), Italy (IT), Latvia
(LV), Liechtenstein (LI), Lithuania (LT), Luxembourg (LU),
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Montenegro (ME), the Netherlands (NL), NorthMacedonia (MK),
Norway (NO), Poland (PL), Portugal (PT), Romania (RO), Serbia
(RS), Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE),
Switzerland (CH), Turkey (TR) and the United Kingdom (UK).

Results

The hotspot analysis considering the areas where both the highest
z-scores (Fig. 2a) and the three highest confidence intervals
(p = 90%, 95% and 99%; Fig. 2b) occur highlighted a current
pattern of 212 hotspots of potential allergenicity ofA. artemisiifolia
in Europe (a complete and detailed list of the NUTS3 hotspots is
given in Table S1a). The highest percentage of hotspots ranges
from the results obtained for the Netherlands (7.09% of the entire
national territory) to Norway (0.06%; Fig. 2c).

The hotspot analysis also highlighted 240 hotspots for 2050
(Fig. 3a,b; a complete and detailed list of the NUTS3 hotspots is
given in Table S1b), in which the highest values are reported for the
Netherlands (15.04%) and the UK (6.70%), while the lowest values
are reported for Norway (0.11%) and Romania (0.10%; Fig. 3c).

There were two noticeable coldspots (in terms of low z-score
values) in the Balkans in the current scenario and in the future
projection. In fact, a p-value between 0.85 and 0.88 was obtained
for these areas, which therefore does not exceed the threshold of
0.90 (chosen to identify significant patches).

The change between the current and future scenarios varied
amongst the countries (Fig. 4). In general, and for practically all of
the countries, a considerable increase in the z-values in each of the
hotspots considered (the patches with the highest confidence
intervals) is observed, with the northern European countries
reporting the highest positive changes in the future (Fig. 4). In
addition, when considering percentage change in number of
hotspots, the greatest hotspot changes are predicted for the
Netherlands (þ7.95%), Portugal (þ3.66%), Switzerland (þ3.47%),
the UK (þ3.15%), Spain (þ1.37%), Ireland (þ0.70%) and Croatia
(þ0.27%; Table S2). Belgium was the only country for which a

negative difference was reported, with the number of hotspots
within its borders decreasing by 0.58% (Table S2).

When assessing the differences between the z-values obtained
for the current and future conditions for the various countries, we
found no normal distributions. Therefore, we performed a
Kruskal–Wallis test (significance at p= 0.05) amongst all of these,
obtaining significant differences between each (χ2= 344 319,
df = 69, p= 0). When comparing each pair for a country (i.e.,
current–future) using a Mann–Whitney U test (significance at
p= 0.05), we also obtained statistically significant differences
between all pairs for every country; the results for each pair are
reported in Table S3.

Discussion

This study incorporates the impacts of climate change on the
distribution of A. artemisiifolia and one of its antagonists
(O. communa), relating their predicted co-occurrence to both
the air quality and population density and finally assessing overall
impacts at a continental scale.

In Iannella et al. (2019a), ecological differences were found
between the climatic preferences of the two study species,
highlighting the greater adaptability of A. artemisiifolia compared
to O. communa. In fact, many studies (Zhou et al. 2010, Bonini
et al. 2016, Iannella et al. 2019a) confirm that O. communa, from a
bioclimatic point of view, cannot stem the advance of
A. artemisiifolia alone, as it is more sensitive to adverse climatic
conditions than its host plant. Despite this, the biocontrol exerted
by this leaf beetle on this invasive plant exists (Bonini et al. 2016)
and could be of primary importance due to the harmful effects of
A. artemisiifolia on the agricultural and health sectors (Schaffner
et al. 2020).

The study of Iannella et al. (2019a) focused on climatic and
biogeographical aspects only, whereas this study considers the
existing co-occurrence between the two target species in parallel
with other factors, such as some of the most dangerous air

Figure 1. Complete workflow adopted for the
analyses. NO2 = nitrogen dioxide; PM2.5 = fine
particulate matter (particle size 0.1–2.5 μm).
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Figure 2. Current hotspots built upon the index based on Ophraella communa–
Ambrosia artemisiifolia co-occurrence and air pollution in terms of the (a) z-scores, (b)
p-values and (c) percentage of the total national territory covered by those hotspots
(see text for nation abbreviations).

Figure 3. Hotspots in 2050 built upon the index based on Ophraella communa–
Ambrosia artemisiifolia co-occurrence and air pollution in terms of the (a) z-scores, (b)
p-values and (c) percentage of the total national territory covered by those hotspots
(see text for nation abbreviations).
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pollutants (NO2 and PM2.5) and human population density. This
permits us to statistically summarize and map the connection
between a high population density and low air quality (reported to
lead to a higher incidence of respiratory diseases) and the pollution-
related sensitization towards allergens (Polosa et al. 2002, Diaz-
Sanchez et al. 2003, Ledda et al. 2011).

Our hotspot analysis represents a diversified, complex and
statistically robust geographical asset that mainly highlights current
hotspots in northern European countries (the Netherlands, the UK,
Germany and Belgium), where the corresponding hotspot density
values (in terms of the hotspot:country area ratio) are higher than
3%. This is consistent with Burbach et al. (2009), who found a rate of
more than 80% in terms of pollen sensitization in their population
samples for these countries. Regarding the future scenario, in
addition to the previously mentioned states, Switzerland and
Portugal also show very high hotspot densities (>5%).

Other European countries with known allergy issues caused by
A. artemisiifolia, such as Italy and Hungary (Bonini et al. 2016,
Márk et al. 2016), also resulted in high hotspot densities in the
current and future scenarios, although they reported a much lower
percentage than the countries with the highest densities in the
present study. Indeed, if one observes the spatial model in more
detail, a high density of hotspots can be found in a few
municipalities (e.g., Milan, Budapest, etc.), which are and will be
at high allergy risk. In fact, Bonini et al. (2022) found that the
severity of seasonal allergies caused by A. artemisiifolia is closely
connected to the levels of the plant’s pollen present in the
atmosphere, with symptom intensity levels associated with specific
pollen concentration thresholds. In addition, large municipalities
(e.g., Paris, Warsaw, London, Naples, etc.), with strong annual
average concentrations of air pollutants and high population
densities, are predicted by our analyses to suffer significantly from
the presence of A. artemisiifolia, particularly in areas where
O. communa’s ability to act as a biological control agent is not
favoured (Iannella et al. 2019a). In addition, the levels at which
O. communa can control A. artemisiifolia are dependent on the
seasonality of some climatic factors (Augustinus et al. 2020a) and

number of generations (Mouttet et al. 2018), or a combination of
the two (Augustinus et al. 2020b), making the framework even
more difficult to manage.

Our findings are in line with those of Lake et al. (2017),
demonstrating that the sensitization to A. artemisiifolia pollen will
significantly increase between 2041 and 2060, impacting the
European human population. According to the study of Lake et al.
(2017), much of the current and future variation is due to the
northward expansion of A. artemisiifolia, which is consistent with
the expansion already observed in the USA (Ziska et al. 2011) and
in agreement with our results, showing a shift of the greatest
hotspots towards northern Europe. Therefore, if sensitization
continues to increase even in areas where A. artemisiifolia is
relatively rare to date (Lake et al. 2017), some of the countries
mentioned above will face severe health and economic risks. Our
results corroborate and strengthen the findings of Sun et al. (2017)
and Schaffner et al. (2020), who highlighted the often-under-
estimated effects of A. artemisiifolia pollen on human health. In
fact, considering that the approach used in Sun et al. (2017) and
Schaffner et al. (2020) does not involve human density and other
pollutants as we do in our analyses, these results are somewhat
alarming. Some areas that are not highlighted by these habitat
suitability-based papers for these species represent well-defined
(and statistically significant) health risk hotspots, since pollutants
and human population density play major roles in this. For
instance, this is the case for some of the southern Italy, northern
France and central Spain hotspots, where suitability is predicted to
be medium (Iannella et al. 2019a) or low (Rasmussen et al. 2017).
The multifaceted nature of this management issue can be
highlighted using the following example: the major predicted
hotspot for southern Italy falls within the district around Naples, in
which A. artemisiifolia-related pollinosis is not currently recorded.
However, the plant was recently found in Latium, a region that
borders Campania, the administrative region with Naples as its
capital. In the area between these regions are two wide agricultural
districts (European Environmental Agency, 2019). Taken together,
the vehicular traffic involved in the trade of agricultural goods and

Figure 4. The z-values of the highest confidence interval
hotspots for both current and 2050 scenarios for each country
(see text for nation abbreviations).
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the fact that A. artemisiifolia spreads through both road dispersal
(Lemke et al. 2019) and after soil disturbance (e.g., in agricultural
contexts) suggest that colonization will be very likely. As a further
issue that could possibly worsen the problem, future climatic
projections report that there will be favourable conditions for
A. artemisiifolia range expansion (Rasmussen et al. 2017, Iannella
et al. 2019a).

Control of A. artemisiifolia plants is difficult due to their long-
lived seeds, resistance to herbicides and ability to regrow after
cutting (Brewer & Oliver 2009, Lommen et al. 2018). In addition,
recent research has reported the rapid evolution of this plant,
resulting in individuals converging towards adaptive traits to a
warming climate (Sun et al. 2020). Nevertheless, monitoring the
areas subject to the invasion of A. artemisiifolia is a crucial element
of limiting its spread (Bullock et al. 2012) and of controlling the
dispersion of its seeds over long distances, primarily through
human activities. Therefore, the strategies suggested for controlling
A. artemisiifolia are to carefully monitor the distribution of
O. communa for possible biocontrol applications, bearing in mind
that some O. communa populations were recently found to rapidly
adapt to colder temperatures (Tian et al. 2022) as a result of
induced tolerance through trophic transmission (Tian et al. 2023).
Thus, as has occurred for other human-mediated trans-
locations aimed at controlling undesired plants, introductions of
O. communa for biocontrol could also benefit from genetically
(Stahlke et al. 2022) and physiologically (Tian et al. 2023) informed
studies.

In addition, particular attention should be paid to the
improvement of air quality through the concurrent implementa-
tion of targeted pollen monitoring strategies. This work could first
be implemented in countries that are predicted to suffer more from
the future risk increase (i.e., the future appearance or increase of
hotspots), although a shared European strategy would be the best
approach.

Conclusions

The hotspot analysis indicates that, in Europe, the greatest threat to
human health by A. artemisiifolia pollen could occur in the north/
north-eastern part of the continent, where many countries will
become more exposed to such health risks in the future. However,
the most significant threats will mostly occur in large cities, where
problems due to high population density and air pollutants already
exist and where respiratory diseases are and will remain persistent.

Given the rapid spread of A. artemisiifolia, monitoring and
control measures (using O. communa) are essential to stem the
advance of this invasive plant. Furthermore, implementing effective
strategies to reduce air pollutants could provide significant savings
in economic terms and of human lives (Mouttet et al. 2018,
Schaffner et al. 2020).

To our knowledge, this study is the first to relate the
co-occurrence amongst these target species, air pollutants and
population density using advanced geostatistical methods. In light
of the broad applicability of this framework, our approach can be
applied to any type of invasive plant species and corresponding
pests, being applicable to health, agricultural to nature conserva-
tion sectors and supporting local policymakers in smart planning
processes at all spatial scales. In addition, we provide a starting
point for other studies focusing on the relationships between
invasive species, human-induced pollution and climate change.
Our research sheds light on the multifaceted problems caused by

invasive species, emphasizing the threats that they pose to human
well-being. By highlighting the negative effects of A. artemisiifolia
and the interaction of its pollen with air pollutants, this study raises
awareness of the importance of managing invasive species to
protect native ecosystems and maintain ecological balance. In
addition, it helps with the prioritization of monitoring and
management efforts. This information can be utilized to implement
targeted conservation measures and allocate resources effectively to
mitigate the health impacts caused by invasive plants and air
pollutants. This paper further advocates for the development of a
European strategy to monitor and control A. artemisiifolia. By
emphasizing the large hotspots of health risk within some national
territories, this study highlights the need for collaborative and
coordinated efforts to controlA. artemisiifolia at the European level.
This approach promotes the exchange of knowledge and the
development of policy frameworks, fostering a unified approach to
invasive species management and environmental conservation.
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