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Abstract

We show that smooth numbers are equidistributed in arithmetic progressions to mod-

uli of size x66/107−o(1). This overcomes a longstanding barrier of x3/5−o(1) present
in previous works of Bombieri, Friedlander and Iwaniec, Fouvry and Tenenbaum,
Drappeau, and Maynard. We build on Drappeau’s variation of Linnik’s dispersion
method and on exponential sum manipulations of Maynard, ultimately relying on
optimized Deshouillers–Iwaniec-type estimates for sums of Kloosterman sums.
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A. Pascadi

1. Introduction

The Bombieri–Vinogradov theorem [Bom65, Vin65] famously states that for any x> 2, A> 0,
and B sufficiently large in terms of A, one has∑

q�x1/2/(log x)B

max
(a,q)=1

∣∣∣∣π(x; q, a)− π(x)

ϕ(q)

∣∣∣∣�A
x

(log x)A
, (1.1)

where π(x) denotes the number of primes up to x, and π(x; q, a) denotes the number of these
primes which are congruent to a modulo q. Informally, (1.1) states that the primes are well dis-
tributed in arithmetic progressions when averaging over moduli almost as large as x1/2. Without
the sum over q, the Siegel–Walfisz theorem only controls the summand uniformly in the (much
smaller) range q� (log x)A, and the Generalized Riemann Hypothesis would improve this to
q� x1/2/(log x)B. Thus (1.1) provides an unconditional substitute for GRH when some averag-
ing over q is available; this is very often the case in sieve theory, where results like (1.1) have led
to multiple major breakthroughs (including, e.g., the existence of infinitely many bounded gaps
between primes [Zha14, Pol14a, May15, Pol14b]).

We say that the primes have exponent of distribution α< 1 iff the analogue of (1.1) holds true
when summing over all moduli q� xα. The Elliott–Halberstam conjecture [EH68] asserts that
α= 1− ε works for any ε > 0 (the implied constant depending on ε), but it remains open whether
(1.1) holds for any α> 1/2. Quite remarkably, it is possible to go beyond this square-root barrier
if one slightly weakens the left-hand side of (1.1), by fixing the residue a, assuming various
factorization properties of the moduli q, and/or replacing the absolute values with suitable
weights. On this front, we mention the pioneering work of Fouvry [Fou84, Fou87, Fou85, Fou82]
and Fouvry and Iwaniec [FI80, FI83], a series of three papers by Bombieri, Friedlander, and
Iwaniec [BFI86, BFI87, BFI89], the main estimate in Zhang’s work on bounded gaps [Zha14],
and three recent papers of Maynard [May25a, May25b, May25c]; in particular, in [May25b],
Maynard achieved exponents of distribution as large as 3/5− ε assuming well-factorable weights.

In this paper, we are concerned with the case of y-smooth (or y-friable) numbers rather than
primes; the objects of study here are the sets

S(x, y) := {n∈Z+ : n� x, and all prime factors of n are � y},
defined by two parameters x, y� 2, where y will grow like xo(1). To state our main result, we
denote

Ψ(x, y) := #S(x, y),

Ψq(x, y) := #{n∈ S(x, y) : (n, q) = 1},
Ψ(x, y; a, q) := #{n∈ S(x, y) : n≡ a (mod q)}.

Theorem 1.1 (Smooth numbers in APs with moduli beyond x3/5). Let a∈Z \ {0} and A, ε > 0.
Then there exists C =C(A, ε)> 0 such that, in the range x> 2, (log x)C � y� x1/C , one has∑

q�x66/107−ε

(q,a)=1

∣∣∣∣Ψ(x, y; a, q)− Ψq(x, y)

ϕ(q)

∣∣∣∣�a,A,ε
Ψ(x, y)

(log x)A
.

A similar result with an exponent of 1/2− ε and uniformity in a (as in (1.1)) is due to
Granville [Gra93a, Theorem 2]; see also [Wol73a, Wol73b, FT91, Gra93b]. Virtually all results
of this type that go beyond the x1/2-barrier rely on equidistribution estimates for convolutions
of sequences, but unless a long smooth sequence is involved, the exponents have been limited
to 3/5 or less. Bombieri, Friedlander, and Iwaniec proved a triple convolution estimate handling
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moduli up to x3/5 for sequences of convenient lengths [BFI86, Theorem 4], and Fouvry and
Tenenbaum used this result (along with the flexible factorization properties of smooth numbers)
to prove an analogue of Theorem 1.1 for q� x3/5−ε, and with a right-hand side of x/(log x)A

[FT96, Théorème 2]. Motivated by an application to the Titchmarsh divisor problem for smooth
numbers, Drappeau improved the bound to Ψ(x, y)/(log x)A in the same range q� x3/5−ε [Dra15,
Théorème 1]. Unfortunately, the BFI estimates and subsequent arguments seem limited to this
range of moduli.

Maynard recently introduced a different arrangement of exponential sums [May25a, Chapter
18], which would, in principle, allow for a triple convolution estimate with moduli up to x5/8, if the
Selberg eigenvalue conjecture for Maass forms [Sel65, Sar95, Iwa85, IS85, Iwa90, LRS95] held
true; but his unconditional estimates were still limited below x3/5 [May25a, Proposition 8.3].
We introduce a further variation of Maynard’s argument which eliminates certain coefficient
dependencies, allowing one to use more efficient estimates for sums of Kloosterman sums in
some ranges. More precisely, we rely on an optimized estimate of Deshouillers–Iwaniec type (see
Theorem 3.10), which averages over exceptional Maass forms (and their levels) more carefully,
ultimately allowing us to go beyond 3/5 = 0.6 unconditionally. Our exponent of 66/107≈ 0.617
uses the best progress towards Selberg’s conjecture, due to Kim and Sarnak [Kim03, Appendix 2]
(based on the automorphy of symmetric fourth-power L-functions).

Notation 1.2 (Exceptional eigenvalues). For q ∈Z+, define θq := supλ

√
max(0, 1− 4λ), where λ

runs over all eigenvalues of the hyperbolic Laplacian for the Hecke congruence subgroup Γ0(q)
(such λ is called exceptional iff λ< 1/4). Also, let θmax := supq�1 θq.

Conjecture 1.3 (Selberg [Sel65]). One has θmax = 0, i.e., there are no exceptional eigenvalues.

Theorem A (Kim–Sarnak [Kim03]). One has θmax � 7/32.

Remark 1.4. We warn the reader of another common normalization for the θ-parameters, which
differs by a factor of 2 (resulting in a bound of 7/64 in Theorem A); our normalization follows
[DI82, May25a]. We give more details on the role of exceptional eigenvalues in our work in § 10.

We now state a more general version of our main result from Theorem 1.1, which makes the
dependency on θmax explicit, gives a refined bound on the right-hand side (following [Dra15]),
and allows for some small uniformity in the residue parameter a.

Theorem 1.5 (Conditional exponent of distribution). For any ε > 0, there exist C, δ > 0 such
that the following holds. Let x> 2, (log x)C � y� x1/C , and denote u := (log x)/(log y), H(u) :=
exp(u log−2(u+ 1)). Then with an exponent of

α :=
5− 4θmax

8− 6θmax
− ε, (1.2)

one has ∑
q�xα

(q,a1a2)=1

∣∣∣∣Ψ(x, y; a1a2, q)− Ψq(x, y)

ϕ(q)

∣∣∣∣�ε,A Ψ(x, y)(H(u)−δ(log x)−A + y−δ), (1.3)

for all a1, a2 ∈Z with 1� |a1|, |a2|� xδ, and all A� 0. The implicit constant is effective if A< 1.

Remark 1.6. In (1.3), a2 denotes a multiplicative inverse of a2 modulo q; so the residue a1a2
corresponds to congruences of the form a2n≡ a1 (mod q). The right-hand side of (1.3) is the
same as in Drappeau’s result [Dra15, Théorème 1], and ultimately comes from a result of Harper
(see Lemma 3.2).
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In particular, Conjecture 1.3 would imply an exponent of distribution of 5/8− o(1), while
Theorem A leads to the unconditional exponent of 66/107− o(1) from Theorem 1.1. As in
previous approaches, our main technical result leading to Theorem 1.5 is a triple convolution
estimate, given in Theorem 4.2; this improves on [BFI86, Théorème 4], [Dra15, Théorème 3],
[DGS17, Lemma 2.3], and [May25a, Proposition 8.3]. We expect all such approaches to face a
significant barrier at the exponent 2/3 = 0.6 (see the remark after (4.4)), so we may view the
exponents of 66/107≈ 0.617 and 5/8 = 0.625 as progress towards this limit.

In fact, Theorem 4.2 is already in a suitable form to improve the analogous results of
Drappeau, Granville, and Shao about smooth-supported multiplicative functions [DGS17]. More
precisely, using Theorem 4.2 instead of [DGS17, Lemma 2.3], one can improve the exponent of
3/5 in [DGS17, Theorem 1.2] to the same value as in (1.2). We state a particular case of this
result below, borrowing the notation

Δ(f, x; q, a) :=
∑
n�x

n≡a (mod q)

f(n)− 1

ϕ(q)

∑
n�x

(n,q)=1

f(n),

from [DGS17]; we also say that an arithmetic function f satisfies the Siegel–Walfisz criterion if
and only if

∀ A> 0, (a, q) = 1, x� 2, Δ(f, x; q, a)�A
1

(log x)A

∑
n�x

|f(n)|.

Theorem 1.7 (Smooth-supported multiplicative functions in APs). For any ε, A> 0, there
exists δ > 0 such that the following holds. Let x> 2, xδ � y� exp(

√
log x log log x), and f be

a 1-bounded completely multiplicative function supported on y-smooth integers, satisfying the
Siegel–Walfisz criterion. Then for α := (5− 4θmax)/(8− 6θmax)− ε, and all a1, a2 ∈Z with 1�
|a1|, |a2|� xδ, ∑

q�xα

(q,a1a2)=1

|Δ(f, x; q, a1a2)| �ε,A
Ψ(x, y)

(log x)A
.

Remark 1.8. The improvement from 3/5− ε to the exponent in (1.2) follows through in most
applications of Drappeau’s result [Dra15, Théorème 1], such as [Dra15, Corollaire 1]. Following
[dLBD20, §§ 2 and 4], our triple convolution estimate also implies a version of Theorem 1.5
restricted to smooth moduli, which can be used to deduce refined upper bounds for the number
of smooth values assumed by a factorable quadratic polynomial. For instance, one should obtain

#{n∼ x : n(n+ 1) is y-smooth}�ε x	(u)1+66/107−ε,

for (log x)Oε(1) � y� x, where u= (log x)/(log y) and 	(u) is the Dickman function (satisfying
Ψ(x, y) = x	(u)eOε(u) in this range [dLBD20, Hil86]).

2. Overview of key ideas

Let us give a very rough sketch of our argument, for a simpler case of Theorem 1.1. Consider
the residue a= 1, the smoothness parameter y= x1/

√
log log x, and a sum over moduli just above

the 3/5 threshold, say

r�R := x3/5+σ,

for some small σ	 1 (we switch the variable q to r, following [Dra15, DGS17]). Using the
factorization properties of smooth numbers, it suffices to prove a triple convolution estimate
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roughly of the form∑
r∼R

ρr
∑
m∼M

αm

∑
n∼N

βn
∑
�∼L

γ�

(
1mn�≡1 (mod r) −

1(mn�,r)=1

ϕ(r)

)
�A

x

(log x)A
, (2.1)

where (ρr), (αm), (βn), and (γ�) are arbitrary 1-bounded complex sequences, but we are free to
choose the parameters M,N, L	 1 subject to MNL
 x. We pick

M :=
x1−δ

R
, N :=

x1−2δ

R
, L :=

R2

x1−3δ
, (2.2)

for some small δ = o(1); thus M,N ≈ x2/5−σ and L≈ x1/5+2σ. Note additionally that NL= xδR.

2.1 First steps and limitations of previous approaches

Following previous works [BFI86, Dra15, May25a] based on Linnik’s dispersion method [Lin63],
we apply Cauchy and Schwarz in the r, m variables, expand the square, and Fourier complete
the resulting sums in m to sums over h. Ignoring GCD constraints, the key resulting exponential
sum is a smoothed variant of∑

r∼R

∑
k∼NL

uk
∑
n∼N

βn
∑
�∼L

n�≡k (mod r)

γ�
∑

h∼R/M

e

(
h
k

r

)
, (2.3)

where (uk) is the convolution of the original sequences (βn), (γ�). We then flip moduli in the
exponential via Bézout’s identity, and substitute t := (k− n�)/r; this leads to the sum∑

t∼xδ

∑
k∼NL

uk
∑
n∼N

βn
∑
�∼L

n�≡k (mod t)

γ�
∑

h∼R/M

e

(
ht
n�

k

)
. (2.4)

Following Maynard [May25a], we apply Cauchy and Schwarz in the t, n, k variables (keeping the
congruence modulo t inside), and expand the square to reach the sum∑

t∼xδ

∑
�1,�2∼L

�1≡�2 (mod t)

γ�1γ�2
∑

h1,h2∼R/M

∑
k∼NL

∑
n∼N

n≡k�1 (mod t)

e

(
t(h1�2 − h2�1)n�1�2

k

)
, (2.5)

which we ultimately need to bound by�A RNL
2(log x)−A; note that the trivial bound is larger

by about (R/M)2, due to the sum over h1, h2 introduced by Poisson summation. We bound the
contribution of the diagonal terms (with h1�2 = h2�1) by∑

t∼xδ

∑
�1∼L

∑
h2∼R/M

xo(1)
∑

k∼NL

∑
n∼N

n≡k�1 (mod t)

1� xo(1)RNL2N

M
, (2.6)

which is acceptable since N/M = x−δ. We then introduce Kloosterman sums S(i, j; k) by com-
pleting the sum in n to a sum over j, and find acceptable contributions from the zeroth Fourier
coefficient (j = 0), as well as from the terms with �1 = �2; here, it suffices to use the Ramanujan
bound, respectively an estimate of Deshouillers and Iwaniec [DI82, Theorem 9]. It ultimately
remains to bound a variant of∑

t∼xδ

∑
�1,�2∼L

�1≡�2 (mod t)
�1 �=�2

∑
h1,h2∼R/M
h1�2 �=h2�1

∣∣∣∣ ∑
j∼xδL

e

(
j�1
t

) ∑
k∼NL

S((h1�2 − h2�1)�1�2, j; k)

∣∣∣∣, (2.7)
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by �AN
2L4(log x)−A. Inserting 1-bounded coefficients ξh1,h2

(also depending on t, �1, �2), and
letting ad :=

∑
h1�2−h2�1=d ξh1,h2

, the sum over h1, h2 in (2.7) roughly reduces to∑
d∼RL/M

ad
∑

j∼xδL

e

(
j�1
t

) ∑
k∼NL

S(d�1�2, j; k). (2.8)

Such sums can be bounded using the spectral theory of automorphic forms, specifically through
the aforementioned work of Deshouillers and Iwaniec [DI82] (based on the Kuznetsov trace
formula and the Weil bound); the relevant level of the congruence group in Notation 1.2 is
Q= �1�2. Indeed, Maynard [May25a] uses [DI82, Theorem 9] to bound (a smoothed variant of)
the sum in (2.8) by

xθQ/2+o(1)NL5/2

( ∑
d∼RL/M

|ad|2
)1/2

,

and consequently the sum in (2.7) by

xθmax/2+o(1)NL5/2R
3/2L3/2

M3/2
≈ x(θmax+3)/2+10σ. (2.9)

Unfortunately, this falls short of the desired bound of N2L4(log x)−A ≈ x8/5+6σ, unless

4σ <
1

10
− θmax

2
. (2.10)

This is (barely) impossible with the currently best-known bound of θmax/2� 7/64≈ 0.109.

2.2 Improved exponential sum manipulations for specific ranges

Starting from the work of Deshouillers and Iwaniec [DI82], better bounds (in the θ-aspect) for
sums like (2.8) have been available when one additionally averages over the level �1�2, and at
least one of the sequences of coefficients is independent of the level. Indeed, Drappeau’s triple
convolution estimate [Dra15] and prior works rely on [DI82, Theorem 12], which gives such a
result for incomplete Kloosterman sums.

Following Maynard’s argument (which is in turn based on Bombieri–Friedlander–Iwaniec’s
work in [BFI87, § 10]), we prefer to complete our Kloosterman sums and bound the contribution
from the zeroth Fourier coefficient by hand, and separate into terms with �1 = �2 and �1 �= �2, all
before invoking Deshouillers–Iwaniec-style bounds. We then aim to apply an optimized bound
for sums of complete Kloosterman sums with averaging over the level (given in Theorem 3.10),
which improves [DI82, Theorem 11] by making the dependency on the θmax parameter explicit.
But for this strategy to work out, we would need:

(1) the range of (�1, �2) in (2.7) to be (discretely) dense inside [L, 2L]2; and
(2) crucially, the coefficients e(j�1/t) to not depend on �1, �2.

While (2) is obviously false in our case, it is only barely false for the specific ranges in (2.2), due
to the smallness of the parameter t∼ xδ. In particular, losing a factor of at most xO(δ) = xo(1)

in (2.7), we may fix t and the values of �1 and �2 (mod t), turning (2) into a true statement at
the expense of (1). The number of pairs (�1, �2) now becomes 
L2/t2, which ends up costing us
another acceptable factor of xo(1). Overall, it remains to bound a sum of the form∑

�1,�2∼L

∑
d∼RL/M

ad,�1,�2
∑

j∼xδL

e(jω)
∑

k∼NL

S(d�1�2, j; k), (2.11)
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for some fixed ω ∈R/Z (independent of �1, �2). Using Theorem 3.10, we obtain a bound like
(2.9) where the factor depending on θmax is(

NL

L2

)θmax

≈ x( 1

5
−3σ)θmax ,

rather than xθmax/2. Thus instead of (2.10), we now reach the desired bound provided that

(4− 3θmax)σ <
1

10
− θmax

5
,

which is possible since (1/5) · (7/32) = 0.04375< 0.1. In fact, this handles all values

σ <
1− 2θmax

40− 30θmax
⇐⇒ 3

5
+ σ <

5− 4θmax

8− 6θmax
,

reaching the exponent of distribution in (1.2). Plugging in Kim–Sarnak’s bound of θmax � 7/32
(Theorem A) yields the unconditional exponent of 66/107≈ 0.617 from Theorem 1.1.

Remark 2.1. It is likely that optimized Deshouillers–Iwaniec-style bounds like Theorem 10.3
could also improve Drappeau’s argument [Dra15], leading to a triple convolution estimate with
different ranges than in our Theorem 4.2. In terms of the final exponent of distribution of
smooth numbers, all such methods currently seem limited below 66/107 unconditionally (and
5/8 conditionally).

2.3 Completing the argument

To increase the range of uniformity in y, we adapt Drappeau’s version of the dispersion method
[Dra15]: we aim for a triple convolution estimate with a power saving in Theorem 4.2, after
separating the contribution of small-conductor Dirichlet characters

1

ϕ(r)

∑
χ (mod r)
cond(χ)�xε

χ(mn�)

from (2.1); this can be handled via Lemma 3.2. As a result, the simpler two dispersion sums
S2, S3 and their main terms involve Dirichlet characters (see Propositions 5.1 and 6.1), which
ultimately bring in the classical Gauss sum bound (Lemma 3.7) and the multiplicative large
sieve (Lemma 3.4). The difficulties in working with a general residue a1a2 for a1, a2� xδ, and
in obtaining power savings throughout the computations in § 2.1, are quite tedious but purely
technical (following [Dra15]).

We also adapt a ‘deamplification’ argument of Maynard [May25a], which introduces an artifi-
cial sum over e∼E = xo(1) into the dispersion sums (by averaging over the residue of n� (mod e)
before applying Cauchy and Schwarz); for instance, the sum in (2.3) becomes∑

e∼E

∑
r∼R

∑
k∼NL

uk
∑
n∼N

βn
∑
�∼L

n�≡k (mod re)

γ�
∑

h∼R/M

e

(
h
k

r

)
.

Keeping e inside the second application of Cauchy and Schwarz, this essentially reduces the
contribution of the diagonal terms in (2.6) by a factor of E, allowing us to cover wider ranges
of sequence lengths in Theorem 4.2 (including the case M =N). This is generally convenient,
and critical when one has less control over the sizes of the sequence lengths (which is the case
in applications to the primes, but not to smooth numbers).

Figure 1 gives a visual summary of our formal argument, outlining the logical dependencies
between our main lemmas, propositions, and theorems.
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Smooth numbers in APs
(Theorem 1.5)

Contribution of small-conductor
characters (Lemma 3.2)

Triple convolution estimate
(Theorem 4.2)

Dispersion + deamplification
setup (Proposition 5.1)

Dispersion sum estimates
(Proposition 6.2)

Contribution of main
terms (Proposition 6.1)

Large sieve
(Lemma 3.4)

Improved BFI-style bound
(Propositions 8.6 and 9.5)

Incomplete Weil
bound (Lemma 3.9)

Gauss sum bound
(Lemma 3.7)

Truncated Poisson
(Lemma 3.5)

Completion of Kloosterman
sums (Lemma 3.6)

DI-type Kloosterman
sum bound (Theorem 3.10)

S3 S2 S1

Figure 1 (color online). Structure of argument (arrows show logical implications).

3. Notation and preliminaries

3.1 Sets, sums, estimates, and congruences

We use the standard asymptotic notation in analytic number theory, with f =O(g) (or f � g)
meaning that there exists some constant C > 0 such that |f |�Cg globally. We write f 
 g when
f � g and g� f , and indicate that the implied constants may depend on a parameter ε by
placing it in the subscript (e.g., f =Oε(g), f �ε g, and f 
ε g). When g� 0, we also say that
f = o(g) = ox→∞(g) if and only if f(x)/g(x)→ 0 as x→∞. Given q ∈ [1,∞], we write ‖f‖q for
the Lq norm of a measurable function f : R→C (using the Lebesgue measure), and ‖an‖q for
the �q norm of a complex sequence (an).

We denote by Z+,Z,R,C, and H the sets of positive integers, integers, real numbers, com-
plex numbers, and complex numbers with positive imaginary part, and set e(x) := exp(2πix) for
x∈R (or x∈R/Z). We write Z/nZ and (Z/nZ)× for the additive and multiplicative groups
modulo a positive integer n, and denote the inverse of c∈ (Z/nZ)× by c. We may abuse notation
slightly by identifying integers a, b, c with their residue classes modulo n where this is appropriate
(e.g., in congruences a≡ bc (mod ± n), x≡ bc/n (mod 1), or in exponentials e(bc/n)); the
following simple lemma is an example of this.

Lemma 3.1 (Bézout’s identity). For any relatively prime integers a, b, one has

1

ab
≡ a

b
+
b

a
(mod 1).
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Proof. Note that, here, a and b denote the inverses of a and b modulo b and a, respectively, so
we have aa≡ 1 (mod b) and bb≡ 1 (mod a). The conclusion follows from the Chinese remainder
theorem, once we multiply the congruence by ab and verify it modulo a and b separately.

Given N > 0, we write n∼N for the statement that N <n� 2N , usually in the subscripts
of sums. Given a statement S, we write 1S for its truth value (e.g., 12|n equals 1 when n is
even and 0 otherwise); we may use the same notation for the indicator function of a set S
(i.e., 1S(x) = 1x∈S).

Given a1, . . . , ak ∈Z, we write (a1, . . . , ak) (if not all ai are 0) and [a1, . . . , ak] (if none of
the ai are 0) for their greatest common divisor and lowest common multiple, among the positive
integers. Given a∈Z \ {0}, we write rad(a) for the largest square-free positive integer dividing a;
for b∈Z, we also write a | b∞ if and only if rad(a) | b (i.e., a divides a large enough power of b),
and (a, b∞) for the greatest divisor of a whose prime factors divide b. If x> 0 and m∈Z \ {0},
sums like

∑
n�x,

∑
n∼x,

∑
d|m,

∑
d|m∞ ,

∑
(a,m)=1,

∑
(a,m∞)=1 and

∑
ab=m are understood to

range over all positive integers n, d, a, b with the respective properties.
We also keep the notations specific to smooth numbers from the introduction, for S(x, y),

Ψ(x, y) = #S(x, y), Ψq(x, y), Ψ(x, y; a, q), and H(u).

3.2 Multiplicative number theory

We denote by μ, τ , and ϕ the Möbius function, the divisor-counting function (τ(n) :=
∑

d|n 1),

and the Euler totient function (ϕ(n) :=
∑

1�a�n 1(a,n)=1). We may use various classical bounds
involving these functions implicitly, including the divisor bound τ(n)�ε n

ε (valid for all ε > 0),
the lower bound ϕ(n)	 n/(log log n), and the upper bounds∑

n∼N

1

ϕ(n)
� 1,

∑
n�x

τ(n)

ϕ(n)
� (log x)2.

(The latter follows from the former, using that ϕ(ab)	ϕ(a)ϕ(b) for positive integers a, b.)
We write χ (mod q) to indicate that χ is a Dirichlet character with period q (of which there

are ϕ(q)), and denote by cond(χ) the conductor of χ (which divides q; this is the smallest positive
integer d such that there exists a Dirichlet character χ′ (mod d) with χ(n) = χ′(n)1(n,q)=1 for all
n∈Z); we say that χ (mod q) is primitive when cond(χ) = q. We will require a couple of results
involving Dirichlet characters, the first being essentially due to Harper.

Lemma 3.2 (Contribution of small-conductor characters). There exist constants ε, δ, C > 0 such
that, for (log x)C � y� x, Q� x and A> 0, one has∑

q�Q

1

ϕ(q)

∑
χ (mod q)

1<cond(χ)�xε

∣∣∣∣ ∑
n∈S(x,y)

χ(n)

∣∣∣∣�A Ψ(x, y)
(
H(u)−δ(log x)−A + y−δ

)
,

with u := (log x)/(log y), H(u) := exp(u log−2(u+ 1)). The implicit constant is effective if A< 1.

Proof. This is the same as [Dra15, Lemme 5], and follows from the work of Harper in [Har12,
§ 3.3].

Remark 3.3. The condition cond(χ)> 1 in Lemma 3.2 leaves out the trivial character χ0.

The second result is the classical multiplicative large sieve, as stated in [Dra15, Lemme 6].
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Lemma 3.4 (Multiplicative large sieve). For Q,M,N � 1 and any sequence (an) of complex
numbers, one has∑

q�Q

q

ϕ(q)

∑
χ (mod q)
χ primitive

∣∣∣∣ ∑
M<n�M+N

anχ(n)

∣∣∣∣2 � (N +Q2 − 1)
∑

M<n�M+N

|an|2.

Proof. See, for example, [IK21, Theorem 7.13].

3.3 Fourier analysis

Given an integrable function f : R→C, we write

f̂(ξ) :=

∫ ∞

−∞
f(t) e(−ξt) dt

for its Fourier transform. We will need the truncated version of Poisson summation stated below.

Lemma 3.5 (Truncated Poisson/Fourier completion). Let C > 0, x> 1, 1<M � x, and
Φ : R→R be a smooth function supported in [1/10, 10] such that ‖Φ(j)‖∞�j (log x)jC for
j � 0. Then for all positive integers q� x, any a∈Z/qZ, and any ε > 0, H � xεqM−1, one has∑

m≡a (mod q)

Φ

(
m

M

)
=
M

q

∑
|h|�H

Φ̂

(
hM

q

)
e

(
ah

q

)
+Oε,C(x−100).

Proof. This is the same as [May25a, Lemma 13.4] (see also [Dra15, Lemme 2]), following directly
from the Poisson summation formula.

While Lemma 3.5 will introduce exponential sums into our estimates, we will need an
additional corollary (and generalization) of it to obtain sums of complete Kloosterman sums,
defined by

S(m, n; c) :=
∑

b∈(Z/cZ)×
e

(
mb+ nb

c

)
, c∈Z+, m, n∈Z (or Z/cZ).

The following is the same as [May25a, Lemma 13.5], and can be quickly deduced from Lemma 3.5.

Lemma 3.6 (Kloosterman completion). Let C, x,M,Φ be as in Lemma 3.5. Then for all positive
integers c, q� x with (c, q) = 1, any a∈Z/qZ, n∈Z/cZ, and any ε > 0, H � xεcqM−1, one has∑

m≡a (mod q)
(m,c)=1

Φ

(
m

M

)
e

(
mn

c

)
=
M

cq

∑
|h|�H

Φ̂

(
hM

cq

)
e

(
ahc

q

)
S(hq, n; c) +Oε,C

(
x−99

)
.

Proof. Rewrite the left-hand side as∑
b∈(Z/cZ)×

e

(
bn

c

) ∑
m≡a (mod q)
m≡b (mod c)

Φ

(
m

M

)
,

and apply Lemma 3.5 to expand the inner summation, for the unique residue class r ∈Z/cqZ
which is congruent to a (mod q) and to b (mod c) (invoking the Chinese remainder theorem).
Noting that

e

(
rh

cq

)
= e

(
rhc

q
+
rhq

c

)
= e

(
ahc

q
+
bhq

c

)
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by Lemma 3.1, swapping sums and taking out the factor depending on a, the conclusion
follows.

3.4 Bounds for exponential sums

The simpler two of the three dispersion sums arising in our computations (see (5.6)) will be
estimated using the classical bounds for Gauss and Kloosterman sums.

Lemma 3.7 (Gauss sum bound). For any a∈Z, q ∈Z+, and Dirichlet character χ (mod q), one
has ∣∣∣∣ ∑

b∈Z/qZ
χ(b) e

(
ab

q

)∣∣∣∣� cond(χ)1/2
∑

d|(a,q)
d.

Proof. This follows from [IK21, Lemmas 3.2 and 3.1], and is also used in [Dra15, § 3.2].

Lemma 3.8 (Weil and Ramanujan bounds). For c∈Z+ and m, n∈Z (or Z/cZ), one has

S(m, n; c)� τ(c) (m, n, c)1/2c1/2.

For m= 0, we have in fact |S(0, n; c)|� (n, c).

Proof. The first (Weil) bound is [IK21, Corollary 11.12], while the second (Ramanujan) bound
can be deduced by Möbius inversion.

Lemma 3.9 (Incomplete Weil bound). Let x> 1, 1<M � x, and let n, c, k, �� x be positive
integers. Then for any ε > 0, one has∑

(m,ck)=1
�|m

m�M

m

ϕ(m)
e

(
mn

c

)
�ε x

ε

(
(n, c)1/2c1/2 +

(n, c)

�c
M

)
.

Proof. This follows immediately from [Dra15, (2.5)] and the divisor bound (see also [Fou82,
Lemme 4] and [May25a, Lemma 16.1]). It can be proven by expanding mϕ(m)−1 =

∑
v|m∞ v−1

and 1(m,k) =
∑

d|k μ(d)1d|m, changing variables m←m[�, rad(v), d], completing sums via a
result like Lemma 3.6, and finally applying Lemma 3.8 for the terms h= 0 and h �= 0
separately.

To estimate the first dispersion sum, will crucially need the following bound for
sums of Kloosterman sums, which is an optimization of [DI82, Theorem 11] (see also [BFI87,
Lemma 5]).

Theorem 3.10 (The DI-type Kloosterman bound). Let 1�M,N, R, S, C� xO(1), (am,r,s) be
a complex sequence supported in m∼M, r∼R, s∼ S, and ω ∈R/Z. Also, let g(t) be a smooth
function supported on t
 1, with bounded derivatives ‖g(j)‖∞�j 1 for j � 0. Then, for any
η > 0, one has∑

r∼R
s∼S

(r,s)=1

∑
m∼M

am,r,s

∑
n∼N

e(nω)
∑

(c,r)=1

g
( c
C

)
S(mr,±n; sc)

�η x
η

(
1 +

C

R
√
S

)θmax

‖am,r,s‖2 ×
√
NRS

(
C2

R
(M +RS)(N +RS) +MN

)1/2
,

where we recall that θmax � 7/32 by Theorem A. (The ‘±n’ notation indicates that either
consistent choice of sign is allowable.)
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Theorem 3.10 makes use of the spectral theory of automorphic forms, and follows from a
variation of the landmark arguments of Deshouillers and Iwaniec (all of the necessary ingredients
being already present in [DI82]). We leave its proof, which requires much additional notation,
to § 10.

4. The triple convolution estimate

Here, we state our main technical result, Theorem 4.2, which concerns the distribution in
arithmetic progressions of convolutions of three bounded sequences (we point the reader to
similar results in [BFI86, Theorem 4], [Dra15, Théorème 3], [DGS17, Lemma 2.3], and [May25a,
Proposition 8.3]). We then deduce Theorem 1.5 from Theorem 4.2.

Remark 4.1. One can apply the most efficient convolution estimates directly to the setting of
smooth numbers (and smooth-supported multiplicative functions), since these can essentially be
factorized into any number of factors of pre-specified sizes. By contrast, in the case of primes,
combinatorial decompositions of the von Mangoldt function produce more types of convolution
sums, requiring different estimates for different ranges (typically organized into ‘type I’ and
‘type II’ information).

To achieve a power saving in Theorem 4.2, appropriate for the application to smooth num-
bers, one needs a better approximation for indicator functions of the form 1k≡1 mod r than
(1/ϕ(r))1(k,r)=1 (given r ∈Z+ and k mod r). Drappeau [Dra15, DGS17] noticed that since

1k≡1 mod r =
1

ϕ(r)

∑
χ (mod r)

χ(k) =
1(k,r)=1

ϕ(r)

∑
χ primitive
cond(χ)|r

χ(k),

one can instead consider the partial sum

ωD(k; r) :=
∑
χ∈XD

cond(χ)|r

χ(k) where XD := {χ primitive : cond(χ) �D}, (4.1)

and work with the error term

ED(k; r) := 1k≡1 (mod r) −
1(k,r)=1

ϕ(r)
ωD(k; r) =

1(k,r)=1

ϕ(r)

∑
χ (mod r)
cond(χ)>D

χ(k).

One should then expect to obtain better bounds for ED(k; r) when D is moderately large (i.e.,
a small power of x) than when D= 1 (and ω1(k; r) = 1). We also note the crude bound

|ωD(k; r)|� |X (D)|�D2,

which may be used implicitly in our proofs.

Theorem 4.2 (Triple convolution estimate). For all sufficiently small ε > 0, there exists δ > 0
such that the following holds. Let a1, a2 be coprime nonzero integers, and let M,N, L, R, x > 2
satisfy

a1, a2� xδ, MNL
 x, x(1−ε)/2�R� x−5εNL� x(2/3)−11ε, N9L8� x3R4,

N � x1−2ε

R
, N4L7 max(1, N/L)2θ� x2−17εR2, N12−6θL11−6θ� x6−4θ−5εR2,

(4.2)
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for θ= θmax. Then for any 1-bounded complex sequences (αm), (βn), (γ�), one has∑
r∼R

(r,a1a2)=1

∣∣∣∣ ∑
m∼M

∑
n∼N

∑
�∼L

αmβnγ� ED(mn�a1a2; r)

∣∣∣∣�ε
x(log x)4

min
(
xδ,
√
D
) , (4.3)

for all 1�D� xε.

Remark 4.3. Error terms of the form Oε(x
1−δ) are dominated by the right-hand side of (4.3),

and will be available throughout most of our proof. If x2δ �D� xε, then the right-hand side
of (4.3) becomes x1−δ(log x)4, i.e., a power saving; having an explicit dependence on the con-
ductor bound D is required for the application to smooth-supported multiplicative functions,
as in [DGS17].

Remark 4.4. If one is free to choose the parameters M , N , and L subject only to the constraints
in (4.2) and MNL
 x, then in order to maximize the range R, it is optimal to pick (up to xo(1)

factors)

R≈ x(5−4θ)/(8−6θ), M ≈ x

R
, N ≈ x

R
, L≈ R2

x
. (4.4)

This improves on the conditions from Drappeau’s triple convolution estimate [Dra15, (3.2)],
which can handle moduli up to R≈ x3/5.
Remark 4.5. Although our (conditional) results hit a barrier at R= x5/8−o(1), a more essential
limitation of triple convolution estimates proven via the dispersion method lies at R� x2/3−o(1),
corresponding to the case of three equal parameters M =N =L
 x1/3 in (4.4). Indeed, the
diagonal terms in the first Cauchy–Schwarz step require R<NL, and already our bounds for
the second dispersion sum will use NL<x2/3 (moreover, it is natural to Fourier complete in
the largest variable m, leaving NL� x2/3). We note again that Theorem 4.2 allows for the
case of two equal parameters M =N ≈ x/R, for any x1/2−o(1)�R� x(5−4θ)/(8−6θ)−o(1); this
is possible due to Maynard’s deamplification argument [May25a]. In particular, the ranges
M =N = x2/5, and L= x1/5, a limiting case in Drappeau’s work [Dra15, Théorème 3]), are
now admissible (this is analogous to the infamous case of convolving five sequences of equal
sizes).

Given Theorem 4.2 and Lemma 3.2, deducing Theorem 1.5 is now a routine modification of
Drappeau’s argument in [Dra15, § 3.7] (we follow the same reasoning, using Theorem 4.2 instead
of [Dra15, Théorème 3], and with the choice of parameters in (4.4)).

Proof of Theorem 1.5 assuming Theorem 4.2. Let ε > 0 be sufficiently small, C be the maximum
between ε−1(1− ε)−1 and the constant C given by Lemma 3.2, δ be the minimum between
ε/100 and the δ values of Lemma 3.2 and Theorem 4.2, and let (log x)C � y� x1/C , D := xε/10,
θ := θmax. It suffices to show (up to a rescaling of ε at the end) that (1.3) holds for the range of
moduli

r� xα, α :=
5− 4θ

8− 6θ
− 1000ε,

and we note that error terms of the form Oε(x
1−δ) are acceptable in (1.3) (up to slightly

modifying the value of δ), due to the inequality x1−δ�Ψ(x, y)y−δ/2 (as in [Dra15, § 3.7]).
We may of course assume that a1 and a2 are relatively prime, by reducing any common
factors.
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We split the left-hand side of (1.3) into∑
r�xα

(r,a1a2)=1

∣∣∣∣ ∑
n∈S(x,y)

(
1na1a2≡1 (mod r) −

1(n,r)=1

ϕ(r)

)∣∣∣∣
�

∑
r�xα

(r,a1a2)=1

∣∣∣∣ ∑
n∈S(x,y)

ED(na1a2; r)

∣∣∣∣+ ∑
r�xα

(r,a1a2)=1

∣∣∣∣∣ ∑
n∈S(x,y)

1(n,r)=1

ϕ(r)

∑
χ prim., cond(χ)|r
1<cond(χ)�D

χ(na1a2)

∣∣∣∣∣.
The second sum is at most ∑

r�xα

(r,a1a2)=1

1

ϕ(r)

∑
χ (mod r)

1<cond(χ)�D

∣∣∣∣ ∑
n∈S(x,y)

χ(n)

∣∣∣∣,
which is appropriately bounded by Lemma 3.2 and the triangle inequality. It remains to bound
the first sum.

Recall that the range n∈ S(x, y) means n� x and P+(n) � y, where P+(n) denotes the
greatest prime factor of n. We bound the contribution of n� x1−ε trivially, as in [Dra15, § 3.7]∑

r�xα

(r,a1a2)=1

∣∣∣∣∣ ∑
n�x1−ε

P+(n)�y

ED(na1a2; r)

∣∣∣∣∣� ∑
r�xα

(r,a1a2)=1

∑
n�x1−ε

(
1a2n≡a1 (mod r) +

D2

ϕ(r)

)

�ε x
α +

∑
n�x1−ε

a2n �=a1

τ(|a2n− a1|) + xε/2
∑

n�x1−ε

1�ε x
1−ε/2,

and put the other n values into O(log x) dyadic ranges n∼X, with x1−ε �X� x. We also
extend the range of r in these sums to r�Xα+10ε, noting that xα � x(1−ε)(α+10ε). Putting r into
O(log x) dyadic ranges r∼R, it remains to bound sums of the form∑

r∼R
(r,a1a2)=1

∣∣∣∣∣ ∑
n∼X

P+(n)�y

ED(na1a2; r)

∣∣∣∣∣, (4.5)

for R�Xα+10ε. The contribution of the Bombieri–Vinogradov range R�X(1/2)−(ε/10) is han-
dled by classical methods (e.g., using [IK21, Theorem 17.4]; see [DGS17, Proof of Proposition 2.4]
and [Dra15, Proof of Proposition 2]). For any R in the remaining range X(1/2)−(ε/10) �R�
Xα+10ε, we set

M0 :=
X1−10ε

R
, N0 :=

X1−10ε

R
, L0 :=

R2

X1−20ε
, (4.6)

and factorize smooth numbers as in [Dra15, Lemme 7] (or [FT96]) to rewrite the sum in (4.5) as∑
r∼R

(r,a1a2)=1

∣∣∣∣∣ ∑
L0<��L0P−(�)

P+(�)�y

∑
M0<m�M0P−(m)
P+(m)�P−(�)

∑
mn�∼X

P+(n)�P−(m)

ED(mn�a1a2; r)

∣∣∣∣∣,
where P−(n) denotes the smallest prime factor of n.

We also put m, n, � into O((log y)3) dyadic ranges m∼M , n∼N , �∼L, with M ∈ [M0, yM0],
N ∈ [y−2N0, N0], L∈ [L0, yL0], and MNL
X. Recalling that y� xε(1−ε) �Xε, it is easily
checked that for such M,N, L and X(1/2)−(ε/10) �R�Xα+10ε =X(5−4θ)/(8−6θ)−990ε, and small
enough ε, the conditions in (4.2) are satisfied (with respect to X instead of x).
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At this point, our sums are almost in the right form to apply the triple convolution estimate in
Theorem 4.2, except for a few joint constraints on the variablesm, n, � (these are P+(m) � P−(�),
P+(n) � P−(m), respectively, mn�∼X). The last step of analytically separating these con-
straints is identical to that in [Dra15, § 3.7], except that in the end we apply Theorem 4.2 instead
of [Dra15, Théorème 3]. Overall, the contribution of the range X(1/2)−(ε/10) �R�Xα+10ε is
Oε((log x)O(1)x1−δ), which is acceptable; this completes our proof.

We only briefly note that the result for smooth-supported multiplicative functions in
Theorem 1.7 follows by an analogous modification to the arguments in [DGS17], using the
parameters in (4.6), and Theorem 4.2 instead of [DGS17, Lemma 2.3]. The main additional
difficulty in [DGS17] lies in the contribution of the small-conductor characters, since Lemma 3.2
is no longer applicable; as a replacement, Drappeau, Granville, and Shao developed a large sieve
inequality for smooth-supported sequences [DGS17, Theorem 5.1]. (We also point the reader to
the follow-up work of Shparlinski in [Shp18].)

5. Dispersion and deamplification

Our goal for the rest of this paper is to prove Theorem 4.2, proceeding by Linnik’s disper-
sion method. For the reader following the outline in § 2.1, the exponential sum from (2.3) will
ultimately arise in the first dispersion sum, after Poisson summation (see Proposition 8.2).

Assume the set-up of Theorem 4.2. We may take x larger than an absolute constant, since
the conclusion of Theorem 4.2 is trivial otherwise, and (αm), (βn), and (γ�) to be supported on
m∼M , n∼N , and �∼L, without loss of generality. We first combine the sequences βn and γ�
into one sequence

uk :=
∑
n�=k

βnγ�, (5.1)

supported in (K, 4K] where K :=NL, |uk|� τ(k)�ε x
ε/2, and

∑
k |uk| �K. Denoting the left-

hand side of (4.3) by Δ = ΔD(M,N, L, R), we can introduce coefficients ρr of absolute value 1,
supported in (R, 2R], to rewrite

Δ =
∑

(r,a1a2)=1

ρr
∑

(m,r)=1

αm

∑
(k,r)=1

uk

(
1mk≡a1a2 (mod r) −

1

ϕ(r)
ωD(mka1a2; r)

)
,

where we recall that ωD was defined in (4.1). Normally, at this point we would apply Cauchy and
Schwarz in the r, m variables, but we first perform a ‘deamplification’ step (following Maynard
[May25a] with minor modifications), as anticipated in § 2.3. The idea is to split the inner sum
according to the residue class of k (mod re) for some e� 1, and then to average over a convenient
set of e∼E; this artificially introduces a new parameter E (to be chosen later), which will help
reduce the contribution of a certain diagonal sum by a small power of x (at the expense of
increasing the corresponding off-diagonal terms, which already had a power-saving bound). For
now, we require that

x4ε �E� x−εK

R
, (5.2)

which is compatible with (4.2) since R� x−5εNL. For multiple reasons of convenience
throughout our proof, we will actually average over the set

E := {e∼E : e prime}. (5.3)
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Proposition 5.1 (Dispersion set-up with deamplification). Let Φ be a smooth function
satisfying

1[1,2] � Φ� 1(0.5,3), (5.4)

and ‖Φ(j)‖∞�j 1 for j � 0. Then, for any ε > 0 and 1	 δ > 0, under the parameter conditions
in (4.2) and (5.2), one has

Δ�ε x

√
R log x

K2
(S1 − 2ReS2 + S3) + x1−ε, (5.5)

where

S1 :=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
(m,r)=1

1

M
Φ
(m
M

) ∑
(k1k2,re)=1

k1≡k2 (mod re)
ki≡a1a2m (mod r)

uk1
uk2

,

S2 :=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

ϕ(re)

∑
(m,r)=1

1

M
Φ
(m
M

) ∑
(k1k2,re)=1

k2≡a1a2m (mod r)

uk1
ωD(mk1a1a2; r)uk2

,

S3 :=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

ϕ(r)ϕ(re)

∑
(m,r)=1

1

M
Φ
(m
M

) ∣∣∣∣ ∑
(k,re)=1

ukωD(mka1a2; r)

∣∣∣∣2.
(5.6)

Proof. For a fixed prime e∼E, we wish to eliminate the contribution to Δ of the terms k with
(e, k) �= 1, i.e., e | k. This contribution is∑

(r,a1a2)=1

ρr
∑

(m,r)=1

αm

∑
k∈(K,4K]
(k,r)=1,e|k

uk

(
1mk≡a1a2 (mod r) −

1

ϕ(r)
ωD(mka1a2; r)

)

�ε

∑
r∼R

(r,a1a2e)=1

∑
s∈(MK,8MK]

e|s

xε/2
(
1s≡a1a2 (mod r) +

1

ϕ(r)
D2

)

�ε x
ε
∑
r∼R

(
MK

RE
+ 1 +

(
MK

E
+ 1

)
D2

R

)
� xε

(
xD2

E
+R+D2

)
� xε

(
x1+2ε

x4ε
+R+ x2ε

)
,

which is � x1−ε since R� x(2/3)−11ε by (4.2). It follows that, for any e∼E,

Δ =
∑

(r,a1a2)=1

ρr
∑

(m,r)=1

αm

∑
(k,re)=1

uk

(
1mk≡a1a2 (mod r) −

1

ϕ(r)
ωD(mka1a2; r)

)
+Oε(x

1−ε).

Now for fixed m and e we have∑
(k,re)=1

uk1mk≡a1a2 (mod r) =
∑

b∈(Z/reZ)×
b≡a1a2m (mod r)

∑
(k,re)=1

uk1k≡b (mod re),

and there are precisely ϕ(re)/ϕ(r) choices of b in the summation; thus

Δ =
∑

(r,a1a2)=1

ρr
∑

(m,r)=1

αm

∑
b∈(Z/reZ)×

b≡a1a2m (mod r)

∑
(k,re)=1

uk

(
1k≡b (mod re) −

ωD(mka1a2; r)

ϕ(re)

)
+Oε(x

1−ε).
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(For a complete deamplification set-up, one could also try to split the term ωD(mka1a2; r)
according to the residue b of k (mod re), but we do not need to do this in our proof.)

We then average over e in the set E from (5.3), which has size |E | 
ε E/ logE (recalling that
E	 xε and |a2|� xδ). Thus up to an error of Oε(x

1−ε), we can rewrite Δ as

1

|E |
∑
e∈E

∑
(r,a1a2)=1

ρr
∑

(m,r)=1

αm

∑
b∈(Z/reZ)×

b≡a1a2m (mod r)

∑
(k,re)=1

uk

(
1k≡b (mod re) −

ωD(mka1a2; r)

ϕ(re)

)
.

We now apply Cauchy and Schwarz in the e, r, m, b variables, allowing us to eliminate the ρr
and αm coefficients; using that ϕ(re) �ϕ(r)e, this gives

|Δ|2� 1

|E |2
(∑

e∈E

∑
(r,a1a2)=1

∑
(m,r)=1

∑
b∈(Z/reZ)×

b≡a1a2m (mod r)

|ρr|2|αm|2
)

Δ′ +Oε(x
2(1−ε))

� 1

|E |2
(∑

e∈E

∑
r∼R

(r,a1a2)=1

∑
m∼M

(m,r)=1

ϕ(re)

ϕ(r)

)
Δ′ +Oε(x

2(1−ε))

�εMR(logE)Δ′ + x2(1−ε), (5.7)

where

Δ′ :=
∑
e∈E

∑
r∼R

(r,a1a2)=1

∑
m∼M

(m,r)=1

∑
b∈(Z/reZ)×

b≡a1a2m (mod r)

∣∣∣∣ ∑
(k,re)=1

uk

(
1k≡b (mod re) −

ωD(mka1a2; r)

ϕ(re)

)∣∣∣∣2.
Anticipating a later application of Poisson summation, we bound the indicator functions 1m∼M

and 1r∼R from above by Φ(m/M) and Φ(r/R). Then we expand the square and perform the
b-summation to obtain

Δ′ �
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
(m,r)=1

Φ
(m
M

) ∑
b∈(Z/reZ)×

b≡a1a2m (mod r)

∣∣∣∣ ∑
(k,re)=1

uk

(
1k≡b (re) −

ωD(mka1a2; r)

ϕ(re)

)∣∣∣∣2

=M (S1 − 2ReS2 + S3) . (5.8)

Combining (5.7) with (5.8) and recalling that M 
 x/K, we recover (5.5).

Since the error term of Oε(x
1−ε) in Proposition 5.1 is admissible for Theorem 4.2, it remains

to estimate the dispersion sums S1, S2, S3.

6. The main terms

We note that, except for the coefficients Φ(m/M), only the residue of m modulo r matters in
the inner summations from (5.6). Thus if we define

Er(c) :=
( 1

M

∑
m≡c (mod r)

Φ
(m
M

))
− Φ̂(0)

r
, (6.1)

which can be estimated via the truncated Poisson summation in Lemma 3.5, we can rewrite

S1 = Φ̂(0)X1 +
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
c∈(Z/rZ)×

Er(c)
∑

(k1k2,re)=1
k1≡k2 (mod re)
ki≡a1a2c (mod r)

uk1
uk2

,
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S2 = Φ̂(0)X2 +
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

ϕ(re)

∑
c∈(Z/rZ)×

Er(c)
∑

(k1k2,re)=1
k2≡a1a2c (mod r)

uk1
ωD(k1a1a2c; r)uk2

,

S3 = Φ̂(0)X3 +
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

ϕ(r)ϕ(re)

∑
c∈(Z/rZ)×

Er(c)
∣∣∣∣ ∑
(k,re)=1

ukωD(ka1a2c; r)

∣∣∣∣2, (6.2)

where

X1 :=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

r

∑
(k1k2,re)=1

k1≡k2 (mod re)

uk1
uk2

,

X2 :=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

rϕ(re)

∑
(k1k2,re)=1

uk1
uk2

ωD(k1k2; r),

X3 :=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

rϕ(r)ϕ(re)

∑
c∈(Z/rZ)×

∣∣∣∣ ∑
(k,re)=1

ukωD(kc; r)

∣∣∣∣2.
(6.3)

Intuitively, these main terms reflect what would happen if, in the summations from (5.6), the
variable m (weighted by Φ(m/M)) were uniformly distributed modulo r. Thus for j ∈ {1, 2, 3},
Φ̂(0)Xj is essentially the best approximation to Sj which does not depend on M . We now
bound the contribution to (5.5) of X1 − 2ReX2 +X3, using the multiplicative large sieve as in
[Dra15, DGS17].

Proposition 6.1 (Contribution of main terms). With the notation above, one has

0�X1 − 2ReX2 +X3� K2

RD
(log x)6,

under the parameter conditions in (4.2) and (5.2).

Proof. In analogy with (5.8), we can write

X1 − 2ReX2 +X3

=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

r

∑
c∈(Z/rZ)×

∑
b∈(Z/reZ)×
b≡c (mod r)

∣∣∣∣ ∑
(k,re)=1

uk

(
1k≡b (mod re) −

ωD(kc; r)

ϕ(re)

)∣∣∣∣2

� 1

R

∑
e∈E

∑
r

Φ
( r
R

) ∑
b∈(Z/reZ)×

∣∣∣∣ ∑
(k,re)=1

uk

(
1k≡b (mod re) −

ωD(kb; r)

ϕ(re)

)∣∣∣∣2

=
1

R

∑
e∈E

∑
r

Φ
( r
R

) 1

ϕ(re)2

∑
b∈(Z/reZ)×

∣∣∣∣ ∑
(k,re)=1

uk(ω∞(kb; re)− ωD(kb; r))

∣∣∣∣2, (6.4)

where the first equality shows that X1 − 2ReX2 +X3 � 0. Note that

ω∞(kb; re)− ωD(kb; r) = (ω∞(kb; re)− ω∞(kb; r)) + (ω∞(kb; r)− ωD(kb; r))

=
∑
χ∈S

χ(k)χ(b),

where S = S(r, e, ε) = S1 ∪ S2 and

S1 := {χ primitive : cond(χ) � r, but cond(χ) | re} ,
S2 := {χ primitive : cond(χ)>D and cond(χ) | r} .

1940

https://doi.org/10.1112/S0010437X2500747X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2500747X


Smooth numbers in arithmetic progressions to large moduli

Since all the characters in S are primitive, any distinct χ1, χ2 ∈ S must induce different characters
modulo re. Thus χ1χ21(re,·)=1 is not the principal character modulo re, so it must have average 0.
But then ∑

b∈(Z/reZ)×

∣∣∣∣ ∑
(k,re)=1

uk(ω∞(kb; re)− ωD(kb; r))

∣∣∣∣2

=
∑

b∈(Z/reZ)×

∣∣∣∣∑
χ∈S

χ(b)
∑

(k,re)=1

ukχ(k)

∣∣∣∣2

=
∑

χ1,χ2∈S

( ∑
(k,re)=1

ukχ1(k)

)( ∑
(k,re)=1

ukχ2(k)

) ∑
b∈(Z/reZ)×

χ1(b)χ2(b)

=ϕ(re)
∑
χ∈S

∣∣∣∣ ∑
(k,re)=1

ukχ(k)

∣∣∣∣2. (6.5)

From (6.4), (6.5), and the fact that all characters χ∈ S1 also have cond(χ)>D (due to D�
xε <E � e | cond(χ)), we conclude that

X1 − 2ReX2 +X3 � 1

R

∑
e∈E

∑
r

Φ
( r
R

) 1

ϕ(re)

∑
χ∈S

∣∣∣∣ ∑
(k,re)=1

ukχ(k)

∣∣∣∣2

� 1

R

∑
e∈E

∑
r

Φ
( r
R

) 1

ϕ(re)

∑
χ primitive
cond(χ)>D
cond(χ)|re

∣∣∣∣ ∑
(k,re)=1

ukχ(k)

∣∣∣∣2.

Now letting Q :=RE, substituting q for re, using that q has O(log q) different prime factors,
and decomposing 1(a,b)=1 =

∑
d|(a,b) μ(d) to get rid of the coprimality restriction, we can bound

the sum above by

X1 − 2ReX2 +X3� log x

R

∑
Q/2�q�6Q

1

ϕ(q)

∑
χ primitive
cond(χ)>D
cond(χ)|q

∣∣∣∣ ∑
(k,q)=1

ukχ(k)

∣∣∣∣2

� log x

R

∑
D<s�6Q

∑
χ primitive
cond(χ)=s

∑
q�6Q
s|q

1

ϕ(q)

∣∣∣∣ ∑
(k,q/s)=1

ukχ(k)

∣∣∣∣2

� log x

R

∑
D<s�6Q

∑
χ primitive
cond(χ)=s

∑
q�6Q
s|q

τ(q/s)

ϕ(q)

∑
d|q/s

∣∣∣∣∑
k′

udk′χ(dk′)
∣∣∣∣2

� log x

R

∑
d�6Q

∑
D<s�6Q

∑
χ primitive
cond(χ)=s

∣∣∣∣∑
k′

udk′χ(k′)
∣∣∣∣2 ∑

q�6Q
ds|q

τ(q/s)

ϕ(q)
.

Noting that∑
q�6Q
sd|q

τ(q/s)

ϕ(q)
�
∑

q′�6Q

τ(q′d)

ϕ(q′ds)
� τ(d)

ϕ(d)ϕ(s)

∑
q′�6Q

τ(q′)
ϕ(q′)

� τ(d)

ϕ(d)ϕ(s)
(log x)2,
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we further have

X1 − 2ReX2 +X3� (log x)3

R

∑
d�6Q

τ(d)

ϕ(d)

∑
D<s�6Q

1

ϕ(s)

∑
χ primitive
cond(χ)=s

∣∣∣∣∑
k′

udk′χ(k′)
∣∣∣∣2

=
(log x)3

R

∑
d�6Q

τ(d)

ϕ(d)

∫ ∞

D

∑
D<s�min(6Q,t)

s

ϕ(s)

∑
χ primitive
cond(χ)=s

∣∣∣∣∑
k′

udk′χ(k′)
∣∣∣∣2dtt2 .

Finally, applying the multiplicative large sieve from Lemma 3.4 as in [DGS17, (2.6)], we conclude
that

X1 − 2ReX2 +X3� (log x)3

R

∑
d�6Q

τ(d)

ϕ(d)

∫ ∞

D

(
K

d
+ min(6Q, t)2

) ∑
k′
K/d

|udk′ |2 dt
t2

� (log x)3

R
K(logK)3

∑
d�6Q

τ(d)3

dϕ(d)

(
K

dD
+Q

)

� (log x)6
K

R

(
K

D
+Q

)
.

Using the condition RE� x−εK from (5.2) to bound Q=RE�K/D, we conclude that

X1 − 2ReX2 +X3� (log x)6K2(RD)−1,

as we wanted.

To bridge Propositions 5.1 and 6.1, it remains to compare the dispersion sums Sj with their

main terms Φ̂(0)Xj ; we make the following claim.

Proposition 6.2 (Estimates for dispersion sums). For all sufficiently small ε > 0, there exists
δ > 0 such that, with the notation in (6.2), the following hold.

(i) Assuming the ranges in (4.2), there exists a choice of E satisfying (5.2) such that

S1 − Φ̂(0)X1�ε x
−2δK

2

R
. (6.6)

(ii) Assuming both (4.2) and (5.2), one has

S2 − Φ̂(0)X2�ε x
−2δK

2

R
, (6.7)

S3 − Φ̂(0)X3�ε x
−2δK

2

R
. (6.8)

Proof of Theorem 4.2 assuming Proposition 6.2. The hypothesis of Theorem 4.2 assumes (4.2),
so we can pick E as in Proposition 6.2(i), subject to (5.2). Then, by combining Propositions 5.1,
6.1 and 6.2, we obtain

Δ�ε x

√
R log x

K2

(
Φ̂(0)

K2

RD
(log x)6 + x−2δ

K2

R

)
+ x1−ε

� x

√
(log x)7

(
1

D
+

1

x2δ

)
+ x1−ε.

The conclusion of Theorem 4.2 follows after replacing δ with min(δ, ε).
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Our remaining task is to prove Proposition 6.2; the truncated Poisson expansion of the coeffi-
cients Er(c) from (6.2) will ultimately reduce our problem to that of bounding various exponential
sums. We note that we have not chosen the value of δ in terms of ε yet; the condition δ� ε/2 will
suffice for estimating S2 and S3, but more will be needed for the (much more involved) study
of S1.

7. The second and third dispersion sums

Here, we prove Proposition 6.2(ii), adapting Drappeau’s arguments in [Dra15, §§ 3.2 and 3.3].
We assume all the parameter conditions in (4.2) and (5.2).

Proof of (6.8), estimating S3. Recall from (6.2) that

S3 − Φ̂(0)X3

=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

ϕ(r)ϕ(re)

∑
c∈(Z/rZ)×

Er(c)
∣∣∣∣∣ ∑
(k,re)=1

uk
∑
χ∈XD

cond(χ)|r

χ(ka1a2c)

∣∣∣∣∣
2

=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

ϕ(r)ϕ(re)

∑
χ1,χ2∈XD

cond(χi)|r

χ1χ2(a1a2)
∑
k1,k2

(k1k2,re)=1

χ1(k1)uk1
χ2(k2)uk2

×
∑

c∈(Z/rZ)×
χ1χ2(c)Er(c),

where Er(c) is given by (6.1). Expanding Er(c) according to Lemma 3.5 with H := xεRM−1, we
obtain ∑

c∈(Z/rZ)×
χ1χ2(c)Er(c) =

1

r

∑
0<|h|<H

Φ̂

(
hM

r

) ∑
c∈(Z/rZ)×

χ1χ2(c) e

(
ch

r

)
+Oε(x

−99). (7.1)

(In such manipulations, we warn the reader of the potential confusion between the integer
variable e∈ E and the function e(·); the difference should be clear from context.)

The inner sum (over c) in (7.1) is a Gauss sum, which we can bound using Lemma 3.7 for
the Dirichlet character χ1χ21(·,r)=1 (mod r) (whose conductor divides r and is at most equal to
D2 � x2ε). This yields∑

c∈(Z/rZ)×
χ1χ2(c)Er(c)�ε x

−100 +
1

r

∑
0<|h|<H

xε
∑

d|(h,r)
d

� x−100 +
xε

r

∑
d|r

d
∑

0<|h|<H/d

1� xε

R
τ(r)H = x2ε

τ(r)

M
,

which leads to

S3 − Φ̂(0)X3�ε x
2ε
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) τ(r)

ϕ(r)ϕ(re)M
|XD|2K2� x6ε

K2

M

∑
r

Φ
( r
R

) τ(r)

ϕ(r)2

� x6ε
K2

MR
(logR)O(1).

Since x/M 
K� x(2/3)−6ε by (4.2), we have M 	 x1/3+6ε	 x7ε for small enough ε, and in
particular S3 − Φ̂(0)X3�ε x

−εK2/R, proving the easiest third of Proposition 6.2.
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Proof of (6.7), estimating S2. Recall from (6.2) that

S2 − Φ̂(0)X2

=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

ϕ(re)

∑
c∈(Z/rZ)×

Er(c)
∑

(k1k2,re)=1
k2≡a1a2c (mod r)

uk1
uk2

∑
χ∈XD

cond(χ)|r

χ(k1a1a2c)

=
∑
e∈E

∑
χ∈XD

∑
(k1k2,e)=1

χ(k1)uk1
χ(k2)uk2

∑
(r,aiki)=1
cond(χ)|r

Φ
( r
R

) 1

ϕ(re)
Er(a1a2k2).

Applying Lemma 3.5 with H := xεRM−1 to expand Er(a1a2k2) (as given in (6.1)), we obtain

S2 − Φ̂(0)X2

=
∑
e∈E

∑
χ∈XD

∑
(k1k2,e)=1

χ(k1)uk1
χ(k2)uk2

∑
(r,aiki)=1
cond(χ)|r

1

rϕ(re)
Φ
( r
R

) ∑
1�|h|�H

Φ̂

(
hM

r

)
e

(
a1ha2k2

r

)

+Oε

(
x−90

)
,

where we used that ϕ(re)	ϕ(r)e as before (since e is prime). The error term is acceptable, so
let us focus on the main term on the right-hand side (denote this by Y2). By Lemma 3.1, we
have

a2k2
r

+
r

a2k2
≡ 1

a2k2r
(mod 1),

so that

Y2�
∑
e∈E

∑
χ∈XD

∑
k1,k2

|uk1
uk2
|
∑

1�|h|�H

∣∣∣∣∣ ∑
(r,aiki)=1
cond(χ)|r

1

rϕ(re)
Φ
( r
R

)
Φ̂

(
hM

r

)
e

(
a1h

a2k2r
− a1hr

a2k2

)∣∣∣∣. (7.2)

At this point we decompose

1

ϕ(re)
=

1

ϕ(r)

(
1

e− 1
− 1

e(e− 1)
1e|r

)
,

aiming to apply the exponential sum bound in Lemma 3.9. Fixing e, ai, ki, h, this lets us rewrite
the sum over r on the right-hand side of (7.2) as

1

e− 1
Z2(cond(χ))− 1

e(e− 1)
Z2([cond(χ), e]),

where

Z2(�) :=
∑

(r,aiki)=1
�|r

u(r)
r

ϕ(r)
e

(
−a1hr
a2k2

)
,

and

u(r) :=
1

r2
Φ
( r
R

)
Φ̂

(
hM

r

)
e

(
a1h

a2k2r

)
.
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Note that u extends to a differentiable function of a real variable ξ, supported in [R/2, 3R], and
with derivative bounds

|u′(ξ)| � 1

R3
+

1

R2

(
1

R
+
HM

R2
+
|a1|H
KR2

)
� 1

R2

(
1

R
+
xεR

R2
+
|a1|xεR
xR2

)
� x2ε

R3
,

in this region (we used that H = xεRM−1, MK 
 x, and the very crude bound |a1| � x1+ε). So
we may use integration by parts to estimate Z2; letting

v�(ξ) :=
∑

(r,aiki)=1
�|r
r�ξ

r

ϕ(r)
e

(
−a1hr
a2k2

)
,

which can be bounded via Lemma 3.9 (with n= a1h, c= a2k2, m= r, and k= a1k1), we
obtain

Z2(�) =

∫
u(ξ)dv�(ξ) =−

∫
v�(ξ)du(ξ)� x2ε

R2
sup

ξ∈[R/2,3R]
|v�(ξ)|

�ε
x3ε

R2

(
(a1h, a2k2)

1/2K1/2 + (a1h, a2k2)
R

K

)
,

uniformly in �� 1. Returning to (7.2) and summing over h and k2, the GCD terms contribute
at most Oε(x

ε) on average (since (a1, a2) = 1). Thus

Y2�ε x
4ε|E ||χD|K2H

1

E

1

R2

(√
K +

R

K

)
� x7ε

K2

MR

(√
K +

R

K

)
� x7ε−1

(K7/2

R
+K2

)
.

By (4.2), we have K3/2� x1−9ε and R� x1−11ε, so we get a final bound of Y2�ε x
−εK2/R.

This completes our proof of Proposition 6.2(ii).

8. The first dispersion sum

Finally, we work towards establishing Proposition 6.2(i) (for a suitable choice of δ in terms of ε);
the first part of this section is very similar to [Dra15, § 3.4]. Recall from (6.2) that

S1 − Φ̂(0)X1 =
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
c∈(Z/rZ)×

Er(c)
∑

(k1k2,re)=1
k1≡k2 (mod re)
ki≡a1a2c (mod r)

uk1
uk2

,

where Er(c) is given by (6.1). We wish to bound this by Oε(x
−2δK2/R), as in (6.6).

We still aim to apply Poisson summation for the sums Er(c), and reduce our problem to
bounding certain exponential sums. But due to issues that would arise later in manipulating
these exponential sums, we first need to eliminate the contribution of certain ‘bad’ pairs (k1, k2),
in terms of a small parameter η (to be chosen later in terms of ε, as an intermediary step to
choosing δ).
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Proposition 8.1 (Eliminating bad index pairs). For ε� η > 0, under the parameter conditions
in (4.2) and (5.2), one has

S1 − Φ̂(0)X1 =
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
c∈(Z/rZ)×

Er(c)
∑

(k1,k2)∈K(η)
(k1k2,re)=1

k1≡k2 (mod re)
ki≡a1a2c (mod r)

uk1
uk2

+ Oη

(
x−η/4K

2

R

)
,

where

K(η) :=

{
(k1, k2)∈N2

∣∣∣ (k1, (a2k2)
∞) � xη, (k2, (a2k1)

∞) � xη,
(k1 − k2, (a2k1k2)∞) � xη, |k1 − k2|>K/xη

}
. (8.1)

Proof. We eliminate the contribution of several sets of pairs (k1, k2), putting absolute values
on all the coefficients involved; thus, it does not matter if some of the ‘eliminated sets’ have
nonempty intersections. First, we consider the almost-diagonal pairs with |k1 − k2|�K/xη; using
that

∑
c∈(Z/rZ)× |Er(c)|� (1/M)

∑
m Φ(m/M) + Φ̂(0)� 1 and xηRE�K (which follows from

(5.2) and η� ε), these contribute to S1 − Φ̂(0)X1 at most

�
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
c∈(Z/rZ)×

|Er(c)|
∑

k1≡a1a2c (mod r)
(k1,e)=1

|uk1
|

∑
k2≡k1 (mod re)
|k1−k2|�K/xη

|uk2
|

�η x
η/2ER

(K
R

+ 1
)( K

xηRE
+ 1
)

�η x
η/2ER

K

R

K

xηRE


 x−η/2K
2

R
.

Then, we consider those pairs with v := (k1, k2)>x
η/2. Their contribution to S1 − Φ̂(0)X1 is at

most

�
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
c∈(Z/rZ)×

|Er(c)|
∑

b∈(Z/reZ)×
b≡a1a2c (mod r)

∑
v>xη/2

(v,re)=1

( ∑
k≡b (mod re)

v|k

|uk|
)2
.

Using that (v, re) = 1, we can bound one inner sum over k by �η x
η/8(K(vRE)−1 + 1)�

x−3η/8K(RE)−1 (recall that xηRE�K by (5.2)). This yields a total contribution of

�η
K

REx3η/8

∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
c∈(Z/rZ)×

|Er(c)|
∑
v>xη

(v,re)=1

∑
k≡a1a2c (mod r)

v|k

|uk|

� K

Rx3η/8

∑
(r,a1a2)=1

Φ
( r
R

) ∑
c∈(Z/rZ)×

|Er(c)|
∑

k≡a1a2c (mod r)

τ(k)|uk|

�η
K

Rx2η/8
R
(K
R

+ 1
)

� x−η/4K
2

R
,

which is also acceptable. Keeping the notation v= (k1, k2), which we may now assume is at most
xη/2, note that

d1 := (k1, (a2k2)
∞) = (k1, (a2v)∞),
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and let us consider those pairs (k1, k2) with d1 >x
η. Using that xη/2RE�K and swapping

sums, these contribute at most∑
v�xη/2

∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
(m,r)=1

1

M
Φ
(m
M

) ∑
d1|(a2v)∞

d1>xη

∑
k1≡a1a2m (mod r)
(k1,re)=1, d1|k1

|uk1
|

∑
k2≡k1 (mod re)

(k1,k2)=v

|uk2
|

�η x
η/8

∑
v�xη/2

∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
(m,r)=1

1

M
Φ
(m
M

) ∑
d1|(a2v)∞

d1>xη

∑
k1∈(K,4K]

(k1,re)=1, d1|k1

r|a2mk1−a1

( K

REv
+ 1
)

� xη/8
K

RE

∑
v�xη/2

1

v

∑
e∈E

∑
m

1

M
Φ
(m
M

) ∑
d1|(a2v)∞

d1>xη

∑
k1∈(K,4K]

d1|k1

∑
(r,ma1a2)=1
r|a2mk1−a1

Φ
( r
R

)
.

Considering the cases a2mk1 = a1 and a2mk1 − a1 �= 0 separately, and using R� x1−η/2 

KMx−η/2 (by (4.2)), this is further bounded by

� xη/8
K

RE

∑
v�xη/2

1

v

∑
e∈E

(
τ(|a1|)3 R

M
+
∑
m

1

M
Φ
(m
M

) ∑
d1|(a2v)∞

xη<d1�4K

∑
k1∈(K,4K]

d1|k1

a2mk1 �=a1

τ(|a2mk1 − a1|)
)

�η x
η/4K

M
+ xη/4

K

RE
max
v�xη/2

∑
e∈E

∑
m

1

M
Φ
(m
M

) ∑
d1|(a2v)∞

xη<d1�4K

(K
d1

+ 1
)

� x−η/4K
2

R
+ xη/4

K

R
max
v�xη/2

∑
d1|(a2v)∞

xη<d

K

d1
.

Now since the number of distinct prime factors of a positive integer b is O(log b/ log log b), for
b� x we have the majorization∑

d|b∞
xη<d

d−1 � x−2η/3
∑
d|b∞

d−1/3

= x−2η/3
∏

prime p|b

1

1− p−1/3
� x−2η/3O(1)O(log b/ log log b)�η x

−η/2. (8.2)

Using this, we find that the previous sum contributes an acceptable Oη(x−η/4K2/R).

The contribution of the pairs with d1 >x
η to Φ̂(0)X1 is simpler and similarly bounded,

and the contribution of the pairs with d2 := (k2, (a2k1)
∞) = (k2, (a2v)∞) is bounded symmet-

rically. All that is left is to eliminate the contribution of the pairs with large values of
(k1 − k2, (a2k1k2)∞); since (k1 − k2, k1k2) = (k1 − k2, v2), we have

dΔ := (k1 − k2, (a2k1k2)∞) = (k1 − k2, (a2v)∞).

Using that Rxη/2�K, the pairs with dΔ >x
η (as well as v� xη/2 and |k1 − k2|>K/xη)

contribute to S1 at most

�
∑

v�xη/2

∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
(m,r)=1

1

M
Φ
(m
M

) ∑
dΔ|(a2v)∞

dΔ>xη

∑
k1≡a1a2m (mod r)
(k1,re)=1, (k1,k)=v

0<|k|�8K
[dΔ,re]|k

|uk1
u(k1+k)|
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�η x
η/8

∑
v�xη/2

∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
(m,r)=1

1

M
Φ
(m
M

) ∑
dΔ|(a2v)∞

dΔ>xη

∑
0<|k|�8K
[dΔ,re]|k

∑
k1∈(k,4K]

k1≡a1a2m (mod r)
(k1,re)=1, (k1,k)=v

1

� xη/8
∑

v�xη/2

∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
(m,r)=1

1

M
Φ
(m
M

) ∑
dΔ|(a2v)∞

dΔ>xη

∑
0<|k|�8K
[dΔ,re]|k

( K
Rv

+ 1
)

� xη/8
K

R

∑
v�xη/2

1

v

∑
m

1

M
Φ
(m
M

) ∑
dΔ|(a2v)∞

dΔ>xη

∑
0<|k|�8K

dΔ|k

∑
e∈E

(r,a1a2)=1
re|k

Φ
( r
R

)
.

Bounding the inner sum by τ(k)2�η x
η/9, this further becomes

�η x
η/4K

R
max
v�xη/2

∑
m

1

M
Φ
(m
M

) ∑
dΔ|(a2v)∞

xη<dΔ�8K

∑
|k|�8K
dΔ|k

1

� xη/4
K

R
max
v�xη/2

∑
dΔ|(a2v)∞

xη<dΔ�8K

( K
dΔ

+ 1
)

� xη/4
K

R
max
v�xη/2

∑
dΔ|(a2v)∞

xη<dΔ�8K

K

dΔ
.

Using the majorization from (8.2), this is again Oη(x−η/4K2/R).

The contribution of the pairs with dΔ >x
η to Φ̂(0)X1 is simpler and similarly bounded by

Oη(x−η/4K2/R). Having eliminated the absolute contribution of all pairs in K(η) at least once,
while incurring only admissible errors, we can conclude our proof of Proposition 8.1.

We can now apply Poisson summation to prove the following.

Proposition 8.2 (Reduction to exponential sum). For ε� η > 0 and H := xηRM−1, under the
parameter conditions in (4.2) and (5.2), one has

S1 − Φ̂(0)X1 =
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

r

∑
(k1,k2)∈K(η)
(k1k2,re)=1

k1≡k2 (mod re)

uk1
uk2

∑
1�|h|�H

Φ̂
(hM
r

)
e
(
a1h

a2k1
r

)

+Oη

(
x−η/4K

2

R

)
.

Proof. Rewrite the sum in Proposition 8.1 as∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) ∑
(k1,k2)∈K(η)
(k1k2,re)=1

k1≡k2 (mod re)

uk1
uk2
Er(a1a2k1),

and apply Lemma 3.5 to expand Er(a1a2k1). The resulting main term is precisely the sum in
Proposition 8.2, while the error terms are acceptable.

Remark 8.3. The trivial bound for the right-hand side of Proposition 8.2 isH times worse than for
the right-hand side of Proposition 8.1, due to the additional sum over h. This is relevant because
H is a nontrivial power of x for the choice of parameters in (4.4) (where H ≈RM−1 ≈R2/x),

1948

https://doi.org/10.1112/S0010437X2500747X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2500747X


Smooth numbers in arithmetic progressions to large moduli

since we are working with moduli r well beyond the
√
x barrier. This is why we needed to

eliminate the bad pairs (k1, k2) (via Proposition 8.1) before applying Poisson summation.

We now go through a series of fairly technical manipulations, following [Dra15] and [May25a],
to reduce the sum in Proposition 8.2 to a variation of the exponential sum considered by
Bombieri, Friedlander, and Iwaniec in [BFI87, § 10]; the goal is to prove the remaining dis-
persion estimate for S1 in Proposition 6.2. We do this in two steps (after the statements of
Propositions 8.4 and 8.6); first, we assume the following exponential sum bound, which can be
compared with Drappeau’s [Dra15, Proposition 1].

Proposition 8.4 (Improved Drappeau-style exponential sum bound). For all sufficiently small
ε > 0 and all η ∈ (0, 1), under the parameter conditions in (4.2), there exists E satisfying (5.2)
(with K :=NL) such that the following holds. For any nonzero integer a� xO(η) and positive
integers b, da, d1, d2, dΔ, v, δ1, δ2� xO(η) with d2 = δ1δ2 and

da | a, (d1, d2) = (d1, dΔ) = (d2, dΔ) = v, d1d2dΔ | b∞,
one has ∑

e∼E prime
(e,b)=1

∑
(r,b)=1

r≡0 (mod da)

Φ
( r
R

) 1

r

∑
(k,n�)=1

(kn�,reb)=1
d1k−d2n�=redΔt

(t,b)=1, redΔ|t|>K/xη

u′kβ
′
nγ

′
�

∑
1�|h|�H

Φ̂

(
hM

r

)
e

(
ah
bk

r

)

�ε,η x
O(η)−ε/4K

2

R
,

where H := xηRM−1, and |u′k|� τ(d1k), |β′n|� 1, |γ′�|� 1 are sequences supported in k
K/d1,
n∼N/δ1, and �∼L/δ2.
Remark 8.5. The exponential sum from Proposition 8.4 is essentially that anticipated in (2.3).

Proof of Proposition 6.2(i), assuming Proposition 8.4. Let ε∈ (0, 1) be sufficiently small, and let
us pick E as in Proposition 8.4. By Proposition 8.2, it remains to establish the bound

D1 :=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

r

∑
(k1,k2)∈K(η)
(k1k2,re)=1

k1≡k2 (mod re)

uk1
uk2

∑
1�|h|�H

Φ̂

(
hM

r

)
e

(
a1h

a2k1
r

)

�ε,η x
−2δK

2

R
,

for some choice of 0< 8δ� η� ε in terms of ε (since δ� η/8, the error term of x−η/4K2/R from
Proposition 8.2 is acceptable). For now, let us fix δ and η such that 8δ� η; we will give explicit
choices at the end of this proof.

By the definition of K(η) from (8.1), we may consider the xη-bounded variables

d1 := (k1, (a2k2)
∞), d2 := (k2, (a2k1)

∞), dΔ := (k1 − k2, (a2k1k2)∞),

v := (k1, k2) = (d1, d2) = (d1, dΔ) = (d2, dΔ).
(8.3)

Noting that d1, d2, and dΔ all divide (a2v)∞, we may then expand

D1 =
∑

d1,d2,dΔ�xη

v=(d1,d2)=(d1,dΔ)=(d2,dΔ)
d1d2dΔ|(a2v)∞

D2(d1, d2, dΔ, v), (8.4)
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where

D2 :=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

) 1

r

∑
(k1,(a2k2)∞)=d1

(k2,(a2k1)∞)=d2

(k1−k2,(a2k1k2)∞)=dΔ

|k1−k2|>K/xη

(k1k2,re)=1
k1≡k2 (mod re)

uk1
uk2

∑
1�|h|�H

Φ̂

(
hM

r

)
e

(
a1h

a2k1
r

)
.

Changing variables ki �→ diki and adjusting coprimality conditions accordingly (e.g., we now have
(k1, a2d2k2) = 1 as well as (k1, d1) = 1, and (d1k1d2k2, re) = 1), we get

D2

=
∑
e∈E

∑
(r,a1a2)=1

Φ
( r
R

)1

r

∑
(k1,a2d1d2k2)=1
(k2,a2d1d2k1)=1

(d1k1−d2k2,(a2d1d2k1k2)∞)=dΔ

|d1k1−d2k2|>K/xη

(d1k1d2k2,re)=1
d1k1≡d2k2 (mod re)

ud1k1
ud2k2

∑
1�|h|�H

Φ̂

(
hM

r

)
e

(
a1h

a2d1k1
r

)

=
∑
e∈E

(r,a1a2)=1
(re,d1d2)=1

Φ
( r
R

) 1

r

∑
(k1,k2)=1

(k1k2,rea2d1d2)=1
(d1k1−d2k2,(a2d1d2)∞)=dΔ

|d1k1−d2k2|>K/xη

d1k1≡d2k2 (mod re)

ud1k1
ud2k2

∑
1�|h|�H

Φ̂

(
hM

r

)
e

(
a1h

a2d1k1
r

)
.

Let us denote

a := a1sgn(a2) and b := |a2|d1
for convenience. At this point we record that, since d1d2dΔ | (a2v)∞, v | d1, and a1, a2� xδ � xη

by (4.2), we have

a2d1d2dΔ | b∞ and abd1d2dΔv� xO(η),

as needed in Proposition 8.4 (in particular, b will act as a bookkeeper for the prime factors of
d1, d2, dΔ, a2 inside coprimality constraints). Recalling that we chose E = {e∼E : e prime} in
(5.3), we can ensure that (e, a2d1) = (e, b) = 1 for e∈ E by enforcing δ < 4ε (since then |a2|� xδ �
x4ε �E). Writing d1k1 − d2k2 = redΔt, where (t, a2d1d2k1k2) = 1 (which is further absorbed by
the conditions (t, b) = (k1, k2) = (k1k2, b) = 1), we further get

D2 =
∑

e∼E prime
(e,b)=1

∑
(r,ab)=1

Φ
( r
R

) 1

r

∑
(k1,k2)=1

(k1k2,reb)=1
d1k1−d2k2=redΔt

(t,b)=1, redΔ|t|>K/xη

ud1k1
ud2k2

∑
1�|h|�H

Φ̂

(
hM

r

)
e

(
ah
bk1
r

)
.

We can also get rid of the restriction (r, a) = 1 using Möbius inversion, by writing 1(r,a)=1 =∑
da|a μ(da)1da|r and expanding

D2(d1, d2, dΔ, v) =
∑
da|a

μ(da)D3(d1, d2, dΔ, v, da), (8.5)
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where

D3 :=
∑

e∼E prime
(e,b)=1

∑
(r,b)=1

r≡0 (mod da)

Φ
( r
R

) 1

r

∑
(k1,k2)=1

(k1k2,reb)=1
d1k1−d2k2=redΔt

(t,b)=1, redΔ|t|>K/xη

ud1k1
ud2k2

∑
1�|h|�H

Φ̂

(
hM

r

)
e

(
ah
bk1
r

)
.

Finally, using the definition of (uk) from (5.1) and the fact that (d2, k2) | (b, k2) = 1, we can
expand

ud2k2
=

∑
δ1δ2=d2

∑
n�=k2

βδ1nγδ2�,

and thus

D3(d1, d2, dΔ, v, da) =
∑

δ1δ2=d2

D4(d1, d2, dΔ, v, da, δ1), (8.6)

where

D4

:=
∑

e∼E prime
(e,b)=1

∑
(r,b)=1

r≡0 (mod da)

Φ
( r
R

) 1

r

∑
(k,n�)=1

(kn�,reb)=1
d1k−d2n�=redΔt

(t,b)=1, redΔ|t|>K/xη

ud1kβδ1nγδ2�
∑

1�|h|�H

Φ̂

(
hM

r

)
e

(
ah
bk

r

)
.

We can now apply Proposition 8.4 for the sequences

u′k := ud1k, β′n := βδ1n, γ′� := γδ2�,

supported in k
K/d1, n∼N/δ1, and �∼L/δ2, respectively, to get

D4�η,ε x
O(η)−ε/4K

2

R
. (8.7)

Putting together (8.4) to (8.7), we obtain

D1�η x
O(η) max

d1,d2,dΔ,v,da,δ1
|D4| �ε,η x

O(η)−ε/4K
2

R
, (8.8)

where the maximum includes all applicable restrictions on the tuple (d1, d2, dΔ, v, da, δ1) (which
takes at most Oη(xO(η)) values).

Now let C > 0 denote the absolute constant in the final exponent of O(η) from (8.8), and let
us pick

η= η(ε) := min(ε/(8C), ε), δ = δ(ε) := min(ε/16, η/8).

Then we have 0< 8δ� η� ε as desired, and the bound in (8.8) implies

D1�ε,η x
ε/8−ε/4K

2

R
� x−2δK

2

R
,

completing our proof.

Finally, we prove Proposition 8.4 assuming the following BFI-style bound, the proof of which
is left to the later sections. This should be compared with Maynard’s [May25a, Lemma 18.5].

Proposition 8.6 (Improved BFI/Maynard exponential sum bound). For all sufficiently small
ε > 0 and all η ∈ (0, 1), the following holds. Under the conditions in (4.2), there exists E satisfying
(5.2), such that for any positive integers b, d with b� xO(η) and d� xO(1), and for any parameters
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K ′�NLxO(η), N ′ 
NxO(η), L′ 
LxO(η), T ′�NL(RE)−1xO(η), and H ′�RM−1xO(η), one
has ∑

k∼K′
(k,b)=1

∑
n∼N ′
(n,k)=1

∑
t∼T ′

(t,dk)=1

t

∣∣∣∣∣ ∑
e∼E

(e,dk)=1

∑
h∼H′

∑
�∼L′

(�,ket)=1
n�≡dk (mod et)

β(e, h, �) e

(
het

bn�

k

)∣∣∣∣∣
2

�ε,η x
O(η)−ε/2N2L3, (8.9)

for any 1-bounded complex coefficients β(e, h, �) (independent of k, n, t).

Remark 8.7. The exponential sum from Proposition 8.6 is essentially anticipated in (2.4) and
(2.5).

Proof of Proposition 8.4, assuming Proposition 8.6. Let us denote the sum in Proposition 8.4
by D4, and assume without loss of generality that (da, b) = 1 (since otherwise D4 vanishes). We
choose E as in Proposition 8.6, and take a closer look at the exponential: by iterating Lemma 3.1,
since b, k, r are pairwise coprime we have

bk

r
+
rb

k
+
rk

b
≡ 1

bkr
(mod 1),

and thus, using that redΔt≡−d2n� (mod k) and d1d2dΔ | b∞ (so in particular (d2, k) = 1),

ah
bk

r
≡ ahedΔtbd2n�

k
− ahrk

b
+
ah

bkr
(mod 1).

Since |a| � xO(η), h� xηRM−1, kr	KR/xO(η) and KM 
 x, we obtain

e

(
ah
bk

r

)
= e

(
ahedΔt

bd2n�

k
− ahrk

b

)
+O(xO(η)−1),

and thus

D4 =
∑

e∼E prime
(e,b)=1

∑
(r,b)=1

r≡0 (mod da)

Φ
( r
R

) 1

r

∑
(k,n�)=1

(kn�,reb)=1
d1k−d2n�=redΔt

(t,b)=1, redΔ|t|>K/xη

u′kβ
′
nγ

′
�

×
∑

1�|h|�H

Φ̂

(
hM

r

)
e

(
ahedΔt

bd2n�

k
− ahrk

b

)
+Oη

(
E
R

R
NL

(
K

RE
+ 1

)
HxO(η)−1

)
.

Recalling that K	RE (due to (5.2)), H = xηRM−1, MK 
 x, and KR� x2−ε (again by (4.2)),
the error term gives an acceptable contribution of

�η
EK2HxO(η)−1

RE
�K3xO(η)−2� xO(η)−εK

2

R
.

We now change variables in the main term by replacing the r-summation with a summation
over

t :=
d1k− d2n�
redΔ

,

noting that the condition redΔ|t|>K/xη implies |t|>K/(RExO(η)). We also put |t| into dyadic
intervals |t| ∼ T to obtain

D4� (log x) sup
T
xO(η)K/(RE)

|D5(T )|+Oη

(
xO(η)−εK

2

R

)
, (8.10)
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where, after adjusting coprimality conditions as explained below,

D5 :=
∑

e∼E prime
(e,b)=1

∑
|t|∼T
(t,b)=1

∑
(k,n�)=(kn�,daebt)=1

d1k≡d2n� (mod daedΔt)
|d1k−d2n�|>K/xη

r:=(d1k−d2n�)/(edΔt)
(r,b)=1

Φ
( r
R

) 1

r
u′kβ

′
nγ

′
�

×
∑

1�|h|�H

Φ̂

(
hM

r

)
e

(
ahedΔt

bd2n�

k
− ahrk

b

)
.

(We inserted the condition (kn�, t) = 1; this must happen since t | d1k− d2n� and (t, d1d2) |
(t, b∞) = 1; if a prime divides both t and one of k and n�, then it must also divide the
other, contradicting (k, n�) = 1. Moreover, the conditions in the sum over k, n, � are enough
to imply (kn�, r) = 1, since (d1k− d2n�, k) = (d2n�, k) = (d2, k) | (b∞, k) = 1 and similarly (d1k−
d2n�, n�) = 1.)

We now aim to simplify the term ahrk/b from the exponential, by fixing all relevant
residues modulo b. With this goal, we denote the residues of e, t modulo b by ê, t̂, and those
of k, n, � modulo dΔb by k̂, n̂, �̂. Since (d1k− d2n�)/dΔ = ret is coprime with b, we must have

d1k̂− d2n̂�̂∈ dΔ(Z/bZ)× = {dΔ(n+ bZ) : (n, b) = 1} ⊆Z/dΔbZ. This allows us to expand
D5 as

D5(T ) =
∑

ê,t̂∈(Z/bZ)×

∑
k̂,n̂,�̂∈Z/dΔbZ

(k̂n̂�̂,b)=1

d1k̂−d2n̂�̂∈dΔ(Z/bZ)×

D6(T, ê, t̂, k̂, n̂, �̂), (8.11)

with

D6 :=
∑

e∼E prime
e≡ê (mod b)

∑
|t|∼T

t≡t̂ (mod b)

∑
(k,n,�)≡(k̂,n̂,�̂) (mod dΔb)

(k,n�)=(kn�,daet)=1
d1k≡d2n� (mod daedΔt)

|d1k−d2n�|>K/xη

r:=(d1k−d2n�)/(edΔt)

Φ
( r
R

) 1

r
u′kβ

′
nγ

′
�

×
∑

1�|h|�H

Φ̂

(
hM

r

)
e

(
ahedΔt

bd2n�

k
− ahr̂k̂

b

)
,

where r̂= r̂(ê, t̂, k̂, n̂, �̂)∈ (Z/bZ)× is the unique residue mod b such that dΔr̂êt̂= d1k̂− d2n̂�̂∈
dΔ(Z/bZ)× (this r̂ is the residue of r mod b, and it is fixed inside each D6). Denoting

y(h) := e(−ahr̂k̂/b) and suppressing the congruences to ê, t̂, k̂, n̂, �̂ through the notation
∑∗, we

obtain

D6 =
∑∗

|t|∼T
(t,b)=1

∑∗

(k,n)=1
(kn,dabt)=1

u′kβ
′
n

∑∗

e∼E prime
(e,knb)=1

∑∗

(�,daekbt)=1
d2n�≡d1k (mod daedΔt)

|d2n�−d1k|>K/xη

∑
1�|h|�H

γ′� y(h) e

(
ahedΔt

bd2n�

k

)

×
[
Φ

(
d1k− d2n�
edΔtR

)
edΔt

d1k− d2n� Φ̂

(
hedΔtM

d1k− d2n�
)]

. (8.12)
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We now remove some of the dependencies between the variables t, k, n and e, �, h, as in the
proof of [May25a, Lemma 18.4]. Consider the function

Ψ(e, �, h) := Φ

(
d1k− d2n�
edΔtR

)
edΔt

d1k− d2n� Φ̂

(
hedΔtM

d1k− d2n�
)

=
1

R
αΦ

(
1

α

)
Φ̂

(
Mh

R
α

)
,

where α := edΔtR/(d1k− d2n�); note that Ψ is smooth in e, �, h, and nonzero only if α
 1.
Since Mh/R� xη and Φ, Φ̂ have bounded derivatives, the chain rule and the bounds d2n�
K,
|d2n�− d1k|>K/xη imply

∂j1+j2+j3

(∂e)j1(∂(d1k− d2n�))j2(∂h)j3
Ψ(e, �, h)�j1,j2,j3

xη(j1+j2+j3)

R
|e|−j1 |d1k− d2n�|−j2 |h|−j3

� xη(j1+2j2+j3)

R
|e|−j1 |d2n�|−j2 |h|−j3 .

We thus have

∂j1+j2+j3

(∂e)j1(∂�)j2(∂h)j3
Ψ(e, �, h)�j1,j2,j3

xη(j1+2j2+j3)

R
|e|−j1 |�|−j2 |h|−j3 ,

and then by partial summation, (8.12) implies that

D6�η
xO(η)

R
sup

H′′�H
E′′�2E, L′′�2L

D7, (8.13)

where, after removing the residue constraints in the outer sums over t, k, n for an upper bound
and putting |h| in a dyadic interval,

D7 :=
∑
|t|∼T
(t,b)=1

∑
(k,n)=1

(kn,dabt)=1

|u′kβ′n|
∣∣∣∣∣ ∑∗

e∼E prime
e�E′′

(e,knb)=1

∑∗

(�,daekbt)=1, ��L′′

d2n�≡d1k (mod daedΔt)
|d2n�−d1k|>K/xη

(d1k−d2n�)/t>0

γ′�
∑

|h|∼H′′

y(h) e

(
ahedΔt

bd2n�

k

)∣∣∣∣∣.

According to the desired bound in Proposition 8.4, and in light of (8.10), (8.11) and (8.13), it
remains to show that

D7�ε,η x
O(η)−ε/4K2, (8.14)

for all η ∈ (0, 1). Now let I(t, k, n) be the subinterval of [L/δ2, 2L/δ2] (which is the support
of γ′�) containing those � values such that

��L′′, |d2n�− d1k|>K/xη, and (d1k− d2n�)/t > 0.

As in the proof of [May25a, Lemma 18.4], we can remove the constraint �∈ I(t, k, n) using the
identity

1�∈I(t,k,n) =

∫ 1

0
e(�ω)

∑
j∈I(t,k,n)

e(−jω) dω=

∫ 1

0
e(�ω)c(t, k, n, ω) min(L, ω−1(1− ω)−1) dω,

for some coefficients c(t, k, n, ω)� 1, and the L1 bound
∫ 1/2
0 min(L, 2ω−1)dω� log x. Together

with the divisor bound |u′k| �η x
η, this shows that

D7�η x
O(η) sup

ω∈R/Z
D8,
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where

D8

:=
∑
|t|∼T
(t,b)=1

∑
k
K/d1, n∼N/δ1

(k,n)=1
(kn,dabt)=1

∣∣∣∣∣ ∑∗

e∼E prime
e�E′′

(e,knb)=1

∑∗

(�,daekbt)=1
d2n�≡d1k (mod daedΔt)

γ′� e(�ω)
∑

|h|∼H′′

y(h) e

(
ahedΔt

bd2n�

k

)∣∣∣∣∣.
We denote d′i := di/v for i∈ {1, 2,Δ}, so that the exponential term and the congruence in the
summation over � may be rewritten as

e

(
ahed′Δt

bd′2n�
k

)
, d′2n�≡ d′1k (mod edad

′
Δt),

where (d′1, d′2) = (d′1, d′Δ) = (d′2, d′Δ) = 1. At this point, it also makes sense to denote

h′ :=
a

da
h, t′ := dad

′
Δt, n′ := d′2n,

H ′ :=
a

da
H ′′, T ′ := dad

′
ΔT, N ′ :=

d′2
δ1
N, L′ :=

L

δ2
, K ′ :=

K

d1
,

to bound (by dropping some divisibility constraints on n′, t′)

D8�
∑
k
K′
(k,b)=1

∑
n′∼N ′
(n′,k)=1

∑
|t′|∼T ′

(t′,d′
1k)=1

∣∣∣∣∣ ∑∗

e∼E prime
e�E′′

(e,kn′b)=1

∑∗

�∼L′
(�,bket′)=1

n′�≡d′
1k (mod et′)

γ′� e(�ω)
∑

|h′|∼H′
a

da
|h′

y(h′da/a) e

(
h′et′

bn′�
k

)∣∣∣∣∣.
(To verify the new coprimality constraints, recall that (da, b) = 1 and d′1d′2d′Δ | b∞.) We may
replace the restriction that (e, n′) = 1 with (e, d′1) = 1, since each follows from the other and
the congruence n′�≡ d′1k (mod e), where (�k, e) = 1. Moreover, by inserting 1-bounded coef-
ficients β(e, h′, �), we can get rid of the coefficients γ′� e(�ω)y(h′da/a), the residue constraints
(modulo b) in the summations over e and �, as well as of the constraints that e is a prime and
e�E′, and that a/da | h′. Overall, this yields

D8�
∑
k
K′
(k,b)=1

∑
n′∼N ′
(n′,k)=1

∑
|t′|∼T ′

(t′,d′
1k)=1

∣∣∣∣∣ ∑
e∼E

(e,d′
1k)=1

∑
|h′|∼H′

∑
�∼L′

(�,ket′)=1
n′�≡d′

1k (mod et′)

β(e, h′, �) e

(
h′et′

bn′�
k

)∣∣∣∣∣.
Finally, we insert a factor of

√|t′|/T ′ into the sum, and apply Cauchy and Schwarz in the outer
variables k, n′, t′ to bound

D2
8�K ′N ′ ∑

k
K′
(k,b)=1

∑
n′∼N ′
(n′,k)=1

∑
|t′|∼T ′

(t′,d′
1k)=1

|t′|
∣∣∣∣∣ ∑

e∼E
(e,d′

1k)=1

∑
|h′|∼H′

∑
�∼L′

(�,ket′)=1
n′�≡d′

1k (mod et′)

β(e, h′, �) e

(
h′et′

bn′�
k

)∣∣∣∣∣
2

.

Conjugating if necessary when h′ < 0 or t′ < 0, Proposition 8.6 implies that

D2
8�ε,η K

′N ′ · xO(η)−ε/2N2L3� xO(η)−ε/2K4,

for all η ∈ (0, 1). Putting things together, we conclude that

D7�ε,η x
O(η) sup

ω∈R/Z
D8�η x

O(η)−ε/4
√
K4 
 xO(η)−ε/4K2,

as we required in (8.14).
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9. Bombieri–Friedlander–Iwaniec-style estimates

In this section, we establish Proposition 8.6, thus completing the proof of Proposition 6.2 and
Theorem 4.2. We build on Maynard’s work in [May25a, Chapter 18] (in a slightly more general
setting, and using Theorem 3.10 instead of [DI82, Theorem 9]), which is in turn based on
Bombieri–Friedlander–Iwaniec’s work in [BFI87, § 10]. To aid future research, we shall consider
a general sum

B(K,N, T, E, H, L) :=
∑
k∼K

(k,b)=1

∑
n∼N

(n,k)=1

∑
t∼T

(t,dk)=1

t

∣∣∣∣∣ ∑
e∼E

(e,dk)=1

∑
h∼H

∑
�∼L

(�,ket)=1
n�≡dk (mod et)

β(e, h, �) e

(
het

bn�

k

)∣∣∣∣∣
2

,

where b, d are given positive integers with b� xO(η) and d� x, β(e, h, �) are arbitrary 1-bounded
coefficients, and the parameters K,N, T, E, H, L are almost arbitrary.

Remark 9.1. The trivial bound for B is KN (TEH((L/ET ) + 1))2�KN(HL)2 +KN(TEH)2,
but we need more than a power saving over this (note that the desired bound in (8.9) is of
the order of KNL2, since we need to make up for the factors of H introduced during Poisson
summation). So the relative sizes of K,N, T, E, H, L (as given by Proposition 8.6 and (4.2)) will
ultimately be crucial, although we only take them into account after proving a general bound in
Proposition 9.5.

After expanding the square inside B, we reach a more complicated version of the sum
anticipated in (2.5). The ‘diagonal terms’ with h1e1�2 = h2e2�1 bring a contribution of roughly
O(KNTHL+KEHT 2L), similarly to (2.6); our deamplification set-up will be helpful here.
In the off-diagonal terms, we complete Kloosterman sums via Lemma 3.6, and the prin-
cipal frequency will contribute O(NH2L2 +NH2TL). The remaining terms are ultimately
separated into B= and B �= (the latter corresponding to (2.7)), depending on whether �1 = �2
or �1 �= �2.

Lemma 9.2 (Splitting the BFI-style sum). For η ∈ (0, 1), 1�K,N, T, E, H, L� x, and any
positive integers b, d with b� xO(η) and d� x, one has

B(K,N, T, E, H, L)�η x
O(η)

(
KNTHL+KEHT 2L+NH2L2 +NH2TL

+
N

KE2
sup

E0�E, S�TE0,
J�(KTE2xη)/(NE0)

w∈R/Z, g0

E0 (B= +B �=)

)
,

where

B= :=
∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
s∼S
s|te0

(s,e′1e
′
2b)=1

∑
�∼L

(�,te0e′1e
′
2)=1

∑
h1,h2∼H
h1e′1 �=h2e′2

×
∣∣∣∣∣ ∑

k′
(k′,e′1e

′
2�b)=1

g0

(
k′

K/S

) ∑
|j|∼J

e

(
j

(
d�

te0e′1e′2
−w

))
S((h1e

′
1 − h2e′2) b�e′1e′2, j; k′s)

∣∣∣∣∣,
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B �= :=
∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
s∼S
s|te0

(s,e′1e
′
2b)=1

∑
�1,�2∼L

�1≡�2 (mod te0)
(�1�2,te0)=1

(�1,e′1)=(�2,e′2)=1
�1 �=�2

∑
h1,h2∼H

h1e′1�2 �=h2e′2�1

∣∣∣∣∣ ∑
k′

(k′,e′1e
′
2�1�2b)=1

g0

(
k′

K/S

)

×
∑
|j|∼J

e

(
j

(
μ

te0e′1e′2
−w

))
S((h1e

′
1�2 − h2e′2�1) b�1�2e′1e′2, j; k′s)

∣∣∣∣∣,
and g0(t) runs over smooth functions supported on t
 1, satisfying ‖g(j)0 ‖∞�j 1 for each
j � 0 (with fixed implicit constants). Here, μ= μ(�1, �2, t, e0, e

′
1, e

′
2, d) is the unique solution

(mod te0e
′
1e

′
2) to the congruences μ≡ d�1 (mod te0e

′
1) and μ≡ d�2 (mod te0e

′
2).

Proof. This is essentially the same as the proof of [May25a, Lemma 18.5], but in a slightly
more general setting (the main difference being the additional parameters b, d). We first replace
the indicator functions of k∼K and n∼N with smooth majorants, using a suitable smooth
compactly supported function f0 (we choose this as in the proof of [May25a, Lemma 18.5]).
Expanding out the square in B and swapping sums, then using that (n, et) = 1 to deduce a
congruence between the resulting variables �1 and �2 (indeed, if a prime p divided both n and
et, then it would divide dk, but (et, dk) = 1), we obtain

B�
∑
k

(k,b)=1

f0

(
k

K

) ∑
n

(n,k)=1

f0

( n
N

) ∑
t∼T

(t,dk)=1

t

∣∣∣∣∣ ∑
e∼E

(e,dk)=1

∑
h∼H

∑
�∼L

(�,ket)=1
n�≡dk (mod et)

β(e, h, �) e

(
het

bn�

k

)∣∣∣∣∣
2

=
∑
t∼T

(t,d)=1

t
∑

e1,e2∼E
(e1e2,d)=1

∑
�1,�2∼L

�1≡�2 (mod t(e1,e2))
(�1,te1)=1
(�2,te2)=1

∑
h1,h2∼H

β(e1, h1, �1) β(e2, h2, �2)

×
∑
k

(k,te1e2�1�2b)=1

f0

(
k

K

) ∑
(n,k)=1

n≡dk�1 (mod te1)

n≡dk�2 (mod te2)

f0

( n
N

)
e

(
t
(h1e1�2 − h2e2�1)bn�1�2

k

)
. (9.1)

Let B1 denote the contribution of the ‘diagonal’ terms with h1e1�2 = h2e2�1, and B2 contain
the other terms; thus we have B�B1 +B2. As in (2.6), we first bound B1 trivially (using the
divisor bound), by

B1�
∑
t∼T

(t,d)=1

t
∑
e1∼E
�2∼L
h1∼H

∑
e2∼E
�1∼L

e2�1|h1e1�2
�1≡�2 (mod t(e1,e2))
(�1,te1)=(�2,te2)=1

∑
h2∼H

h1e1�2=h2e2�1

∑
k

f0

(
k

K

) ∑
n≡dk�1 (mod te1)

n≡dk�2 (mod te2)

f0

( n
N

)

�
∑
t∼T

t
∑
e1∼E
�2∼L
h1∼H

∑
e2∼E, �1∼L

h2∼H
h1e1�2=h2e2�1

(�1,te1)=1

∑
k�K

∑
n�N

n≡dk�1 (mod te1)

1

�η x
O(η) T 2ELHK

(
N

TE
+ 1

)
, (9.2)
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recovering the first two terms in the desired bound. Next, we consider B2, containing the terms
with h1e1�2 �= h2e2�1. We let e0 := (e1, e2), e

′
1 := e1/e0 and e′2 := e2/e0 and put e0 in dyadic ranges

e0 ∼E0 to write

B2� (log x)

× sup
E0�E

∣∣∣∣ ∑
t∼T

(t,d)=1

t
∑

e0∼E0

(e0,d)=1

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

(e′1e
′
2,d)=1

∑
�1,�2∼L

�1≡�2 (mod te0)
(�1�2,te0)=1

(�1,e′1)=(�2,e′2)=1

∑
h1,h2∼H

h1e′1�2 �=h2e′2�1

β(e0e
′
1, h1, �1) β(e0e′2, h2, �2)

×
∑
k

(k,te0e′1e
′
2�1�2b)=1

f0

(
k

K

) ∑
(n,k)=1

n≡dk�1 (mod te0e′1)
n≡dk�2 (mod te0e′2)

f0

( n
N

)
e

(
te0

(h1e
′
1�2 − h2e′2�1)bn�1�2

k

)∣∣∣∣.

Note that the inner sum over n can be rewritten as

∑
n≡kμ (mod te0e′1e

′
2)

(n,k)=1

f0

( n
N

)
e

(
nr0
k

)
,

where r0 := te0(h1e
′
1�2 − h2e′2�1)b�1�2 (defined mod k), and μ= μ(�1, �2, t, e0, e

′
1, e

′
2, d) is the

unique solution (mod te0e
′
1e

′
2) to the congruences μ≡ d�1 (mod te0e

′
1) and μ≡ d�2 (mod te0e

′
2);

the latter is well-defined by the Chinese remainder theorem, since (te0e
′
1, te0e

′
2) = te0(e

′
1, e

′
2) =

te0, [te0e
′
1, te0e

′
2] = te0e

′
1e

′
2, and d�1 ≡ d�2 (mod te0). Crucially, note that μ does not depend

on k.
We can thus complete Kloosterman sums using Lemma 3.6, with

q := te0e
′
1e

′
2,

J0 := 32 xη
KTE2

NE0
� xη

kq

N
,

giving us

∑
n≡kμ (mod q)

(n,k)=1

f0

( n
N

)
e

(
nr0
k

)
=
N

kq

∑
|j|�J0

f̂0

(
jN

kq

)
e

(
jμ

q

)
S(jq, r0; k) +Oη(x−99)

=
N

kq

∑
|j|�J0

f̂0

(
jN

kq

)
e

(
jμ

q

)
S(r1, j; k) +Oη(x−99),

where

r1 := r0q= (h1e
′
1�2 − h2e′2�1) b�1�2e′1e′2.

We now plug this bound into our estimate for B2, isolate the contribution of j = 0 into B3, and
let B4 contain the terms with j �= 0. This yields

B2�η x
O(η) sup

E0�E
(|B3|+ |B4|) +Oη(x−50), (9.3)
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where

B3 :=
∑
t∼T

(t,d)=1

t
∑

e0∼E0

(e0,d)=1

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

(e′1e
′
2,d)=1

∑
�1,�2∼L

�1≡�2 (mod te0)
(�1�2,te0)=1

(�1,e′1)=(�2,e′2)=1

∑
h1,h2∼H

h1e′1�2 �=h2e′2�1

β(e0e
′
1, h1, �1) β(e0e′2, h2, �2)

×
∑
k

(k,te0e′1e
′
2�1�2b)=1

f0

(
k

K

)
N

kq
f̂0 (0) S(r1, 0; k),

B4 :=
∑
t∼T

(t,d)=1

t
∑

e0∼E0

(e0,d)=1

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

(e′1e
′
2,d)=1

∑
�1,�2∼L

�1≡�2 (mod te0)
(�1�2,te0)=1

(�1,e′1)=(�2,e′2)=1

∑
h1,h2∼H

h1e′1�2 �=h2e′2�1

β(e0e
′
1, h1, �1) β(e0e′2, h2, �2)

×
∑
k

(k,te0e′1e
′
2�1�2b)=1

f0

(
k

K

)
N

kq

∑
|j|�J0

j �=0

f̂0

(
jN

kq

)
e

(
jμ

q

)
S(r1, j; k).

We bound B3 trivially using the Ramanujan bound (Lemma 3.8)

B3�
∑
t∼T

t
∑

e0∼E0

∑
e′1,e

′
2∼E/e0

∑
�1,�2∼L

�1≡�2 (mod te0)

∑
h1,h2∼H

∑
k�K

N

kq
(r1, k)

�η x
O(η)

∑
t∼T

t
∑

e0∼E0

∑
e′1,e

′
2∼E/e0

∑
�1,�2∼L

�1≡�2 (mod te0)

H2N

q

� xO(η) T 2E
2

E0
L

(
1 +

L

TE0

)
H2NE0

TE2

� xO(η)
(
TLH2N +L2H2N

)
, (9.4)

giving the third and fourth terms in the desired bound. We finally turn to estimating B4, and start
by removing the coprimality constraint (k, te0) = 1, via Möbius inversion. We write 1(k,te0)=1 =∑

s|(k,te0) μ(s) and k= k′s, and put j, s into dyadic ranges j ∼ J, s∼ S to obtain

B4�η x
ηT sup

S�TE0

J�J0

B5, (9.5)

where

B5 :=
∑
t∼T

(t,d)=1

∑
e0∼E0

(e0,d)=1

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

(e′1e
′
2,d)=1

∑
s∼S
s|te0

(s,e′1e
′
2b)=1

∑
�1,�2∼L

�1≡�2 (mod te0)
(�1�2,te0)=1

(�1,e′1)=(�2,e′2)=1

B6,

(9.6)

B6 :=
∑

h1,h2∼H
h1e′1�2 �=h2e′2�1

∣∣∣∣∣ ∑
k′

(k′,e′1e
′
2�1�2b)=1

f0

(
k′s
K

)
N

k′sq

∑
j∼J

f̂0

(
jN

k′sq

)
e

(
jμ

q

)
S(r1, j; k

′s)

∣∣∣∣∣.
We now wish to separate the j, k′ variables in B6 from the others, in the factors of f0, f̂0, and

the exponential term; note that s, q= te0e
′
1e

′
2 and μ= μ(�1, �2, c, t, e0, e

′
1, e

′
2, d) do not depend

on j and k′. As in the proof of [May25a, Lemma 18.5], we make use of the special choice of
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the smooth function f0(t) :=
∫∞
0 ψ0(y)ψ0(t/y) dy/y (which is a multiplicative convolution of a

bounded smooth function ψ0 supported on [1/2, 5/2] with itself) to find that

f0

(
k′s
K

)
=

∫ 20U

U
ψ0(su)ψ0

(
k′

Ku

)
du

u
,

where U 
 1/S, and also

N

k′sq
f̂0

(
jN

k′sq

)
=

∫ 20V

V

∫ 20W

W
ψ0(k

′v)ψ0

(wsq
Nv

)
e(−jw) dw

dv

v
,

where V 
 S/K and W 
NV E0/(STE
2)
NE0/(KTE

2). Plugging this into our expression for
B6, taking the integrals over u, v, w outside the absolute value by the triangle inequality, and
swapping them with the sum over h1, h2, we get

B6�
∫ 20U

U

∫ 20V

V

∫ 20W

W
|B7|du dv dw

uv
, (9.7)

where

B7 :=
∑

h1,h2∼H
h1e′1�2 �=h2e′2�1

∣∣∣∣∣ ∑
k′

(k′,e′1e
′
2�1�2b)=1

gu,v

(
k′

K/S

) ∑
|j|∼J

e

(
j

(
μ

q
−w

))
S(r1, j; k

′s)

∣∣∣∣∣,
and the smooth function

gu,v(t) := ψ0

(
t

uS

)
ψ0

(
vtK

S

)
is supported on t
 1. Combining this with (9.5) to (9.7), moving the integrals in u, v, w to the
front and taking an L∞ bound, we find that

B4�η x
ηTW sup

S�TE0

J�J0

sup
u
1/S
v
S/K

w
NE0/KE2

∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
s∼S
s|te0

(s,e′1e
′
2b)=1

∑
�1,�2∼L

�1≡�2 (mod te0)
(�1�2,te0)=1

(�1,e′1)=(�2,e′2)=1

B7,

where TW 
NE0/KE
2. Letting B= be the contribution of the terms �1 = �2 and B �= contain

the terms with �1 �= �2, and combining this with (9.1) to (9.4), we recover the desired bound for
B (note that when �1 = �2 = �, one can take μ= d�).

Lemma 9.3 (Contribution of �1 = �2). With the notation of Lemma 9.2, assuming that EHT �
xO(η)KNL, one has

B=�η
xO(η)KE2

NE0

(
1 +

K

E2L

)θmax

(KT 5E8H2L3N)1/2
(

1 +
H

E
+

H2

E2L

)1/2 (
1 +

K

NL

)1/2
.

Proof of Lemma 9.3 assuming Theorem 3.10. Here, we adapt the proof of [May25a, Lemma
18.7], using Theorem 3.10 instead of [DI82, Theorem 9]. To do this, we need to eliminate the
dependency of the inner exponential coefficients on �, so we write

B= =
∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
s∼S
s|te0

(s,e′1e
′
2b)=1

∑
�̂∈(Z/te0e′1e′2Z)×

∑
�∼L

�≡�̂ (mod te0e′1e
′
2)

×
∑

h1,h2∼H
h1e′1 �=h2e′2

∣∣∣∣∣ ∑
k′

(k′,e′1e
′
2�b)=1

g0

(
k′

K/S

) ∑
|j|∼J

e(jω) S((h1e
′
1 − h2e′2) b�e′1e′2, j; k′s)

∣∣∣∣∣,
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where

ω= ω(t, e0, e
′
1, e

′
2, �̂, d, w) :=

d�̂

te0e′1e′2
−w ∈R/Z.

We now denote

m := h1e
′
1 − h2e′2�

HE

E0
, r := b�e′1e

′
2 
 xO(η)LE

2

E2
0

,

split into dyadic ranges m∼M=, r∼R=, and change variables from � to r to obtain

B=�η x
O(η) sup

M=�HE/E0

R=
xO(η)LE2/E2
0

∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
�̂∈(Z/te0e′1e′2Z)×

×
∑
r∼R=

be′1e
′
2|r

r/(be′1e
′
2)≡�̂

(mod te0e′1e
′
2)

∑
s∼S

(s,r)=1
s|te0

∑
m∼M=

∑
h1,h2∼H

h1e′1−h2e′2=m

∣∣∣∣∣ ∑
k′

(k′,r)=1

g0

(
k′

K/S

) ∑
|j|∼J

e(jω) S(mr, j; k′s)

∣∣∣∣∣.

Crucially, once the variables t, e0, e
′
1, e

′
2, �̂ are fixed, ω does not depend on r, s, m, h1, h2, k

′, or j.
Finally, we remove the absolute values by inserting 1-bounded coefficients ξh1,h2

(also depending

on t, e0, e
′
1, e

′
2, �̂, r, s, m), and denote

am,r,s = am,r,s(t, e0, e
′
1, e

′
2, �̂) := 1be′1e′2|r1 r/(be′1e

′
2)≡�̂

(mod te0e′1e
′
2)

1s|te0
∑

h1,h2∼H
h1e′1−h2e′2=m

ξh1,h2
,

to get

B=�η x
O(η) sup

M=�HE/E0

R=
xO(η)LE2/E2
0

∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
�̂∈(Z/te0e′1e′2Z)×

|K=|,
(9.8)

with

K= :=
∑
r∼R=

s∼S
(r,s)=1

∑
m∼M=

am,r,s

∑
|j|∼J

e(jω)
∑
k′

(k′,r)=1

g0

(
k′

K/S

)
S(mr, j; k′s).

At this point we apply our Deshouillers–Iwaniec-style bound from Theorem 3.10, finding that

K=�η x
O(η)

(
1 +

K/S

R=

√
S

)θmax

‖am,r,s‖2
√
JR=S

×
(
K2/S2

R=
(M= +R=S) (J +R=S) +M=J

)1/2
,

where, by Cauchy and Schwarz,∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
�̂∈(Z/te0e′1e′2Z)×

‖am,r,s‖2

� TE2

E0

√√√√√√√
∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
r∼R=

be′1e
′
2|r

∑
s∼S

(s,r)=1
s|te0

∑
m∼M=

( ∑
h1,h2∼H

h1e′1−h2e′2=m

1

)2
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�η x
O(η)TE

2

E0

√√√√√√TE0
R=E2

0

E2

∑
m∼M=

∑
h2∼H

∑
e′2�E/E0

∑
h1,e′1

(e′1,e
′
2)=1

h1e′1=m+h2e′2

∑
h′
1∼H

h′
1e

′
1≡m (mod e′2)

∑
h′
2∼H

h′
2e

′
2=h′

1e
′
1−m

1

�η x
O(η)TE

2

E0

(
TE3

0R=

E2
M=H

E

E0

(
1 +

HE0

E

))1/2

= xO(η)

(
T 3E3R=M=H

(
1 +

HE0

E

))1/2
.

Plugging these bounds into (9.8), we obtain

B=�η x
O(η) sup

M=�HE/E0

R=
xO(η)LE2/E2
0

(
1 +

K/S

R=

√
S

)θmax
(
T 3E3R=M=H

(
1 +

HE0

E

))1/2
(JR=S)1/2

×
(
K2/S2

R=
(M= +R=S) (J +R=S) +M=J

)1/2
.

Using M=�HE/E0 and R= 
 xO(η)LE2/E2
0 , and recalling that J� (KTE2xη)/(NE0)

(from Lemma 9.2), we conclude that

B=�η x
O(η)

(
1 +

KE2
0

LE2S3/2

)θmax
(
T 3E3LE

2

E2
0

HE

E0
H

(
1 +

HE0

E

))1/2 (
KTE2

NE0

LE2

E2
0

S

)1/2

×
(
K2E2

0

LE2S2

(
HE

E0
+
LE2

E2
0

S

)(
KTE2

NE0
+
LE2

E2
0

S

)
+
HKTE3

NE2
0

)1/2

� xO(η)

(
1 +

KE2
0

LE2

)θmax
(
T 3E3LE

2

E2
0

HE

E0
H

(
1 +

HE0

E

))1/2 (
KTE2

NE0

LE2

E2
0

)1/2

×
(
K2E2

0

LE2

(
HE

E0S
+
LE2

E2
0

)(
KTE2

NE0
+
LE2

E2
0

S

)
+
HKTE3

NE2
0

S

)1/2
,

where we lower-bounded S	 1 in the factor raised to θmax. Since 1� S� TE0 (from
Lemma 9.2), our bound becomes

B=�η x
O(η)

(
1 +

KE2
0

LE2

)θmax
(
T 3E3LE

2

E2
0

HE

E0
H

(
1 +

HE0

E

))1/2 (
KTE2

NE0

LE2

E2
0

)1/2

×
(
K2E2

0

LE2

(
HE

E0
+
LE2

E2
0

)(
KTE2

NE0
+
LE2T

E0

)
+
HKT 2E3

NE0

)1/2
.

This expression is nonincreasing in E0, even after extracting a factor of E−1
0 (since θmax < 3/4);

thus lower-bounding E0	 1 we obtain

B=�η
xO(η)

E0

(
1 +

K

LE2

)θmax
(
T 3E6LH2

(
1 +

H

E

))1/2 (KTLE4

N

)1/2
×
(
K2

LE2

(
HE +LE2

) (KTE2

N
+LE2T

)
+
HKT 2E3

N

)1/2
.
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We can simplify this further using our assumption that EHT � xO(η)KNL, which implies

x−O(η)HKT
2E3

N
�K2LE2T =

K2

LE2
LE2LE2T,

allowing us to discard the term of HKT 2E3/N in the second line. Thus

B=�η
xO(η)

E0

(
1 +

K

LE2

)θmax
(

1 +
H

E

)1/2 (
T 3E6LH2KTLE

4

N

)1/2
×K

(
H

LE
+ 1

)1/2
(LE2T )1/2

(
K

NL
+ 1

)1/2
� xO(η)

E0

(
1 +

K

LE2

)θmax
(
K3T 5L3E12H2

N

)1/2 (
1 +

H

E
+

H2

LE2

)1/2 (
1 +

K

NL

)1/2
� xO(η)

E0

KE2

N

(
1 +

K

LE2

)θmax

(KT 5L3E8H2N)1/2
(

1 +
H

E
+

H2

LE2

)1/2 (
1 +

K

NL

)1/2
.

After slightly rearranging factors, this yields the desired bound.

Lemma 9.4 (Contribution of �1 �= �2). With the notation of Lemma 9.2, assuming that EHT �
xO(η)KNL, one has

B �=�η
xO(η)KE2

NE0

(
1 +

K

E2L2

)θmax

(KT 4E8H2L6N)1/2
(

1 +
H

EL

)(
1 +

K

NL2

)1/2
.

Proof of Lemma 9.4 assuming Theorem 3.10. Here, we follow the proof of [May25a, Lemma
18.6], using Theorem 3.10 instead of [DI82, Theorem 9]. As in Lemma 9.3, we need to eliminate
the dependency of the inner exponential coefficients on �1 and �2, so we write

B �= =
∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
s∼S
s|te0

(s,e′1e
′
2b)=1

∑
μ̂∈Z/te0e′1e′2Z

∑
�1,�2∼L

�1≡�2 (mod te0)
(�1�2,te0)=1

(�1,e′1)=(�2,e′2)=1
�1 �=�2

μ(�1,�2)≡μ̂ (mod te0e′1e
′
2)

×
∑

h1,h2∼H
h1e′1�2 �=h2e′2�1

∣∣∣∣∣ ∑
k′

(k′,e′1e
′
2�1�2b)=1

g0

(
k′

K/S

) ∑
|j|∼J

e (jω) S((h1e
′
1�2 − h2e′2�1) b�1�2e′1e′2, j; k′s)

∣∣∣∣∣,
where

ω= ω(t, e0, e
′
1, e

′
2, μ̂, d, w) :=

μ̂

te0e′1e′2
−w ∈R/Z.

This is essentially the exponential sum anticipated in (2.7).
We then let �0 := (�1, �2), �

′
1 := �1/�0, �

′
2 := �2/�0, and put the variables

m := h1e
′
1�

′
2 − h2e′2�′1�

HEL

E0�0
, r := b�0�

′
1�

′
2e

′
1e

′
2 
 xO(η)L

2E2

�0E2
0

,

and �0 into dyadic ranges m∼M�=, r∼R�=, �0 ∼L0 to obtain

B �=�η x
O(η) sup

L0�L
M �=�HEL/(E0L0)

R �=
xO(η)L2E2/(L0E2
0)

|B′�=|, (9.9)
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where

B′�= :=
∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
μ̂∈Z/te0e′1e′2Z

×
∑
r∼R �=
be′1e

′
2|r

s∼S
(s,r)=1
s|te0

∑
�0∼L0

�′1,�
′
2∼L/�0

(�′1,�
′
2)=1,�′1 �=�′2

b�0�′1�
′
2e

′
1e

′
2=r

�′1≡�′2 (mod te0)
(�′1,e

′
1)=(�′2,e

′
2)=1

μ(�0�′1,�0�
′
2)≡μ̂

(mod te0e′1e
′
2)

∑
m∼M �=

∑
h1,h2∼H

h1e′1�2−h2e′2�1=m

∣∣∣∣∣ ∑
k′

(k′,r)=1

g0

(
k′

K/S

) ∑
|j|∼J

e(jω) S(mr, j; k′s)

∣∣∣∣∣.

As before, once the variables t, e0, e
′
1, e

′
2, μ̂ are fixed, ω does not depend on r, s, m, h1, h2, k

′.
We remove the absolute values by inserting 1-bounded coefficients ξh1,h2

(also depending on
t, e0, e

′
1, e

′
2, μ̂ and r, s, m), and denote

am,r,s = am,r,s(t, e0, e
′
1, e

′
2, μ̂) := 1be′1e′2|r1s|te0

∑
�0∼L0

�′1,�
′
2∼L/�0

(�′1,�
′
2)=1,�′1 �=�′2

b�0�′1�
′
2e

′
1e

′
2=r

�′1≡�′2 (mod te0)
(�′1,e

′
1)=(�′2,e

′
2)=1

μ(�0�′1,�0�
′
2)≡μ̂

(mod te0e′1e
′
2)

∑
h1,h2∼H

h1e′1�
′
2−h2e′2�

′
1=m

ξh1,h2
,

to obtain

B′�=�η x
O(η)

∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
μ̂∈Z/te0e′1e′2Z

|K �=|, (9.10)

where

K �= :=
∑
r∼R �=
s∼S

(r,s)=1

∑
m∼M �=

am,r,s

∑
|j|∼J

e(jω)
∑
k′

(k′,r)=1

g0

(
k′

K/S

)
S(mr, j; k′s).

This is roughly the sum of Kloosterman sums anticipated in (2.11). By Theorem 3.10, we have

K �=�η x
O(η)

(
1 +

K/S

R�=
√
S

)θmax

‖am,r,s‖2
√
JR �=S ×

(
K2/S2

R�=
(M �= +R�=S) (J +R�=S) +M �=J

)1/2
,

where, by Cauchy and Schwarz,∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
μ̂∈Z/(te0e′1e′2Z)

‖am,r,s‖2

� TE2

E0

√√√√√√√√√√
∑
t∼T

∑
e0∼E0

∑
e′1,e

′
2∼E/e0

(e′1,e
′
2)=1

∑
s∼S
s|te0

∑
�0∼L0

�′1,�
′
2∼L/�0

(�′1,�
′
2)=1,�′1 �=�′2

�′1≡�′2 (mod te0)
(�′1,e

′
1)=(�′2,e

′
2)=1

∑
m∼M �=

( ∑
h1,h2∼H

h1e′1�
′
2−h2e′2�

′
1=m

1

)2
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� TE2

E0

√√√√√√L0

∑
e′1,e

′
2�E/E0

∑
�′1,�

′
2
L/L0

(�′1e
′
2,�

′
2e

′
1)=1

�′1 �=�′2

τ(�′1 − �′2)3
∑

m∼M �=

∑
h1,h2∼H

h1e′1�
′
2−h2e′2�

′
1=m

∑
h′
1,h

′
2∼H

h′
1e

′
1�

′
2−h′

2e
′
2�

′
1=m

1

�η x
O(η)TE

2

E0

√√√√√√L0

∑
m∼M �=

∑
h1∼H

e′1�E/E0

�′2�L/L0

∑
h2,e′2,�

′
1

h2e′2�
′
1=h1e′1�

′
2−m

(e′2�
′
1,e

′
1�

′
2)=1

∑
h′
1∼H

h′
1e

′
1�

′
2≡m (mod e′2�

′
1)

∑
h′
2∼H

h′
2e

′
2�

′
1=h′

1�
′
2e

′
1−m

1

�η x
O(η)TE

2

E0

(
L0M �=H

E

E0

L

L0

(
1 +

HE0L0

EL

))1/2
� xO(η)

(
T 2E5M �=HL

E2
0

(
1 +

HL0

EL

))1/2
.

Plugging these bounds into (9.10), we find that

B′�=�η x
O(η)

(
1 +

K/S

R�=
√
S

)θmax

(
T 2E5M �=HL

E2
0

(
1 +

HL0

EL

))1/2
(JR �=S)1/2

×
(
K2/S2

R�=
(M �= +R�=S) (J +R�=S) +M �=J

)1/2
.

Recalling that J� (KTE2xη)/(NE0) (from Lemma 9.2), M �=�HEL/(E0L0) and R�= 

xO(η)L2E2/(L0E

2
0) (from (9.9)), this yields

B′�=�ηx
O(η)

(
1 +

KL0E
2
0

L2E2S3/2

)θmax
(
T 2E5HELHL

E2
0E0L0

(
1 +

HL0

EL

))1/2 (
KTE2

NE0

L2E2

L0E2
0

S

)1/2
×
(
K2L0E

2
0

L2E2S2

(
HEL

E0L0
+
L2E2

L0E2
0

S

)(
KTE2

NE0
+
L2E2

L0E2
0

S

)
+
HE3LKT

E2
0L0N

)1/2
.

Note that this expression is nonincreasing in the GCD parameter L0, since θmax � 1/2; thus
lower-bounding L0	 1, and then using that 1� S� TE0 (from Lemma 9.2), we get

B′�=�η x
O(η)

(
1 +

KE2
0

L2E2S3/2

)θmax
(
T 2E6H2L2

E3
0

(
1 +

H

EL

))1/2 (
KTE2

NE0

L2E2

E2
0

)1/2
×
(
K2E2

0

L2E2

(
HEL

E0S
+
L2E2

E2
0

)(
KTE2

NE0
+
L2E2

E2
0

S

)
+
HE3LKT

E2
0N

S

)1/2
� xO(η)

(
1 +

KE2
0

L2E2

)θmax
(
T 2E6H2L2

E3
0

(
1 +

H

EL

))1/2 (
KTE2

NE0

L2E2

E2
0

)1/2
×
(
K2E2

0

L2E2

(
HEL

E0
+
L2E2

E2
0

)(
KTE2

NE0
+
L2E2T

E0

)
+
HE3LKT 2

E0N

)1/2
.

Finally, this expression is nonincreasing in the E0 parameter even after extracting a factor of
E−1

0 , so lower-bounding E0	 1 yields

B′�=�η
xO(η)

E0

(
1 +

K

L2E2

)θmax
(

1 +
H

EL

)1/2 (
T 2E6H2L2KTE

2

N
L2E2

)1/2
×
(

K2

L2E2

(
HEL+L2E2

) (KTE2

N
+L2E2T

)
+
HE3LKT 2

N

)1/2
.
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Due to our assumption that EHT � xO(η)KNL, we have

x−O(η)HE
3LKT 2

N
�K2L2E2T =

K2

L2E2
L2E2L2E2T,

so we may ignore the term of HE3LKT 2/N on the second line to obtain

B′�=�η
xO(η)

E0

(
1 +

K

L2E2

)θmax
(

1 +
H

EL

)1/2 (KT 3E10H2L4

N

)1/2
×K

(
H

LE
+ 1

)1/2
(L2E2T )1/2

(
K

NL2
+ 1

)1/2
� xO(η)

E0

(
1 +

K

L2E2

)θmax
(
K3T 4E12H2L6

N

)1/2 (
1 +

H

LE

)(
1 +

K

NL2

)1/2
� xO(η)

E0

KE2

N

(
1 +

K

L2E2

)θmax

(KT 4E8H2L6N)1/2
(

1 +
H

LE

)(
1 +

K

NL2

)1/2
.

Rearranging factors (and combining this with (9.9)), we obtain the desired bound.

Combining our results so far, we obtain the following general estimate.

Proposition 9.5 (The BFI-style bound with general parameters). For η ∈ (0, 1),
K,N, T, E, H, L� x, and any positive integers b� xO(η) and d� x, assuming that EHT �
xO(η)KNL, one has

B(K,N, T, E, H, L)2�η x
O(η)

(
N2K2H2T 2L2 +K2E2H2T 4L2 +N2H4L4 +N2H4T 2L2

+

(
1 +

K2

E4L4

)θmax

KT 4E8H2L6N

(
1 +

H2

E2L2

)(
1 +

K

NL2

)

+

(
1 +

K2

E4L2

)θmax

KT 5E8H2L3N

(
1 +

H

E
+

H2

E2L

)(
1 +

K

NL

))
.

Proof of Proposition 9.5 assuming Theorem 3.10. This follows by putting together Lemmas 9.2
to 9.4 and squaring (the second line comes from Lemma 9.4, and the third line from
Lemma 9.3).

Finally, we use Proposition 9.5 and the conditions from (4.2) to prove
Proposition 8.6.

Proof of Proposition 8.6 assuming Theorem 3.10. Let θ := θmax; we will soon pick a value for E
such that (5.2) holds. We can assume without loss of generality that K ′, N ′, T ′, E, H ′, L′	 1,
since otherwise the sum in Proposition 8.6 is void. We now apply the bound in Proposition 9.5
(which is increasing in all six parameters) for the parameters K ′, N ′, T ′, E, H ′, L′ from
Proposition 8.6, noting that

EH ′T ′� xO(η)ERM−1NL(ER)−1

= xO(η)NLM−1� xO(η)NL� xO(η)K ′N ′L′.
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Plugging in the bounds K ′�NLxO(η), N ′ 
NxO(η), L′ 
LxO(η), T ′�NL(RE)−1xO(η),
H ′�RNLxO(η)−1, we obtain

B(K ′, N ′, T ′, E, H ′, L′)2

�η x
O(η)

(
N2(NL)2

(
RNL

x

)2 (NL
RE

)2
L2 + (NL)2E2

(
RNL

x

)2 (NL
RE

)4
L2

+N2

(
RNL

x

)4
L4 +N2

(
RNL

x

)4 (NL
RE

)2
L2

+

(
1 +

(NL)2

E4L4

)θ
NL

(
NL

RE

)4
E8

(
RNL

x

)2
L6N

(
1 +

(RNL/x)2

E2L2

)
+

(
1 +

(NL)2

E4L2

)θ
NL

(
NL

RE

)5
E8

(
RNL

x

)2
L3N

(
1 +

(RNL/x)

E
+

(RNL/x)2

E2L

))
.

Simplifying terms and dividing both sides by N4L6, we further get

B(K ′, N ′, T ′, E, H ′, L′)2

N4L6
�η x

O(η)

(
N4L2

x2E2
+

N4L4

R2x2E2
+
N2L2R4

x4
+
N4L2R2

x4E2

+

(
1 +

N2

E4L2

)θN4L7E4

x2R2

(
1 +

N2R2

x2E2

)
+

(
1 +

N2

E4

)θN5L5E3

x2R3

(
1 +

NLR

xE
+
N2LR2

x2E2

))
,

and we wish to show that the right-hand side is� xO(η)−ε. To handle the term of N4L2x−2E−2,
we require that N2L� x1−εE; thus we pick

E := max

(
x4ε,

N2L

x1−ε

)
. (9.11)

For (5.2) to hold, we also need to have E� x−εNLR−1, so we impose the restrictions

R� x−5εNL and N � x1−2ε

R

(which are part of (4.2)). The fact that NR� x simplifies our expression a bit; combined with
the fact that E� x−εNLR−1�NLRx−1 (due to x1−ε�R2 from (4.2)), this shows that

N2R2

x2E2
� 1 and max

(
N2LR2

x2E2
, 1

)
� NLR

xE
.

Moreover, since x(1−ε)/2�R by (4.2), we have NR� x1−2ε�R2, so N �R, which implies

N4L2R2

x4E2
� N2L2R4

x4
.

Overall, it remains to bound the expression

N4L4

R2E2x2
+
N2L2R4

x4
+

(
1 +

N2

E4L2

)θ
N4L7E4

x2R2
+

(
1 +

N2

E4

)θ
N6L6E2

x3R2
(9.12)

by O(x−ε).
Using x(1−ε)/2�R�NL� x2/3−6ε (from (4.2)) and E � x4ε, the first term is admissible

since

N2L2

REx
� x4/3

x3εx3/2
= x−1/6−3ε.
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The (square root of the) second term is similarly bounded:

NLR2

x2
� x(2/3)+(4/3)−2−6ε = x−6ε.

For the third term in (9.12), we use our choice of E from (9.11) to obtain(
1 +

N2

E4L2

)θ
N4L7E4

x2R2
�
(

1 +
N2

L2

)θ
N4L7

x2−16εR2
+

(
1 +

x4

N6L6

)θ
N12L11

x6−4εR2
.

Since NL� x2/3 by (4.2), we can ignore the 1-term in the last parenthesis. For the terms above
to be admissible, we require the restrictions

N4L7 max(1, N/L)2θ� x2−17εR2, N12−6θL11−6θ� x6−4θ−5εR2

(which are part of (4.2)). Finally, using that 1�E� x−εNLR−1 (from (5.2)), we crudely bound
the fourth and last term in (9.12) by(

1 +
N2

E4

)θ
N6L6E2

x3R2
�N2θN

6L6(x−εNLR−1)2

x3R2
� x−2εN

9L8

x3R4
,

which is at most O(x−ε) by the last condition in the first line of (4.2). This completes our
proof.

10. Deshouillers–Iwaniec-style estimates

The seminal work [DI82] of Deshouillers and Iwaniec on sums of Kloosterman sums makes
repeated use of the Kuznetsov trace formula [Kuz80, Mot97], which is in turn based on the spec-
tral decomposition of L2(Γ0(q)\H) with respect to the hyperbolic Laplacian (where q is a positive
integer and Γ0(q) is its associated Hecke congruence subgroup). Here, we prove Theorem 3.10,
which is an optimization of [DI82, Theorem 11] in the θ-aspect, using the same technology. We
note that such optimizations of Deshouillers–Iwaniec bounds (specifically of [DI82, Theorem 12])
have also been used in [DPR23].

We will use all of the notation (and normalization) from [DI82], with the exception of making
some dependencies on the level q explicit. In particular, we consider an orthonormal basis of
Maass cusp forms (uj,q)j�1 such that uj,q has eigenvalue λj,q (which increases to ∞ as j→∞),
and Fourier coefficients ρj,a(n) when expanding around the cusp a of Γ0(q), via an implicit
scaling matrix σa ∈PSL2(R). We denote

μ(a) :=
(w, q/w)

q
,

whenever a is equivalent to u/w, for some relatively prime u, w ∈Z+ such that w | q; in particular,
one has μ(∞) = q−1. We also write

θj,q := 2iκj,q, κ2j,q = λj,q − 1
4 ⇐⇒ θ2j,q = 1− 4λj,q,

where κj,q is chosen such that either κj,q � 0 (when λj,q � 1/4), or iκj,q > 0 (when λj,q is excep-
tional). Recall from Notation 1.2 that θq := maxλj<1/4 θj,q (with θq := 0 if there are no exceptional
eigenvalues), and that θmax := supq θq. Also, recall that all exceptional eigenvalues lie in the inter-
val [3/16, 1/4) by [DI82, Theorem 4] (in fact, the best currently known lower bound is 975/4096,
due to Kim and Sarnak [Kim03, Appendix 2]; this is equivalent to Theorem A).
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The contribution of the exceptional Maass forms to the spectral side of the Kuznetsov
trace formula would vanish if Selberg’s eigenvalue conjecture (Conjecture 1.3) were true, but
would be dominating in most applications otherwise. To deduce better bounds for the geometric
side (which consists of weighted sums of Kloosterman sums), Deshouillers and Iwaniec [DI82]
proved a series of large sieve inequalities for the Fourier coefficients of Maass cusp forms, which
temper this exceptional contribution in bilinear sums. Remarkably, these results make further
use of the Kuznetsov formula, applying it back and forth and ultimately reducing to the Weil
bound.

Lemma 10.1 (Large sieve inequalities from [DI82]). Given ε > 0, q ∈Z+, N 	 1, a complex
sequence (an)n∼N , a cusp a of Γ0(q), and an associated scaling matrix σa, one has∑

j�1
λj,q<1/4

Xθj,q

∣∣∣∣∑
n∼N

an ρj,a(n)

∣∣∣∣2�ε (QN)ε (1 + μ(a)N) ‖an‖22, (10.1)

for any 0<X�max(1, μ(a)−1N−1). Moreover, if (a, σa) = (∞, Id), then given Q	 1 and α∈
R/Z, one has

1

Q

∑
q∼Q

∑
j�1

λj,q<1/4

Xθj,q

∣∣∣∣∑
n∼N

e(nω) ρj,∞(n)

∣∣∣∣2�ε (QN)ε(1 +Q−1N)N, (10.2)

in the larger range 0<X�max(N,Q2N−1).

Proof. The bounds in (10.1) and (10.2) follow immediately from [DI82, Theorems 5 and 7],
respectively. We note that changing the choice of the scaling matrix σa results in multiplying
the Fourier coefficients ρj,a(n) by an exponential phase e(nω); thus in (10.2), using an arbitrary
value of ω is equivalent to using an arbitrary (but consistent) choice of the scaling matrix σ∞.

We also remark that the proof of [DI82, Theorem 7] from [DI82, § 8.3] only considers the
case ω= 0 (and σ∞ = Id), but the same proof extends to any ω ∈R/Z (or equivalently, to any
valid scaling matrix σ∞); this was already noted, for instance, in [BFI87, Lemma 5]. Ultimately,
this is because the proof of [DI82, Theorem 14] also extends to sums with additional weights of
e(mω1) e(nω2).

Remark 10.2. The large sieve inequalities in [DI82] are stated for general values of X on the left-
hand sides (resulting in right-hand sides that depend on X), and are equivalent to those given
in Lemma 10.1. Indeed, to recover large sieve inequalities with an arbitrary X > 0 on the left-
hand sides, it suffices to multiply the right-hand sides by (1 + (X/X0)

θq), where X0 is the best
allowable value in Lemma 10.1.

We find the versions stated above easier to apply optimally in the θ-aspect, and also easier
to compare, by contrasting the maximal permitted values of X (recalling that μ(∞) = q−1).

We now adapt the proof of [DI82, Theorem 11], making the dependence on θmax

explicit.

Theorem 10.3 ([DI82]-type multilinear Kloosterman bound). Let C,M,N, R, S	 1, (bn,r,s)
be a complex sequence, and ω ∈R/Z. Then given a five-variable smooth function g(t1, . . . , t5)
with compact support in t1 
 1, and bounded derivatives ‖(∂

∑
ji/
∏

(∂ti)
ji)g‖∞�j1,...,j5 1, one

has
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∑
r∼R
s∼S

(r,s)=1

∑
m∼M
n∼N

e(mω) bn,r,s
∑

(c,r)=1

g
( c
C
,
m

M
,
n

N
,
r

R
,
s

S

)
S(mr,±n; sc)

�ε (CMNRS)ε

(
1 +

CS
√
R

max(M,RS)
√

max(N, RS)

)θmax √
MRS ‖bn,r,s‖2

×
(
CS
√
R+
√
MN +C

√
SM

) (
CS
√
R+
√
MN +C

√
SN
)

CS
√
R+
√
MN

. (10.3)

Proof. We follow the proof of [DI82, Theorem 11] in [DI82, § 9.1], reducing to the case of smooth
functions of the form (CS

√
R/cs

√
r)f(4π

√
mn/cs

√
r) (up to using slightly different values of ω

and bn,r,s); here, f(t) is a smooth function supported in t
X−1, for X :=CS
√
R/
√
MN . After

applying the Kuznetsov formula, we bound the contribution of the exceptional spectrum more
carefully; as in [DI82, § 9.1], this is given by

Sexc :=CS
√
R
∑
r∼R
s∼S

(r,s)=1

∑
j�1

λj,rs<1/4

f̂(κj,rs)

ch(πκj,rs)

( ∑
m∼M

e(mω) ρj,∞(m)

)(∑
n∼N

b′n,r,s ρj,1/s(n)

)
,

where

b′n,r,s := e
(
−ns

r

)
bn,r,s.

Using the bounds ch(πκj,rs)
 1 and

|f̂(κj,rs)| � 1 +X2|κj,rs|

1 +X−1
� (1 +X)θj,rs

1 +X−1

(see [DI82, (7.1)]), and denoting

X0 :=
1 +X√
X1X2

� 1 +
X√
X1X2

,

for some X1, X2 � 1 to be chosen shortly, we obtain

Sexc�CS
√
R
∑
r∼R
s∼S

(r,s)=1

∑
j�1

λj,rs<1/4

(
X0

√
X1X2

)θj,rs
1 +X−1

∣∣∣∣ ∑
m∼M

e(mω) ρj,∞(m)

∣∣∣∣∣∣∣∣∑
n∼N

b′n,r,s ρj,1/s(n)

∣∣∣∣

�CS
√
R

(1 +X0)
θmax

1 +X−1

(∑
r∼R
s∼S

∑
j�1

λj,rs<1/4

X
θj,rs
1

∣∣∣∣ ∑
m∼M

e(−mω) ρj,∞(m)

∣∣∣∣2)1/2

×
( ∑

r∼R
s∼S

(r,s)=1

∑
j�1

λj,rs<1/4

X
θj,rs
2

∣∣∣∣∑
n∼N

b′n,r,s ρj,1/s(n)

∣∣∣∣2
)1/2

,
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by Cauchy and Schwarz. Recall that μ(1/s) = μ(∞) = (rs)−1 since (r, s) = 1; thus, using the
divisor bound and Lemma 10.1, we conclude that

Sexc�ε (MNRS)ε CS
√
R

(1 +X0)
θmax

1 +X−1

√
RS

(
1 +

√
M

RS

)√
M

(
1 +

√
N

RS

)
‖bn,r,s‖2

� (MNRS)ε
(

1 +
CS
√
R√

MNX1X2

)θmax√
MRS ‖bn,r,s‖2

× (CS
√
R+C

√
SM)(CS

√
R+C

√
SN)

CS
√
R+
√
MN

,

for X1 = max(M,R2S2M−1) (coming from (10.2)), and X2 = max(1, RSN−1) (from (10.1)),
which gives the desired bound up to minor rearrangements. As in [DI82, (9.4)], the non-
exceptional spectrum contributes a similar amount of

�ε (MNRS)ε
√
MRS ‖bn,r,s‖2 (CS

√
R+
√
MN +C

√
SM)(CS

√
R+
√
MN +C

√
SN)

CS
√
R+
√
MN

,

and putting these together completes our proof.

Finally, Theorem 3.10 follows almost immediately from Theorem 10.3.

Proof of Theorem 3.10. We swap the m and n variables, and pick the second term in each
maximum from (10.3) for an upper bound, resulting in a θ-factor of(

1 +
C

R
√
S

)θmax

.

We also rewrite the last fraction in (10.3) as

CS
√
R+
√
MN +C

√
SM +C

√
SN +

C2S
√
MN

CS
√
R+
√
MN

,

and we use the lower bound CS
√
R+
√
MN �CS

√
R in the final term.

To reduce to a smooth function depending only on c, we can take

g(t1, t2, t3, t4, t5) = g1 (t1) g2 (t2) g3 (t3) g4 (t4) g5 (t5) ,

for some smooth compactly supported functions gi, where g2, g3, g4, g5 are equal to 1 on [1, 2].
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Fou82 É. Fouvry, Répartition des suites dans les progressions arithmétiques, Acta Arith. 41
(1982), 359–382.
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