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Instability of standing waves for
non-linear Schrodinger-type equations
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Abstract. A theorem is proved giving a condition under which certain standing wave
solutions of non-linear Schrodinger-type equations are linearly unstable. The eigen-
value equations for the linearized operator at the standing wave can be analysed
by dynamical systems methods. A positive eigenvalue is then shown to exist by
means of a shooting argument in the space of Lagrangian planes. The theorem is
applied to a situation arising in optical waveguides.

1. Introduction
Non-linear Schrodinger equations arise in optics as slowly varying envelope approxi-
mations for the non-linear wave equation (see [13] and [16]). In this paper we shall
focus on the case where the non-linear term is spatially dependent and the space
variable is one-dimensional:

^ + t ) 8 + / ( x k | 2 ) ] ^ (i.i)

where i = yf-i, /3 is a real number and / is at least C3. The number f} is called the
propagation constant. These equations are usually written without the /3 present.
Notice that if u(x, t) satisfies (1.1), then e~ip'u(x, t) will satisfy the equation without
the )3 term. A standing wave u is a real time-independent solution of (1.1) for some
ft; it therefore satisfies

uxx + [/3+/(x,|u|2)]u=0. (1.2)

We shall address the question of the stability of a solution of (1.2) relative to the
evolution equation (1.1). We shall describe a mechanism for the instability of certain
standing waves. The instability will be determined by linearizing (1.1) at the standing
wave in question.

The main theorem of this paper holds under fairly general hypotheses on the
non-linearity /

(HI) /:R2->R is at least C3 and all derivatives up to order 3 are bounded on a
set of the form UxU, where U is a neighbourhood of 0 € R.

(H2) f(x, 0)->0 exponentially as x-»±oo.
Write (1.1) in real and imaginary parts, <j> = v + iw:

v, = wxx+f(x,v2+w2)w + pw,

w, = -vx x -f(x, v2 + w2)v - £v.
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120 C. K. R. T. Jones

Suppose u(x) is a standing wave solution; then it is a real (w = 0) time-independent
solution of (1.3). We shall assume the following about u(x).

(H3) u(x) is C2 and decays exponentially as x->±oo.
The existence of such a u(x) does not necessarily follow from the hypotheses

(HI) and (H2). The main application will be to optical waveguides (see § 5) and
the theorem will be applied to standing waves that are found by phase portrait
techniques. A condition that is necessary for u(x) to decay exponentially is that
)8 < 0, so we shall make this a hypothesis.

(H4) P<0.
The linearization of (1.3) at w(x) is formally

P, = qxx+f(x,u2)q + pq,

q, = -Pxx -fix, u2)-2D2f(x, u2)u2p-pP,

where D2f is the derivative with respect to its second variable. Setting

L.=j-i+fix,u-

(1.4) can be rewritten as the system (this is the notation of [17])

( (

We shall study instability by finding unstable eigenvalues of the operator TV, which
is natural to consider as an operator on Hl(U)x H\U).

The operators L+ and L_ are both self-adjoint on H'(R) and therefore their
spectra are real. The spectrum of TV will definitely not be real; in fact much of it
will lie on the imaginary axis. The interesting aspect of this problem is the relationship
between the spectrum of TV and the spectra of L+ and L_. Using the hypotheses
made, it can be shown (see § 4) that the spectra of both L+ and L_ in {A > 0} consist
of finitely many eigenvalues. The following quantities are therefore well defined:

P = number of positive eigenvalues of L+

Q = number of positive eigenvalues of L_.

The main theorem we shall prove in this paper relates P and Q to the existence
of positive eigenvalues of TV.

THEOREM 1. If P - Q ̂  0,1, there is a real positive eigenvalue of the operator N.

From Sturm-Liouville theory, P and Q can be determined by considering solutions
of L+v = 0 and L_v = 0 respectively. In fact P and Q equal the number of zeros of
the associated solution v. Notice that L_u = 0 is actually satisfied by the standing
wave itself. It follows that

Q = number of zeros of the standing wave u(x).

For positive solutions, theorem 1 then says that if P> 1, the standing wave is
unstable. It is known that if/ is independent of x and of the appropriate form, for
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instance /(|M|) = |u|a, the ground state is stable (see [7] and [17]). In this case the
ground state is the unique positive solution and it is easy to calculate that P=\,
hence P-Q = \. The spatial dependence of / however, offers the possibility of
unstable waves.

The operator L+ is the derivative of the non-linear operator which is the right-hand
side of (1.1). A change in P, as some parameter varies, would therefore indicate
that bifurcation of standing waves had taken place. Theorem 1 then shows which
of the bifurcating solutions are necessarily unstable. There are recent instability
results of Berestycki and Lions [4] and Shatah and Strauss [14], but these are a
different phenomenon.

A case of space-dependent/arises in optical waveguides, (see [1], [15] and [11]).
In the last section of this paper we shall apply theorem 1 to conclude a new result
on the instability of certain waves, as announced in [11].

The basic idea in the proof is to apply a dynamical systems point of view to the
eigenvalue equations. The existence of eigenvalues is established by a shooting
argument in the space of Lagrangian planes.

In the next section we shall set up the eigenvalue problem and show how it can
be reformulated as the problem of finding a connecting orbit in a Grassmannian
manifold. We call it a shooting argument for the following reasons. An orbit is
determined for each real value of A that satisfies the desired condition at —oo. The
boundary condition at +oo is formulated by requiring this orbit to 'connect' to a
certain set. As A varies, the topology of this orbit can be seen to change, and at this
change the orbit is forced to 'connect' to the desired set, thus creating an eigenvalue.

The special structure of the equation leads to a restriction to the invariant
submanifold of the Grassmannian consisting of the planes that are Lagrangian. The
space of Lagrangian planes has fundamental group Z. Some notion of winding
therefore exists for trajectories in this submanifold; this is the Maslov index. This
winding number supplies the topological measurement needed for the shooting
argument described above. In this low-dimensional case a very explicit representa-
tion of the space of Lagrangian planes can be given (see the Appendix) which
allows one to visualize the winding in a very concrete way. This aspect is important,
since the Maslov index cannot be used directly because the trajectories of interest
are not necessarily closed. The description is also rather satisfying and may be of
independent interest.

This use of the Maslov index as a mechanism to determine eigenvalues has been
known for some time as a higher-dimensional generalization of Sturmian theory.
Indeed, according to one interpretation this idea lies at the heart of the Morse index
theorem on geodesies. These cases are usually associated to periodic problems, but
the application of the Maslov index to non-periodic problems has also appeared,
(see [3], [6] and [8]). The situation presented in this paper, however, differs
fundamentally from each of the above in that the Maslov index is not monotone
in the (eigenvalue) parameter here. An exact count of the relevant eigenvalues is
therefore not afforded by the technique, but a topological argument still gives the
existence of these eigenvalues.
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A framework for the consideration of the eigenvalue problem is set up in § 2. In
§ 3 the main lemma is proved that forms the foundation of the shooting argument.
The proof is then completed in § 4 and the application to optical waveguides is
worked out in § 5.

2. Formulation of the eigenvalue problem
Consider the eigenvalue equations of N (see (1.6)):

L.q = \p, L+p = -\q. (2.1)
We shall restrict to the case A € R since the theorem asserts the existence of real
eigenvalues. These are the ordinary differential equations

q"+f(x,u2)q + Pq = \p,
/ 2 ^ . 2 2 (2-2)

p +f(x, u )p + 2D-J(JC, u )u p + /3p = -Ag.

If we write (2.2) as a system, we obtain
p'=y, q'=y», y' = -g(x)p-\q, w'=-h(x)q+xP, (2.3)

where

g(x)=f(x,u2'

h(x)=f(x,u2

recalling that u = u(x).
The system (2.3) is not Hamiltonian but becomes so if the change of variables

s = -q is made in (2.3). The equations are then

p' = y
IV I

y' = -g(x)p + \s • - ' ' • (2"4)

w'= ft(x)s +Ap

Theorem 1 will be proved by finding solutions of (2.4) that decay at ±00 with
A > 0. This leads to the first formulation of the eigenvalue condition. Rewrite (2.4)
with P = (p,s,y, w) as

P' = A(X,x)P. (2.5)

LEMMA 2.1. If (2.5) admits a solution P(x) that decays exponentially as x -* ±00, then
A is an eigenvalue of N.

Proof. If P(x) decays exponentially, then so does p{x) and so do their derivatives.
Since q(x) = -s(x), (p(x), q(x)) e H'(R) x H'(R).

To make the boundary conditions as JC -* ±00 clearer, we shall compactify the
equations (2.4) in x. In order to view the behaviour asx-> ±00, set

0

-g
A

A

h

1

0 - 1

0

1 / 1 + T\
: = — In I .

2K \1-TJ

(2.6)

This formula for compactification is due to Terman. The number K will be chosen
by lemma 2.2. Replacing x in its role as a dependent variable, but not as the
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independent variable, (2.5) becomes

p' = y, s'=-w,

w'=-hc(r)s + \p, '
T'=K(1-T2),

where ' = d/dx. Using the notation introduced above, (2.7) can be abbreviated as

P' = Ac(\,r)P, T '=K(1-T2) , (2.8)

where

To recover a solution of (2.5), choose a solution of (2.8) that satisfies P(x0) = Po

and T(X0) = T0 with roe ( - 1 , +1). Set x0 so that

e2kx»-l

then P(x) will be a solution of (2.5) satisfying P(x0) = Po-
The equation (2.8) is denned on R 4 x(-1 ,+1) . To extend to T = ± 1 , it must be

checked that gc and h€ can be smoothly extended. This follows from the hypotheses
made onf namely (HI) and (H2).

LEMMA 2.2. The number K can be chosen so that gc and hc can be extended to r = ±1
in a C1 fashion.

Proof. Firstly, consider g(x)=/(x, «2) + j8. Define gc(±l) = 0 and without loss of
generality assume that /3 = 0. To show that gc is continuous, it suffices to note that

fix, u2) =f(x, u2) -f{x, 0) +fix, 0)
and

\fix, u2) -fix, 0)1 < \DJix, u\x))\ \uix)\2 (2.9)
for some w(x) with |M(X)|<|U(X)| , where D2f denotes the partial derivative of /
with respect to its second variable. (HI) and (H2) now imply that/(x, «2(x))-»0
asx-> ±oo, in fact exponentially.

To see that gc can be differentiated at r = ±\, it must be shown that
2KX

g(x(T))=——g(x)
1 — T 2.

tends to 0. But this follows from the above by choosing K SO that e2KXfix, u\x)) -* 0.
For gc to be C2, dg/dx must decay exponentially; this follows from the bounds on
the second derivatives. It can be shown similarly that hc is extendable by using the
bounds on some of the third partial derivatives.

The planes T = - 1 and T = + 1 are now invariant and carry the asymptotic flows
for (2.4) as x -* ±oo. In both planes this is the system

p' = y, s'=-w, y'=-fip + \s, w' = /3s + Ap, (2.10)
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which is a constant coefficient linear system. Call the matrix of the right-hand side
B. A simple calculation shows that the eigenvalues of B are ±(-/3±iA)I/2. Since
P <0 and AeR, it follows that there is a two-dimensional stable subspace and a
two-dimensional unstable subspace. The stable subspace (call it S) is spanned by

(1,0,-5,-7,) and ( 0 , 1 , - T J , 8 ) , (2.11)

where 5 +117 = (-/3 + iA)1/2. The unstable subspace (U) is spanned by

(1,0,5,7,) and (0,1,77,-5). (2.12)

Any solutions of (2.4) that decay asx-> -00 correspond to solutions of (2.7) that
tend to (0, - l ) e R 4 x ( - l , + l ] as x-»-oo. These all lie on the global unstable
manifold of this critical point (call this WL). WL is easily seen to be three-
dimensional.

The boundary condition at +00 is satisfied by solutions on the stable manifold
W*+ of (0, +1). The following lemma then characterizes eigenvalues in terms of these
manifolds.

LEMMA 2.3. / / WLnW%* {0} x ( -1 , +1), then A is an eigenvalue of N.

Proof. Since { 0 } x ( - l , + l ) c WLnW+, WLn{r = +\} = 0 and Ws
+n{r=-l} = 0,

it follows that if WL n WL ̂  {0} x ( -1 , +1), then there is a non-zero Po with (Po, T0) e
WL n W+ and r0 ̂  ± 1. (2.5) then has a solution which decays to 0 as x -* ±00. Since
there are stable and unstable manifolds associated to eigenvalues that lie off the
imaginary axis, the decay is exponential and lemma 2.1 applies.

We claim that WLn{T=r0} is a two-dimensional subspace. Since the equation
is linear, it must be a subspace. Near T = —1, WL must be three-dimensional. Since
(0,1) is an unstable eigenvector, WL n{r = T0} is a two-dimensional subspace near
T = - 1 . By solving the T equation, there is always a tangent vector to WL in the
r-direction. It follows that WL n {T = T0} is two-dimensional for all T0 5* +1. Similar
considerations hold for W+.

We shall view WL as a curve in the space of two-dimensional subspaces of R4.
In order to set this up, consider firstly the second exterior power of R4: A2(R4). Any
linear map A on R4 induces a corresponding A<2) on A2(R4) such that

A(2\PX A P2) = APl A P2+ P, A AP2,

where P, ,P2eR4 [5]. If Pi(x) and P2(x) satisfy (2.5), it follows that Q(x) = P,(x) A
P2(x) satisfies

<?' = A(2)(A,x)Q. (2.13)

Choose a basis {et,e2,e3, e4} on R4; then the set {e, A e,: i,j = 1 , . . . , 4} forms a
basis of A2(R4) and A2(R4) = R6. A point q e A2(R4) can then be written Q = £ q^e, A e,.
(2.13) will satisfy the same conditions as (2.5) and hence can be compactified:

Q' = Ai2\\,r)Q, T' = K(1-T2); (2.14)

with an abuse of notation we shall not use the c on A to denote the change of
independent variable. This gives a flow on R 6 x [ -1 , +1].
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Since (2.13) is linear, it can be projectivized to an equation on UP5, five-
dimensional real projective space. Write this as

4»' = a(\, x, <j>) (2.15)

or in compactified form as

<t>' = a{k,x,<t>), T'=K(1-T2). (2.16)

This last equation induces a flow on UP5 x [ -1 , +1]. By checking in local coordin-
ates, one sees that a is at least C'.

If J ' b^eR 4 , then y{ Ay2e A2(R4) and the plane spanned by {y,, y2} is associated
to y, sy2. However, not all «eA2(R4) can be matched to a plane in this way. An
element o> e A2R4 is said to be decomposable if a> = y, A y2 for some y,, y2 e R4. It is
true that <a is decomposable if and only if <o A a> = 0 (see [10]). If (? = £ <?.>*/ A eh

this condition can be written as

912^34- <7l3<?24+<?14923 = 0. (2.17)

The quadric defined by (2.17) in R6 is invariant and hence its image in UPS is
also invariant; this is the Grassmannian of two-dimensional planes in R4: G2 4 . A
flow on <J2,4X[—1> +1] is thus obtained.

Now set

Z{k,x)=Wu.n{r=r(x)},

where T(X) is chosen in the usual fashion. Also set

<D(A, x) = o-(Z(A, x)),

where o-:R4x[-l,+1]-»R4 is the natural projection. It follows that Z(A, x) =
(3>(A, X)T(X)). Let P,(A, x) and P2(A, x) be two solutions that span 4>(A, x) and set
Q(A, x) = Pt(\, x) A P2(A, x). Q(X, x) is now a curve of one-dimensional subspaces
in A2(R4). If II: R6\{0}-> UPS is the natural map denoted by Il(Q) = Q, set <£(A, x) =
Q(\, x). The curve £(A, x) = (<f>(\, x), r(x)) is in G2 4x [ -1 , +1].

Let S, = Ws+ C\{T = +1}, the stable subspace of 0 inside T = +1. Set

S, = {\jie G24: the subspace ^ determined by \ft satisfies ^ n o-(2,) ^{0}}.

The following lemma provides the characterization we need for an eigenvalue of
N. The notation w means the omega limit set under the flow [9].

LEMMA 2.4. If<o(<f>(\,x0), r ( x 0 ) ) n ^ x { 1 } # 0 , tfien A is an eigenvalue of N.

Proof. It suffices to show that

implies that WLn Ws
+^{0}x(-l, +1), by lemma 2.3. Suppose that WLn WS

+ is
trivial. With Y(A, x) = w ; n {T = T(X)} and ¥(A, x) = a( Y(\, x)) it follows that

for all x.
The manifold Ws+ is constructed locally in a neighbourhood of (0,+1) and is

attracting in that neighbourhood. Let V be such a neighbourhood and r(x) € Z(A, x)
with x large enough so that ar(x) e V for some a > 0. The positive number a will
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depend on x, but by the attractivity property of W+, ar(x) will approach W" as
x -> +00. It follows that p(x) = II(span {v(x)}), where II: R4\{0} -»• RP3 is the natural
projection, will approach Il( W+) <= RP3 under the flow inherited from (2.8) by
projectivizing. Let U be a neighbourhood of n ( W " ) c R P 3 disjoint from 11(2,)
(each of these are closed circles in RP3, which is normal). It follows that n(4>(A, x))
intersects U if x is large enough. However, if, in G2 4) <f>(\, x) lies in a neighbourhood
of S, for any large x, then at such a value of x, n(4>(A, x)) is disjoint from U, which
contradicts the above.

Plucker coordinates can be used to actually compute equations on G2-4 when
viewed as a projective variety given by (2.17). This will be useful in proving the
following lemma. A repeller is a set which is an attractor in backward time. An
attractor is the omega limit set of a neighbourhood of itself.

LEMMA 2.5. For each A eR the set 3>i is a repeller in the flow on G2>4x{+1}.

Proof. Change coordinates in R4 so that the matrix B (see (2.10)) on {T = + 1 } has
the form

1-8
V

\
0

—n
-8

8

V

\

o
—n
8 1

(2.18)

The stable subspace is then given by the condition y = w = 0. In Plucker coordinates
the condition denning 3sx is <734 = 0. To see this, write out the determinant condition
that two vectors spanning 9 e 9 , are linearly dependent on (1,0,0,0) and (0,1,0,0).
The equation for q34 can be easily computed to be

The set qM = 0 is thus a repeller.
The equations (2.4) (or (2.5)) are Hamiltonian and thus preserve Lagrangian

planes. In the following, / detnoes the usual symplectic matrix

J 0

where / is the 2 x 2 identity.

Definition. A Lagrangian plane V is a two-dimensional subspace of R4 that satisfies
(P,, JP2) = 0 for all P,, P2 6 ¥ , where the parentheses denote the usual inner product.

The set of Lagrangian planes is denoted A(2). The following lemma gives a
characterization in terms of Plucker coordinates.

LEMMA 2.6. A(2)c G2,4 is given by the condition

Proof. It is trivial that (P, JP) = 0 for any vector P. It suffices to show that if P,, P2

span a plane 4>, then (P,, 7P2) = 0 if and only if qn + q24 = 0. In coordinates it is a
trivial calculation to check that

9n + 924 =(Pl,JP2),

and the lemma follows.
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To make use of A(2), it is important that the trajectories of interest lie in this
submanifold of G2>4.

LEMMA 2.7. <f>(\, x) e A(2) for all A and x.

Proof As mentioned above, the system (2.5) is Hamiltonian and hence preserves
A(2) x [ -1 , +1]. The curve (<f>(\, x), T(X)) is the unstable manifold of the point f_
in G2>4x{-1} associated to W"n{r = -1}. Now A(2)x[-1,+1] is invariant and
C- is Lagrangian. Moreover, it has an unstable manifold in this space which is
non-trivial because it comes from the r-direction, and therefore it must be this curve
( ( ) ( ) )

3. Main lemma

The space of Lagrangian two-dimensional planes in R4 can be represented as a
homogeneous space: A(2)sI/(2)/O(2), where U(2) is the group of 2x2 unitary
matrices and O(2) is the subgroup of real orthogonal matrices (see [2] and [8]).
An identification of the above form holds in general, but in this special low-
dimensional case a very concrete visualization can be given. The space of Lagrangian
2-planes is a fibre bundle over S1 with fibre S2 and clutching function the antipodal
map. In other words, consider 5 2 x [ - l , +1] and identify the fibres over ±1 by the
antipodal map. In a more recent paper this is shown by Arnol'd [3]. A new
characterization of A(2) in which this can be seen very explicitly is given in the
Appendix. The projection onto the circle Sl gives the winding that is the Maslov
index. On C/(2)/ O(2) this is achieved by the map: det2.

Let i/» € A(2); Arnol'd [3] introduces the notion of the train of tp, which is equivalent
to the following.

Definition. The train of t(i, denoted 2>(</r), is the set of all <£eA(2) so that (as
two-dimensional subspaces of R4) (frrwjj^ {0}.

Since A(2) is a homogeneous space, every train 3>(ip) is topologically identical.
In the fibre bundle it covers Sl and has the form of a sphere with its poles identified.

It is natural to use the covering space of A(2) in order to exploit the winding.
The covering space is S2 x R as shown in the Appendix. We shall denote this covering
space C(2) and indicate a lift by A. For any if/e A(2), its train is covered by 3){<f>),
which can be visualized as the union of infinitely many cones (see figure 1 and [3]).
In figure 1 each vertical slice is a disc and the fibre S2 is formed by identifying the
boundary to a point. The key point is that 2(4>) divides C(2) into infinitely many
components [3].

By the lifting property of covering spaces, the curve described earlier, <f>(\, x),
can be lifted to C(2), modulo a choice of the lift of its left endpoint. Indeed a flow

FIGURE 1. 3>(4i) sits inside C(2).
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on C(2)x[-1 ,+1] can be induced from that on A(2)x[-1,+1]. This flow is
continuous in A € R; we can therefore put these parametrized flows together to form
a flow on C(2) x [ -1 , +1] x R.

Recall that the asymptotic system for the equation on R4 is given by (2.14) and
is the same for x-> ±oo. Let U = U(A) be the unstable subspace; this is spanned by
(2.12). Let S = S(A) be the stable subspace; it is spanned by (2.11). It is clear that
both 5, C/e A(2). In the homogeneous space representation A(2)s= £/(2)/O(2) and
a subspace is represented by a unitary matrix that takes the real plane to the plane
under construction. Here we are identifying R4 with C2 by (u,, u2, vt, v2) becoming
(ui + ivi, u2+iv2). It follows that S is represented by

1 [l-i8 -177 1

2 2 •

and U is represented by

I \l + i8 ir> 1
1 + S2+772L iv 1 - « J '

Recall that S + it) = (-/3 + iA )1/2, where the square root with branch on the negative
real axis is taken. Noting that j8 < 0, the matrices representing S and U are easily
seen to be continuous in A e R.

Now choose continuous lifts of U and S, say U- U(X) and S = 5(A). Also set
3) = ®(S(A)), the lift of the train of 5.

Fix A, <A2 and put together the parametrized flows on C(2)x [ - l ,+ l ]x [A 1 , A2].
Since S(A) is continuous in A, it is easy to see that

•s/1 2=C(2)x{+l}x[A,,A2]\ U (®(S(A)), 1,A) (3.1)
W[A,,A2]

has infinitely many components. Call one such component

,A). (3.2)
A

The main lemma is the idea of a shooting argument in the covering space. Recall
that the trajectory of interest in A(2) x [ -1 , +1] is denoted £(A, x) = (0(A, x), T(X)).

Fix JC0 and choose a lift so that <£(A, x0) varies continuously in x.

LEMMA 3.1. If there is a component of siX2, say Ah2 (as in (3.2)), so that

(1) a>U(\i,xo),T(xo))n[C(2)\cl(A(\1))-\x{+l}*0,

(2) to{${\2, x0), r(x0)) n A(A2) x {+1} * 0 ,

then there is a A e [A,, A2] that is an eigenvalue of N.

Proof. Consider the set

Xo= LJ ($(\, x0), r(x0), X)
Ae[A,,A2]

and apply the flow on C(2)x{+l}x[A,, A2] to this. The a>-limit set <o(X0) is
connected and by (1) and (2) above it must intersect dA, 2 c UA (2>(S(A)), A). We
want to conclude from this that there is a A € [A,, A2] so that

$ , x0), T(JCO))ndA(k) x{+1} * 0 . (3.3)

https://doi.org/10.1017/S014338570000938X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000938X


Instability of standing waves 129

This, however, does not follow immediately, since a>(X0) is not necessarily the union
of

(o($(\, x0), T(X0), A)

as A varies over [A,, A2].
From lemma 2.5 the set S>, is a repeller in G24x{+1}. It follows that ®(S(A)) is

a repeller in A(2)x{+1} and hence ®(S(A)) is a repeller in C(2)x{+1}. Moreover
D = UAE[A, ,A 2 ] (®( S ( A ) )> A ) i s a repeller in C(2)x{+l}x[A,, A2]. Let T be the
complementary attractor of D; in other words, if U is a neighbourhood of D,
T = w(C(2) x {+1} x [A!, A2]\ U). The complementary attractor is shown to exist in
[9, p. 32] for the compact case. It can be achieved here firstly in A(2) and then by
lifting to C(2).

Suppose that for all A e [A,, A2]

it follows that it must lie in the complementary attractor so that

But T is an attractor and hence there exists e > 0 so that

*>( U ( < H A , X O ) , T ( X O ) , A ) W . (3.4)
\Ae[A-e,A + e] /

Since Fez s&i2, it divides into infinitely many components. By compactness of the
interval [A,, A2] it follows that the quantity in (3.4) must lie in the same component
for all A, but this contradicts the hypotheses of the lemma.

Remark. If the following hold:

(1) «(0(A, x0), T(JCO)) «= C(2)\cl (A1>2(A,)) x { +1},

(2) io($(i,Xo),T(x0))cA(\2)x{+\},

then the eigenvalue A e (A,, A2); in other words it is not A, or A2. This follows easily
from the above proof.

4. Proof of theorem 1
The strategy of the proof is to apply lemma 3.1 with A, = 0 and A2 » 1. We have for
each AeR a distinguished trajectory for the flow on C(2 )x [ -1 , +1], namely
f (A, x) = (<f>( A, x), r(x)). This trajectory satisfies the appropriate boundary condition
asx-»-oo, namely

as x-»-oo, where U{\) is some lift of the unstable subspace t/(A) chosen con-
tinuously in A eR, as in § 3. Since l/(A)£ 2>(S(A)) for all A eU, we can choose a
component of s4t 2 as in (3.2), say Ax 2 , so that

for all A e R. We shall now analyse the limit cases and show that the hypotheses of
lemma 3.1 are satisfied under the condition P- Q ̂  0,1.
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The first step is to analyse the behaviour of £(A, x) for A » 1 . Consider system
(2.5) again,

P' = A(A,x)P,

and rescale by introducing £ = A~1/2x and

y = \~x/2y, w = \~1/2w. (4.1)

This leads to the system

p = y, s = -w,

jU-(g(x) /A1 / 2 )p + s, t = (h(x)/\1/2)s + p, T = ( K / A 1 / 2 ) ( 1 - T 2 ) , (4.2)

where ' = d/dg, when compactified with T. Abbreviate this as

P = A(A,T)P , T = ( K / A 1 / 2 ) ( 1 - T 2 ) . (4.3)

Now let A -» +oo; the limiting system of (4.2) is

p=y, s = -w, y = s, w=p, f = 0. (4.4)

This equation is linear and autonomous. Each T = constant slice is invariant. The
eigenvalues of the matrix for (4.4) are ±(±i)1/2. There is therefore a two-dimensional
stable and a two-dimensional unstable subspace in each r-slice. The equation (4.2)
can be transformed and projectivized as before. This produces a transformed flow
on A(2) x [—1, +1], indexed by A e R. Let £(A, x) be the image of £(A, x) under this
transformation. As x -> —oo, £(A, x) -» £_, the critical point associated to the unstable
subspace.

Now if A -* +oo, in the limit system on A(2) x [ -1 , +1], £_ x [-1, +1] is a curve
of critical points. Since £_ came from the unstable subspace, each one is attracting.
Let N x [ - 1 , + 1 ] be an attracting neighbourhood of £ _ x [ - l , + l ] . If A » 1 , JVx
[-1, +1] remains an attracting neighbourhood and therefore £(A, x) lies in this set
for all x. It follows that <£(A, x) lies in a neighbourhood in C(2) of its value as
x -> —oo, since the transformation is independent of T. This proves the following
lemma.

LEMMA 4.1. If\»\,

w(<£(A, x0), T(X0)) C A(A) X {+1}.

Setting A2 to be this value of A, part (2) of lemma 3.1 is seen to be satisfied.
Now consider the case A =0. The original linear equations (2.1) simplify to

L+p = 0, L_q = O, (4.5)

which can be written

p"+g(x)p = 0, q"+h(x)q = O. (4.6)

Each of these leads to a flow on R2 which can be projectivized. This renders a
flow on RP1 x RP1, which is a torus. We claim that this torus lies in A(2) in a natural
way and is invariant when A = 0.

Let U be a unitary matrix; viewing A(2)=U(2)/O(2), a solution on A(2)x
[-1.+1] is given by (U(x), T(X)), where U(x) is a matrix that takes 1R (the real
plane) to the plane <l>(0, x). Since equation (2.5) uncouples, U can be taken to be
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a diagonal matrix. SR is spanned by (1,0,0,0) and (0,1,0,0) and <l>(0, x) is spanned
by (p, 0, y, 0) and (0, 5,0, w), where y = p' and p satisfies

L+P = 0,

which decays as x-> -oo, w = -s' and s satisfies

L_s = 0,

also decaying as x -* —oo.
In C2 this is the complex line determined by applying

0

to SR. Normalizing, (4.7) becomes

/ P + iy 0

s + iw

0

(4.8)

The matrix (4.8) is U(x). The correspondence U(2)/O(2) = S(2) (see the
Appendix) is given by S = UUr. Therefore the matrix in S(2) corresponding to

0
0

(4.9)

where

0, =2 tan"1

Recall that s = -q and so

02 = -2 tan"1 (w/q) = -2 tan"1 (q'/q).

The set of matrices under consideration is therefore the diagonal matrices in S(2),
which, as commented in the Appendix, form a torus T<^ A(2) = S(2). The plane
(0,, 02)eR2 is the covering space of T. To see how it relates to the covering space
of A(2), let p: C(2)-» A(2) be the covering. The set p~\T) can be obtained from
R2 by identifying the lines 02= 0, ±2ir in the obvious way.

Consider the behaviour of (0,(x), 02(x)) as x->-oo, where £(0, x) =
(<f>(0, x), T(X)) is as usual the trajectory of interest in A(2) x [-1, +1] and <f>(0, x)
is represented by

/«-.<-> o
\ 0 eu*

From the analysis of the uncoupled systems it is easy to check that

0,(x)-»2tan~1 (>/z/3) = 0i~, 02(x)-»-2 tan"1 (VzrP) = 02

as x-*—ao (see figure 2).
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FIGURE 2

Note that in these coordinates the stable subspace in r = +1 is not the real plane
but corresponds to

0,= -2 tan"1 (V^JS), 02 = 2tan"1(Vz/3).

Recall that 3)x is the set of subspaces intersecting this space. It can be easily
checked that 3), n T consists of the lines

0, = -2tan"1(V3/3) + 2nir, 02 = 2tan"1 (VzrP) + 2mir,

where m,neZ.
By lemmas 3.1 and 4.1, theorem 1 will be proved by showing that P-Q^O, 1

implies that (0i(x), 62(x)) does not tend, as x-> +oo, to any point in the component
of C(2)\3)l that contains (0j~, 0J); this is the shaded region in figure 2. In the
following, note that in C(2) 3 p~\T) we can take (01 + 2MTT-, 02-2n7r) as equivalent
to(0,,02).

Firstly calculate 0i(x) as x-»+oo. This comes from the equation L_g = O. Recall
that q(x) = u(x) is the solution of interest. Let

5=2tatTl(q'/qy,

then 0 2 =-0. Since u(x)-*0 as x-»±oo,

0(x) ̂  -2 tan"1 (v/3?) + 2m7r

as x-* +oo for some m e Z. It follows that

62(x) -* 2 tan"1 (V^F) + 2m7r

as x-* +oo for some meZ.
For 0i(x) consider L+p = O; there are two possibilities for 0i(x) depending on

whether p(x) is bounded or not.
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Case 1. p(x) is bounded implies that

0,(x)->-2tan"1 (Vzr

for some neZasx -* +00.

Case 2. p(x) is unbounded; then

0,^2 tan"1

Let A be the component of C(2)\3)1n T containing (0i~, 0J), i.e. the shaded
region in figure 2. In case 1,

(<?i, 02)->(2tan"1 ( v ^ ) + 2n7r,2tan"' (yf=]j) + 2mv)

~ (2 tan'1 (yf^p), 2 tan"1 (V^/?) + 2(m - n)n).

The only possible values for this asymptotic value of (0,, 02) that are on 9A(0) are
C,, C2 in figure 2. These correspond to m — n =0, -1 respectively.

In case 2,

(0i, 02)-> (-2 tan"1 (7=0), 2 tan"1 ( v ^ ) + 2(m -71)77-).

Again the only possible points on dA(0) that have this form are BX, B2 in figure 2
and these have m - n = 0, — 1.

To complete the proof, one observes that by applying Sturm-Liouville theory to
both L+ and L_ we obtain

P = n, Q = m.

If P - Q 5* 0,1, then m - « ^ 0 , - l and the asymptotic values of (0,, 02) are not on
dA(0). Therefore part (1) of lemma 3.1 is satisfied with Aj =0 and it follows that
there is a A e [0,00) which is an eigenvalue. Since the stronger statements hold as
in the remark following lemma 3.1, the forced eigenvalue A must lie in (0,00).

5. Application
Optical waveguides have attracted much attention recently. A case of particular
interest is that of three layers of different dielectric material. The geometry is essential
two-dimensional. It is assumed that the interfaces are planar and that propagation
is in the plane of these interfaces. The bounding media are assumed to be non-linear
with Kerr-like (cubic) response to the electromagnetic field. The sandwiched medium
is linear.

With the interfaces at x = ±d, the refractive index is

. |2 f«0+a0|u|2, \x\>d,
n(x, u ) H 1 ,

where n0, a0 and «, are constants (see [1] and [15]).
We shall take f(x, \u\2) to be a smooth approximation of n(x, \u\2) so that the

hypotheses (HI) and (H2) are satisfied. To be precise, pick an e > 0 and let gc(x)
be a smooth function which takes the following values:

fO i f |x |>d + e,
l l if xhsd + e.
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Set

then he = n if | x | < d - e or | x | sd + e. Moreover, the hypothesis (HI) is satisfied
although the bounds become large as e-»0. As x-»+oo, ht(x, 0)-» n0 and so we set

L(x, \u\2) = hc(x, \u\2) - n0;

(H2) is then satisfied also. In fact, fE(x, 0) = 0 if |x| is large enough. It follows that
any standing wave u(x) satisfies (H3).

The evolution equation of interest is now (1.1) with / = / e for some e>0. To
apply the theorems we have proved, we need to regularize the problem in the fashion
described above. It is easiest to see how the standing waves are constructed for the
limit problem, but it will be clear that these can be approximated by solutions of
the regularized problem. This will lead to a family of standing waves «"(*)-> u(x)
as e -»0. Let L% and Li be the usual operators for the e -approximate problem and

The solutions of L%p = 0 and L° q = 0 can be determined easily and it will be seen
that these perturb to pe(x) and qe(x). This allows one to compute P and Q for e # 0.

For the wave that has a certain limiting configuration u(x), we shall conclude
that Ne has a real positive eigenvalue if e > 0 is small enough. It is likely that N°
could be proved to have an unstable eigenvalue by a perturbation argument [12];
however, we do not explore this here.

It is described in [11] how to construct standing waves for the e = 0 problem.
These are constructed by superimposing the phase portraits of the two equations

w"+(/io+ao|"|2)w=0 (5.1)

and

u"+n,u=0. (5.2)

Trajectories must be found which lie on a phase curve of (5.1) on the sets (-oo, -d)
and (d, +oo). They must lie on a phase curve of (5.2) for xe (-d, +d). Moreover,
the following matching must hold:

lim u(x) = lim+ u(x), lim M'(X) = lim+ u'(x), (5.3)
x*d x * d x*d x*d*d

and similarly at x = -d.
Various configurations have been found by analytical and numerical methods

and are discussed in [11]. We shall be interested in those that are the symmetric
waves beyond the bifurcation value. These have a phase portrait where the linear
part of the trajectory extends outside the homoclinic orbit of the non-linear equation
(see figure 3). We shall call these type-5 orbits. The application of the theorem will
lead to the conclusion that type-S orbits are unstable, in the sense that the associated
Ne has a real positive eigenvalue.

An alternative representation of e = 0 standing waves is given as follows. If
)3 + «0<0, (5.1) has a homoclinic orbit. Let C be the part of this orbit lying in the
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FIGURE 3. Type-S orbits.

set {w'aO} and C~ the rest. Apply the 2-D time map T of the flow associated to
(5.2). Standing waves are determined by intersections of T(C) and C~. If T(C)
and C~ cross transversely, we shall call the wave non-degenerate. It is not hard to
show that a non-degenerate wave u{x) perturbs to a standing wave solution of the
e 5* 0 problem if e is sufficiently small.

Let v~(y) be tangent to C~ at ye C~ pointing away from (0,0). Let vT(y) be
tangentto T(C)atye T( C) pointing away from (0,0). If ye T(C)n C~ corresponds
to an orbit of type S, then C " X D T > 0, i.e. vT is in a counterclockwise rotation from
v~. In fact this condition characterizes orbits of type S (see figure 4).

T(C)

FIGURE 4. The intersection of 7"(C) and C .

The next step is to compute P and Q for a wave uE{x) (->u(x)) of type S. Clearly
we(x)>0 and so Q = 0. P is determined by considering a solution of

Lc
+p = 0. (5.4)

However, (5.4) is the equation of variations of the standing wave equations.
For e = 0 a solution can easily be constructed by following a tangent vector around

the orbit. On (-oo, -d) the vector will be tangent to the homoclinic orbit. For
x e (-d, +d) it can be compared with the tangent vector to the solution of (5.2) and
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then with the tangent vector to the homoclinic again for x>+d. The resulting
solution will necessarily have two zeros.

If e > 0 and M(X) is non-degenerate, the above argument can be perturbed to
produce a solution of U+p = 0 with two zeros. It follows that P > 2 and that P - Q > 2.

By theorem 1, Nc has a real positive eigenvalue.
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Appendix
The space of the Lagrangian two-dimensional subspace of R4 is identified as the
homogeneous space (7(2)/O(2) [2]. The following identification of R4 with C2 is
being used here. Let («,, u2, vlf v2) be coordinates in R4 and set z = (w, + iv,, u2 + iv2).
U(2) is then the space of 2 x 2 unitary matrices of C2 and O(2), the subgroup of
real orthogonal matrices.

Let 5(2) denote the 2x2 symmetric unitary matrices. This is a smooth submanifold
of t/(2). 1/(2) acts on the left on 5(2) by the prescription U e 1/(2) acts on S e 5(2)
to give UrSU. Given any 5 € 5(2), it can be obtained from the identity by the action
of some Ue 1/(2). One can find U such that £/T£/ = 5 by just taking U to be the
symmetric, unitary square root of 5. It follows that 1/(2) acts transitively on 5(2).

If Ue S(2) lies in the isotropy subgroup at /, then UTU = I; since UrU = /, we
see that U must be real and hence is in Oil). It therefore follows that A(2) =
C/(2)/O(2) = S(2).

The manifold 5(2) can be visualized very simply. It consists of matrices A+iB
with A and B symmetric, while A2 + B2 = I and AB-BA = 0. A and B therefore
commute and are simultaneously diagonalizable by a special orthogonal matrix.

Let R 6 5O(2) diagonalize A and B so that A+iB = JR(D, + iD2)R
T, where

The space of matrices of this diagonal form is a torus and S(2) is therefore a quotient
space of Tx5O(2).

To see which different matrices of the above form have to be identified, firstly
notice that a diagonal D commutes with a non-trivial R e 50(2) if and only if D
is a scalar matrix, i.e. D = al for some a e C, \a\ = 1. If D is not scalar but diagonal,
then RtDRj= R2DR2 if and only if /?, = ±R2. If D is diagonal, then RDRT is also
diagonal when R = ±I or
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This last case of R switches the two diagonal elements. Thus each non-scalar DeT
generates a circle that intersects T at the matrix with switched diagonal elements.

To see how 5(2) is constructed, take a fundamental domain 2> for the torus as
one bounded by diagonal lines; for instance, the lines

</> = — < W + 2 T T , <j) = a —2TT, <f> = —(o, <f>

(see figure 5).

FIGURE 5. The fundamental domain 3).

Now imagine attaching a circle to each point in this region 2). Along the diagonal
<t> = B, collapse the circles to a point. Further, paste the circle associated to (0, <f>)
to that of (4>, 6) via the antipodal map. We now have a solid cylinder: associated
to each line of the form <j> = -O + c (c = constant) is a disc (see figure 6). The
boundary of this disc is the circle associated to matrices with <f> = 0 + 2ir and
<j> = 0-2TT; these are scalar matrices and therefore this circle should be collapsed
to a point. The disc now becomes a 2-sphere. The lines <f> = -0 + 2-rr and <f> = -0 + 2v
are to be identified and so the associated spheres pasted together. On the disc the
pasting is a rotation composed with an inversion; this is the antipodal map.

FIGURE 6. Geometric representation of S(2).
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