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ON S-CLASS NUMBER RELATIONS OF ALGEBRAIC TORI
IN GALOIS EXTENSIONS OF GLOBAL FIELDS

MASANORI MORISHITA

Introduction

As an interpretation and a generalization of Gauss’ genus theory on
binary quadratic forms in the language of arithmetic of algebraic tori,
Ono [02] established an equality between a kind of “Euler number E(K/k)”
for a finite Galois extension K/k of algebraic number fields and other
arithmetical invariants associated to K/k. His proof depended on his
Tamagawa number formula [O1] and Shyr’s formula [Sh] which follows
from the analytic class number formula of a torus. Later, two direct proofs
were given by Katayama [K] and Sasaki [Sa].

In this paper, we generalize Ono’s formula to S-arithmetical one,
including the function field case, and give a new direct proof using
Nisnevich cohomology. We also give a formula by applying our method
to a similar exact sequence of tori associated to two linearly disjoint
Galois extensions K,, K,k of global fields. We think that Nisnevich
cohomology is a natural and suitable tool to connect class sets of affine
group schemes and etale (or flat) cohomology and to study their functorial
behavior. ([N1] and [N2]).

The contents of this paper are as follows. In §1 we introduce our
invariants Ey(K/k) and E (K, K,/k), and in §2 we state our main results.
In §3 we prove the surjectivity of the norm map. In §4 we give a brief
review of Nisnevich topology and cohomology for our purpose. In §5 we
prove our theorems, and in §6 we discuss some examples.

Acknowledgements. 1 express my sincere gratitude to Professor
Yevsey A. Nisnevich who informed me of his cohomology and gave valuable
advice. Especially, I owe to him an important remark on the surjectivity
of the norm map in § 3. 1 also thank Professor Takashi Ono for suggesting
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me a problem, a vast generalization of Gauss’ genus theory using (non-
abelian) algebraic groups. I hope to come back to this beautiful problem
some time in the future.

§1. The invariants Eg(K/k) and Ey(K,, K,/k)

Let k be a global field. For a place v of k, let k, denote the com-
pletion of k at v and @, the ring of integers in k,. Let S be a finite set
of places of & which is non-empty and contains all archimedean places,
S.. Let Oy be the ring of S-integers in %k, 05 = (Nyes¥» and put X:=
Spec 0. For a finite set of places P of k containing S, we put

kA(P): - vle_[ka X vI;IP@v

and

ke = lim ky(P).
P

Let G be an affine group scheme of finite type over X with the
smooth generic fibre. We define the S-class set Ci(G) of G by the set of
double cosets:

Ci(G) = GRS\ G(k)/G(R)

and call its cardinality the S-class number of G over X.

Let K, K, and K, be finite Galois extensions of & such that K, NK,
=k, and let Sy and S, be the set of places of K and K, (i =1, 2),
respectively, lying above S. Let 0, and 0O, be the normalizations of 0
in K and K;, and put X;: = Spec 0s,, X;: = Spec 0;, (i = 1,2). Then, let
us consider the following two exact sequences of group schemes or etale
sheaves on X induced by the norm maps N and N, associated to the
Galois coverings X, /X and X,/X (i = 1, 2) respectively:

N
1.1 0—>T— [] Gosxx—G, y—0
Xg/X
Ny-No
(1.2) 0—> T —> [] Gpoxy X [ Gpyxy ——> Gpox —> 0
Xi1/X Xo/X

where G, y: = SpecZ[t, '] XgezY for a scheme Y, [[;,» denotes the
Grothendieck functor of scaler restriction ([D-G]), N, - N, means the product
of N, and V;, and T, T" are defined as the kernels of N, N,-N, respectively.
For the surjectivity of N and N,-IV,, we will give a proof in § 3.
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Let us denote by A5, A5 Pxis, Br,s and hg. s the S-class numbers
of G, x, [l2xx Gmxeo [{xx Gmx;» T and T” respectively. Here, A, s, Ag s
and hg, s, are nothing but the S-class numbers of 2, K and K;. Now we
define our invariants E(K/k) and EJK,, K,/k) by the alternative products
of the S-class numbers taken along the sequences (1.1) and (1.2) respec-
tively, namely,

h
(1.3) E(Kk): = — s
N hk,S 'hT,S
(1.4 E(K, Kyfk): = Pos swss
hk,s * hT',s

We remark that Eg_(K/k) coincides with Ono’s E(K/k) for the number
field case ([02]).

§2. Statement of results

To state our results, let us prepare more notations. For a place v of
k, we choose a place w of K and a place z of K, K, lying above v, and
denote by w, and w, the restrictions of z to K, and K, respectively, and
put M,: = K, N K,,,. Let 0, and 0,, be the ring of integers in K, and
M, respectively, and let S. be the set of finite places of 2 which ramify
in K,/k or K,/k. For a Galois extension E/F of fields, let E’/F denote
the maximal abelian subextension of E/F. For norm maps, we put N: =
Nep, Nyt = Ng,o 6 =1,2), Nt = Ny, and Ny : = N, for simplicity.
R* denotes the group of invertible elements in a ring R. Finally, [¥]
denotes the cardinality of a set x.

THEOREM. Notations being as above, we have
(2.1) E(K/k) = [H1.(T)] ﬂveS[Kvlu: k. [oes e(K,[k,)
’ [K’: k}(0% : NOs,)

(2.2) E(K,, K,Jk) = [L(T")] [Toes [M5: Ry) [Toes e(M3/R,)
S (05 : N,O3N05) (I : IO 4 [ us; N, M)

where J: = [[,es R¥ X [[sps 05, 4t = {xek*|xe Ny M}, ve SUS;}, e(Kk,)
and e(K!|k,) denote the ramification indices of K.k, and M|k, respectively,
and the Tate-Shafarevich groups over k, U1 .(T) and W (T"), are given by
the kernels of the natural maps:

M(T) = Ker(k*/NK* —> ] kj/N,K3)
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W(T") = Ker(B*|N\K;N,K; —> [ k} [Ny M) .
In the following, we put It = J/JN 4’ [[sys: Ny, M for simplicity.

COROLLARY 1. Assume k is a number field and S = S.. Then we

have

_ [T [, e(K/ky)
@3) Es (Kjk) = [K': k}(0F : NO))
(2.4) E, (K, K,Jk) = (W77 [1. e(My/k,)

(0% : N, O%,N, 0%,)[1]
where we put 0, =k, for veS,, and O, Ox and 0y, are the rings of
integers in k, K and K, (i = 1, 2) respectively.
Remark. (2.3) is nothing but Ono’s Theorem [02], § 2.

COROLLARY 2. Assume that S is enough large such that h, g = hg g, =
hensi = hrs=hrs=1 (@ =1,2) and S contains all ramified places of k.
Then we have the following formulas for the Tate-Shafarevich groups.

(K’ : k](0F : NO3,)
[Toes [K: k]

’ (0% : N, O3, N,0%,) 1]
2.6 k T = 1 2
e T = oz )

(2.5) (D)) =

where I = J[JNA [1yes Nu,M Y.
CorOLLARY 3. If K|k is cyclic, and if K|k or K,k is cyclic, then we

have

— nveS [Kw : kv] nv Se(Kw/kv)
@D Ex(KIR) [K: (0% : O3,
(2.8) E(K,, K,Jk) = Moes M, : k] [Toese (M,/R,)

(0?8< : Nl 0.)S'<1N20.)S‘<2) [I]

where e(K,[k,) and e(M,|k,) denote the ramification indices of K, /k, and
M, |k, respectively.

§ 3. The surjectivity of the norm map

Let A be a Dedekind domain with the field of fractions F. Let E be
a finite Galois extension of F and let B be the integral closure of A in
E. Put X: = Spec A and Y: = Spec B.

The purpose of this section is to show the surjectivity of the norm
map:
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Nzyl:[XGm,Y —> G, x

defined in the following way. For each U in X,,, define

N(U) : Homy (U, Y];lXGm,Y) = (B®,I(U, 0y))* —> I'(U, 0y))*
= Hom, (U, Gm,X)

by N(U)(b®7): = Ny, .(b)y", where Ny, ,: B— A is the norm map associated
to the Galois extension E/F and n = [E: F).

Then, we can easily see that these maps {N(U)} commute with
restriction maps and so N defines a morphism of sheaves on X,,.

To show the surjectivity of N, let us see the map N; induced on the
stalks at each geometric point ¥ associated to x e X:

Na‘: : (Y]/_/L Gm,Y)i‘ = (B®A Aih)x —> (A?ch)x = (Gm,X)i

where A" denotes the strict henselization of A at x.

Let y, 1 <i<g) be the points in Y lying above x with f= [k(y,) : £(x)]
= the degree of the extension of the residue fields, and let B:* be the
strict henselization of B at y,. Finally let F5* and E%* denote the fields
of fractions of A% and B:® respectively.

Then, via a canonical isomorphism

B®, A > ]
=1

b

N~

S} sh — sh
1B, B, = B

YisJ VisJ
J

we can see
g f
N; = ﬂ ﬂ Nm
i=1 j=1

where N, ,: B, = B" — A® is the norm map associated to the Galois
extension E$/F%. So, it suffices to show the surjectivity of each N, ;
which, however, follows from that the cohomological dimension of F <1

([Se], II-3.1, 4.3).

§4. Nisnevich topology and class sets

The aim of this section is to introduce a certain Grothendieck topology,
called Nisnevich topology, and state a theorem which connects a class
set of an affine group scheme and etale cohomology. For the details of
proofs in the following, we refer to [N2].

Let X be any noetherian scheme. We define a Grothendieck topology
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Xy on X by the following: As a category, Xy, is the same as the small
etale site on X. A family of morphisms (¢,: U, — U) in Xy, is a covering
if and only if for any x e U, there exists an index i and y e U, such that
#.(y) = x and x(y) = x(x), where x(x) and x(y) are the residue fields of U
and U, at x and y respectively. The cohomology H¥ (X, #) for any sheaf
of group &# on Xy, are defined in the usual way (cf. [M.A]).

Let X = Spec R, R is a Dedekind domain and let G be an affine group
scheme of finite type over X with the smooth generic fibre. Then we can
define the class set C(G) in the obvious way. (If X is ours in §1, it is
Cy(G) in §1.)

The next theorem is the main property of Nisnevich cohomology for
our purpose.

TueEoREM ([N1], [N2]) We have a canonical bijection
(4.1) Hi.(X, G) = C(G).
Furthermore we have an exact sequence of pointed sets
4.2) 1—> C(G)— H}(X, G) — H%(X, R'u,G) —> 1
and the stalk (R'u,Q), at xe X can be computed by the formula
(4.3) (R'uyG), =~ He(Rz, G)

where u: X,, — Xy 1S the morphism of sites and R! is the henselization of
R at x. If G is commutative, then all maps are homomorphisms of groups.

Remark 1. (4.2) is an immediate consequence of (a non-abelian ana-
logue of) the Cartan-Leray spectral sequence for u:X,, — Xy (4.1) and
the fact that the cohomological dimension of Xy, < 1.

Remark 2. By (4.3), H%(X, R'u,G) can be computed by the following
way. Let X° be the set of all closed points of X. For xe X°, let

a,: H(R;, G) —> H'(L;, G)
B.: H(L, G) —> H'(L3, G)

be the natural restrictions where L% is the field of fractions of R*. Then
we have

4.4) H%(X, R'u,G) = {ae H(L, )| B.(a) € Im(a,), for each xe X°}.

In the above, we can replace L? by L, where L,., is the completion of
L? with respect to x, because Greenberg approximation theorem [G] tells
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. .. e
us the injectivity H'(L}, G) —> H'(L,,, G).

§5. Proof of theorem

First, we shall prove the formula (2.1). (2.2) is obtained in the similar
way. In the following, notations will be as in §1 and §2. All cohomology
groups are etale ones except Nisnevich ones.

By (1.1), we have a long exact sequence;

o> HYX, [] gy G ) —> HYX, G ) —> H(X, T)

(5.1) 1 N
—_—> H (X7 HXK/X Gm,Xx) —»HI(X! G'm,X) —_—>

where it is easy to see the followings:

HY(X, G, x) = 05,

HYX, [lxxrx Gu,x) = H( Xk, G, 1) = O%ps

HY(X, G,,x) = Pic(X) = Cy(G,, x),

Hl(Xa nxx/x Gm,XK) = HI(XKa Gm,XK) = PiC(XK) = Cs(nxx/x Gm,XK) .

(5.2)

For H(X, T), by (4.1) and (4.2), we have an exact sequence
(5.3) 0—> C(T) —> H(X, T) —> H%(X, R'u, T)—> 0

where u: X,, — Xy, is the morphism of sites.
From (1.3) and (5.1)-(5.3), we have

[Ho(X, R'u,T])

(5.4) Ey(K[k) = . o .
(0% : NO§,)[Coker(Pic(Xyx) —> Pic(X))]

For simplicity, we set

C: = Coker(Pic(X,) —> Pic(X))
I': = HW(X, Ru,T).

For C, in terms of idele, it is easy to see that
(5.5) C =~ RY/R*J NK?*%

where Jg: = [[,es kX X [loes @F and N means the norm map of ideles in
the obvious sense. On the other hand, the Artin reciprocity tells us a
canonical isomorphism

(5.6) kX|R*NK% ~ Gal(K'[k).

Since the norm map of an unramified local extension is surjective, we
have
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(6.7 Ker(ks/E*NK% —> Ei[k* J,NK%) ~ JgJJs N k*NK
= Jr/Jr ﬂ A nveSUSr Nva

where S, denotes the set of all finite places of k& which ramify in K/k,
Jri= Tloes B X [oesns 9 and 4: = {xek*|xe N, K}, veSUS,}.
From (5.5)-(5.7), we have

[K"; k]
(D]
where we put D: = J,/J, N4 [],esvs, No K.
Finally, let us analyze I" by the Remark 2 in §4. We identify the
closed points of X and the places of k outside S. Let
a,: H(0", T) —> H'k,, T)
B,: H'(k, T) —> H'(k,, T)

(5.8) [C] =

be the natural restrictions for v¢ S where 0! is the henselization of @
at v. Here, from (1.1), we have HO!, T)~ 0*|NOY and H'(k,, T)~
kXINK? because Pic(0) = 0 and Hilbert 90 respectively, where @ is the
henselization of 05, at w. Hence, by the density of ¢} in @, and the
openness of NOX in @Y, we have

(5.9 Im(a,) ~ OFINOY.

Since (07 : NO)) = e(K!/k,): = the ramification index of K./k, by local
class field theory, from (4.4) and (5.9), we have
(6.10) I' = Ker(H'(k, T) > T[] H'(k,, T) X ] H'(k,, T)/(Im a,))

v&SUSy VESy\S

where the m is the natural restriction.
So, we are led to look at the following commutative exact diagram.

0~—> [] H'(k,, T) X [] Ima,

veES VESA\S

U
[1 kS INKG X [T OFIN,OF
VESA\S

veS
kX NK* kX |NK>
I U
H'(k, T) = H'(k, T)
! Im
—> [1 H'k,, T) —> [1 Hk,, T)x [ H'(k, T)/Ima,—>0
v vE&SrUS ve.zsi-\S
U
[1 k3/NK 1 ESINKSX [] ESJOSNK3
v v&SrUS vES\S
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where the maps in the bottom are componentwise and each isomorphism
follows from (1.1) and Hilbert 90, or (5.9). Here, Ker(m) = I' by (5.10),
Ker(l) = UI,(T) by the definition, and &}/NKX ~ G(K,/k,) by local class
field theory. To apply snake lemma to the above diagram, let us see
(56.11) Ker(Coker(l) —> Coker(m))

~ Ker(T] &k T] NKx —> [T k4R [] NKxx ] O:NK)

v v vES vESUSy vESA\S
~d [J.N4 e]’[S N,K} = D((5.8))

Su

and so we have

612) P - LT Lo K 2 B Tloes oKL
[D]
Together with (5.4), (5.8) and (5.12), we get (2.1).
Next, let us turn to the proof of (2.2). As in the above case, by the
long exact sequence associated to (1.2), we have

1]
Ey(K,, K Jk) = L
: ’ (0% : N,03,N,0%,)[C]

where

C': = Coker(Pic(X) X Pic(X,) % pic(X))
I': = B(X, R'u,T').

In terms of idele, C’ ~ kX/k*J N, K*N,K%, however, by class field theory,
the subgroup R*N,K}N,K¥, of k% corresponds to the maximal abelian
subextension of K;N K, over k, which is k& itself by our assumption. Hence
C = {1}

To analyze I”, note that

H'(k,, T") =~ k|N,M

which follows from (1.2). Hilbert 90 and local class field theory. The
rest of argument is quit same as in the case of I'. So we left the details
to the reader. The reason that the term I appears in (2.2) may be clear
by (5.11).

Concerning the corollaries, corollaries 1, 2 are immediate consequences
of theorem. (2.7) and (2.8) i.e., the vanishing of II,(7T) and I11,(7"), follow
from the Tchebotareff density theorem and [H], Proposition 3.3.

https://doi.org/10.1017/50027763000003809 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003809

142 MASANORI MORISHITA

§ 6. Examples

For some examples of E;_(K/k) for the number field case, we refer
to [02], §5.

ExaMmpLE 1. (Gauss’ genus formula for the function field case) Suppose
that k= F(T), the rational function field over a finite field with ¢
elements, and K is a quadratic extension of k& and suppose that S = {0},
where co denotes the place of k corresponding to the pole of 7. For
simplicity, we assume that the characteristic of & is different from 2.

According to E. Artin [E.A], let us say that K is real when oo is
decomposed into two distinct places in K, and K is imaginary, otherwise.
By S-unit theorem or [E.A], § 14,

@E'( j— X @X ~

q? Sk —

Ff X Z K is real
Fx K is imaginary.
and so

1 K is real and NO5, = Fy.

(95 : NOS,) = . o
2 K is real and NO%, = (F})* or K is imaginary.

Therefore (2.7) yields

2= K is real and NO%, = (F}).

E(K[k) =
(KR {Z‘K“ K is real and NO3, = F} or K is imaginary.

where t; is the number of places of k # co which ramify in K/k. This
is the exact analogue of the number field case; [02], § 5, Example 2. See
also [E.A] §11.

ExampLE 2. (Cyclotomic function fields) We refer to [G-R] for some
properties about cyclotomic function fields, which we shall use below.

Suppose that £ = F(T) and K = k(4,), the f-th cyclotomic function
field, where f is an irreducible polynomial of degree d in R:= F,[T).
Suppose S = {oo}. It is known that K/k is a cyclic extension whose
Galois group is isomorphic to (R/(f))*, which is the cyclic group of order
q¢*~'. Let K* be the fixed field of Fy = R* C (R/(f))*. For the ramifi-
cations and units, the following analogies of cyclotomic number fields are
known.
(1) Every place except (f) and oo is unramified in K/k. (f) is totally
ramified in K/k. oo splits totally in K*/k and each of these places of K*
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is totally ramified in K/K*.
(2 0%, = 0%,
Since 0%, =~ F¥ X Z%/4-V by (1) and S-unit theorem, we have, by (2),

(O3, : Nen03y) = (0%, (05,,)7") = (@ — ¥
and
(0% : N 0%) = (FX: (Ng 0%, )7 ) =¢q — 1.
Therefore, by (1) again, (2.7) yields
Ey(K[k) = E(K/K*) = 1.

These are exact analogues of the cyclotomic number field case [02], §5,
Examples 4, 5. Moreover the formula tells us that in the case of K/K*,

hp,s can be regarded as the “— part” of hg .

ExampiLE 3. Let p, and p, be distinct prime numbers and let n, and
n, be integers such that p?* and p3* > 3. Suppose that &k = Q, K, = Q({,z)
and K; = Q({,p.) where {,» and {,. denote primitive pi*-th and pj*-th roots
of 1, and suppose S = S, = {o}. It is easy to see that M, = C, M, = Q,
for ve S, and —1ed. So, I ={1}. Furthermore, 0§ = {+1} and N, 03
= N,0%, = {1}. Therefore, by (2.8), we have

E; (K, K,/k) = 1.

In other word, Ak, -hy, = hy. where hy,, hyg, and h,, are the class numbers
of K,, K, and T’ respectively.
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