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Abstract. A procedure is developed for constructing C1 difieomorphisms of the two
sphere having inverse limits of certain interval maps as attractors. The method is
carried out for a particular interval map yielding a diffeomorphism with a transitive
non-hyperbolic attractor.

1.
Let / : X->Xbea continuous map of the compact, connected metric space X into
itself. We will let (X,f) denote the inverse limit space

(X,f) = {(xo,x1,...)\xn inX,f(xn+l) = xn for n = 0,1,2,...}

with metric

where by \x-y\ we mean the distance between x and y in X. Then (X,f) is a
compact, connected metric space and/induces a homeomorphism/: (X,f) -* (X,f)
by

f ( ( x 0 , xt , . . . ) )

In [B-M] the authors showed that given any continuous map / : / - » / of the
compact interval /, there is an embedding i:(I,f)-*R2 and a homeomorphism
F:R2^R2 such that: F(i(I,f)) = i(I,f); F°i = i°f; and given zeR2 there is a
y G «(/,/) such that |F"(z) - F"(y)\ -» 0 as n -*oo. That is, / on (/,/) can be realized
as the restriction of a homeomorphism of the plane to its attractor.

Here we will show that for certain maps / of the interval /, the above F can be
made a C1 diffeomorphism. The general construction will be developed in § 2. In
§ 3 a particular nontrivial example is worked out. In this example a C1 diffeomorph-
ism with a nonhyperbolic, transitive, and fairly exotic attractor is constructed. The
construction can, in fact, be parametrized to demonstrate that the diffeomorphism
referred to is the limit of structurally stable horseshoes.

More specifically, the example constructed is a Cl diffeomorphism F: S2-» S2 of
the two-sphere S2 for which there is a ball B g S 2 with F(B)cB. The attracting set
A = Plna.o F"(B) is in the interior of B, A is homeomorphic with the indecomposable
Knaster continuum K2 (see [Bi] and [B]), and F\A has a dense orbit. Moreover,
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332 M. Barge

FIGURE 1. The curve emanating horizontally from p is the unstable manifold-of p and its closure is the
attractor A. The shaded regions and the bold curves sticking out of them are part of the stable set of p.

The stable and unstable sets of all other points in A are one-dimensional manifolds.

each point of B is "in phase" with some point of A. That is, given z € B there is a
we A such that \F"{z)-F"(w)\~*0 as n-»oo, (see figure 1).

Misiurewicz [M] has, by a different technique, embedded our example inverse
limit as an attractor for a C°° diffeomorphism in R3 and as an attractor for a
homeomorphism of the plane.

2.
The construction will be carried out on the two-sphere S2. Let B be a closed ball
in S2 and let / : / - > / be a continuous map of the compact interval /. We consider
maps P, G, Gx, G2, • • • having the following properties:
(2.1) P:B-*I is a continuous surjection;
(2.2) G:S2^S2 is a C1 surjection, G(B)cB, and G is a C1 diffeomorphism from

S 2 -Bonto S2-G(B);
(2.3) P°G=f°P;
(2.4) Given any x e / and y, z e P~\x),\G"(y) - G"(z)\ -» 0 monotonically as n -* oo;
(2.5) Gn : S2 -* S2 is a C1 diffeomorphism for each « = 1,2,... and there is a sequence

of open sets Un c S2 such that t/n+1 s £/„, Gn = G off of £/„, and G( [/,) s B;
(2.6) diameter(G"(Un))->0 as n-*co;
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(2.7) Gn(Un)nGk(Uk) = 0 for n * k, n, fcs 1, and G"(Un)nU1 = 0 for n = l,
2, . . . ;

(2.8) supI6O"(l/.) \\D(Gn-1 o Gn+l o G;1 O G - ( " - O ) ( Z ) - « / | | - * 0 as n^oo, where D is
the derivative and id is the identity matrix.

Assuming (2.1)-(2.8) we construct a diffeomorphism of S2 with attractor ( / , / ) .
Let (S2, G) be the inverse limit space with bonding map G and define H: (S2, G) -»

5 b y H( (z 0 ) z 1 , . . . ) )= l imG 1 o- - -»G n (z n ) .
nccn-*cc

2LEMMA 2.9. / / is a homeomorphism of (S2, G) onto S2.

Proof. Let z = (z o , z , , . . . ) e (S 2 , G). Suppose that z o ^ U n a l G"( l / J . Then zn<z!l/n
and G, ° • • • ° Gn(zJ = z0 for each n = 1, 2 , . . . . Thus, H(z) = z0.

If zo€G"([/n) for some n then, by (2.7), zn+fc<^ Un+k for Jk=l, 2 Thus
G, o • • • o Gn o Gn+1 o • • • o Gn+fc(zn+t) = G, Gn(Gfc(zn+,)) = G, Gn{zn)
and //(z) = G, ° • • • ° Gn(zn). We have that

G^zJ, ifzoeG"([/n), « = 1,2,...,

and we see that H is well defined.
Since Gn = G on dUn, H is continuous on

G"( £/„))) u c/( (J G"(t/

for each JV = 1, 2, Suppose that z = limi^x,y' where y' = (y'o,y[,...)
is such that yo&G">(Uni), /i,^oo as i-»oo. Then z0/^
U « , G"( l / J (by (2.7)) so that H{z) = z0. Let

Then w'e G"1 ([/„,) so that |w'-j>i|-»oo as i-*oo by (2.6). Thus H{y')-*H(z) and
H is continuous on all of (S2, G).

Since G is one-to-one off of I/,, the Gn are one-to-one, G"(Un)n Gk(Uk) = 0
for n^k, and G"(£/„) n t/, = 0 for « > 1, we see that H is one-to-one. Also H is
a surjection since G is a surjection. Finally, (S2, G) is compact so that H is a
homeomorphism.

Now consider the homeomorphism F: S2-> S2 given by

F=H°G°Hl

where G is the homeomorphism of (S2, G) induced by G,

G((zo,z1,---)) = (G(zo) ,zo ,z1 , . . . ) .

LEMMA 2.10.

zeGn(Un), « = 1,2,....
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Proof. First note that if z£ Un then G(z)£ G(Un). For otherwise, Gn(z)e Gn(Un).
But then Gn is not one-to-one. Suppose that z£ C/,u(LUi G"( [/„))• Then G(z)g
U M a l G " ( t / J a n d

Ho Go H~\z) = / / o G((z, G-\z), G~\z),...))

If z e t/,, then G(z) e G( t/,) so that
Ho Go H-\z) = Ho G((z, G'\z), G~\z),...))

In case zeG"(Un), then Gn+i ° G^» • • • ° Gr1(z)e G"+I([/J. If
° G n » - - - ° G , ( Z ) E G (Un+i)then

° G ° H (z) = H » G ( ( G ° Gn o • • • ° Gi (z), G ° Gn <> • • • ° Ux ( z ) , . . .

. . . , G"1 ° • • • ° G7'(z), G-'oG-'o-o Gr ' ( z ) , . . . )

= H((G" + 1 o G^1 o • • • o Gr ' (z ) , G" ° G"1 o • • • • G\~\z),...

. . . , G ° C?M o • • • o (jj (^)j G"n ° * * * ° C/j ( 2 ) , . . . )

On the other hand, if G"+1 ° G"1 ° • • • ° Gr'(z) e G"+1( (/„ - Un+1), then
G"+I o G"1 c • • • o GT\z)£\Jk^Gk(Uk) so that

H o G o H~\z) = H((Gn+1 oG~lo...o GT\z), G" o G"1. • • • « Gr'(z),...))

since Gn' ° • • • ° G, '(z) = Gn
 1 ° G (" "(z) ^ t/n+1.

THEOREM 2.11. F:S2-*S2 is a C1 diffeomorphism.

Proof. In view of Lemma 2.10, (2.2) and (2.5), it suffices to show that if z, £ G"'( (/„.),
n, -» 00, and zf -*• z, then DF(z,)^> DF(z). Suppose that z, is such a sequence converg-
ing to z. Then by (2.7), z e S 2 - ( t / , u ( U B a l G"(C/J)) so that DF(z) = DG(z). On
the other hand,

DF(zt) = D(G"> o Gni+X o G"1 ° G-(n'-1))(z,)

J ' o Gn.+, ° Gn. o G • (z,))

Now, G"'-1«G^«G;1«G-("'-1)(2i)eG"'(l/<1) so that G"rl. Gn,+1 o G^1 <>
G ^ ^ ' ^ z . J ^ z as i^oo by (2.6). Thus (DG)(G"'~' ° Gnj+I ° G~* ° G"(nrl)(z,))-»
DG(z) since G is C1. Finally, assumption (2.8) insures that
D(G"rl o Gn&x o G'~' ° GH"rl))(z,)-*id as 1^00 so that DF(Zi)^DF(z) as i-*oo.
F is a C1 homeomorphism with DF nonsingular everywhere. Thus F is a C1

diffeomorphism.
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Now let A = P U o F"(B). Then

tf-'(A) = {(z0, z,,. . .) e (S2, G)| 2n e B for n = 0,1,2,.. .}.

Let P:H-\A)^(I,f) be given by

LEMMA 2.12. P is a homeomorphism from H~l(A) onto (/,/) and P° G = / ° P.

Proof. That P is well defined and P° G = / ° P follow from (2.3). P is continuous
since P is continuous. Let z = (z0, z h ...) and w = (w0, w,,...) be in H~l(A) and
suppose that P(z) = P(w). We will show that z = w. P(z) = P(w) means that P(zn) =
P(wn) for n = 0, 1,2, Let n, be an increasing sequence of positive integers and
let z, w e B be such that zn. -» z and wn. -*• w as i -» oo. Since P(zn,) = P(wn) we must
have P(z) = P(w). Let e > 0 and k a nonnegative integer be given. By (2.4) there
is an N large enough so that \GN(z)- GN(w)\ < e/3. Since zn. -* z and wn. -*• w, we
also have that zn._N-» GN(z) and wn._jv-* GN(w). Let M be large enough so that
\zni-N-GN(z)\<e/3 and | » , r N -G" ( iv ) |<E /3 for all i>M. Now let i > M be
large enough so that «, - JV> fc Then, again using (2.4),

e e e

Since e > 0 and k were arbitrary, wk = zt for all k so that w = z and P is one-to-one.
To see that P maps //"'(A) onto (/ , / ) , let x = (xo,xi,.. .)e ( / , / ) . Then P-1(^n)

is a compact subset of B for each n >0 and G(P~'(xn+,)) s P~'(xn) for each n >0
by (2.3). It follows that Dk^0 Gk(P~l(xn+k)) is nonempty for each n >0 and

\k>0\k>0 / fcaO

Thus, there is a z = (z0, Z!,...) e (B, G) such that

zne(~) Gk(p-l(xn+k))^p-\xn) for each «>0.
fcaO

Then ze//~'(A) and P(z) = x. Finally, //"'(A) is compact so that P is a homeo-
morphism.

L E M M A 2.13. Given zeB there is a ye A such that \F"{z) - F"(y)\ -» 0 as n -» oo.

Proo/ Let z = (z0 , z , , . . . ) = H~\z). Then z 0 e B. Let x = (xo,xl,.. .)e ( / , / ) be such

that P(z0) = x0. T h e n y = (y0, yu...) = P~\x) is in / / - ' ( A ) and P( i r o (z ) ) =

where TT* : (S 2 , G) -* S2 is given by irk((z0, z , , . . . , z t , . . . ) ) = zk. But then

for all it, 0< ifc< n. It follows from (2.4) that, for fixed k,

\irkG
n{z)-TrkG"{y)\^0 as n-»oo.

This means that d(Gn(z), Gn(^))^0 as n^oo. Now let y = H(y). Then ye A,
F"{z) = H°Gn°H-\z) = H°Gn{z) and F"(j>) = H° G" » H~\y) = H» G"{y).
Thus, |F"(z)-F"(>')|-»0as n^oo. "Q
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Assuming (2.1)-(2.8) we have obtained the following:

COROLLARY 2.14. There is a Cl diffeomorphism F:S2^ S2 with invariant attracting
s e ( A c f i c 5 2 such that F\A is topologically conjugate to f:(/,/)-»(/,/). Moreover,
given z e B there is a ye A such that \f{z) - F"(y)\ ->0ain-+oo.

3.
We explicitly construct the maps G and Gn on a ball in the two-sphere S2.

Let BsS2 have coordinates x and y with

The map G on B will have the form G(x,y) = (f(x), k(x,y)). We begin with the
construction of/

LEMMA 3.1. Let {yn}™=i be a sequence, 0 < • • • <yn + 1 <yn < • • • <yl <\, withyn-*0
as n -* oo. Then there is a map ft: [0,1] -»[0,1] with the properties:

(ii) fi(i+y)=M-y) far O^y^k
(iii)/,(0) = 0;
(iv)/, is Cl on [0,1]-$};

(v) /i(0) = l andf\{y)>\forO<y<\;

(vi) /i(^n)-*0 as M->OO; and

(vii) supo^ySyn(riY(y)^l as n^co.

Proof. The construction is straightforward and is omitted.

LEMMA 3.2. Let I = [0,1] and letf-.I^Ibe such that:

(ii) f is continuous and C1 on [0,1] — {!}; and
(iii) |/'(x)| > 1 for x€(0, |) u( i l ) .

77ien / i5 topologically conjugate to g: I -> I where g is given by

(2x, ^

iVoo/ Let 1/ be an open interval (nonempty) in /. We claim that j e / " ( [/) for some
n>0. To see this, let C be a connected component of {Jn>of(U) of maximal
length. Then \eC for otherwise the length of/(C) is greater than the length of C
by (i) and (iii) but this is impossible since/(C) is a connected subset of Un 2o/"( ^0-
Thus !e /" (L0 for some n>0 and we have established that {JnsOf ~"G) is dense
in /. Similarly, Un a 0£""(s) 1S dense in /.

We now define h: Un a 0/~"(s) "* U n a 0 ?"(1) recursively. Let /i(l) = | and suppose
that we have defined h of /""(I). Let x e/~"(|). Then there are precisely two inverse
images of x under/: denote by fT\x) the preimage of x in (0,|) and denote by
f7l(x) the preimage of x in (5,1). Similarly, let g;~1(/i(x)) and g^'CK*)) be the
preimages of h(x) under g in (0, |) and (5,1) respectively. Set h(fT\x)) = gT^Hx))

In this way h is defined on all of U n 2 0 / "(5) a n d it is clear that h is one-to-one,
maps LUo-T"^) onto LUo?""^) , and / I ° / = g ° / I on U « o / " ( i ) - A s i m P l e

https://doi.org/10.1017/S0143385700004491 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004491


A method for constructing attractors 337

induction shows that h is order preserving and hence uniformly continuous. Thus,
h extends to a continuous, order preserving map of / onto / (since Un a 0 /~"( i )
and Un aoS"(5) a r e dense in /) and we see, in fact, that h is a homeomorphism
with h°f=g°h on /.

It follows from the above that the map fx in Lemma 3.1 is topologically
conjugate to

f2x,

C O R O L L A R Y 3.3. Given a sequence {x n }^ = 1 , 0 < • • • < x n + 1 < * „ < • • • < x , < 3 , there

is a C1 mapf:[0, l]-»[0,1] satisfying:
(i) / is topologically conjugate to

\2x,

(ii)/(x) = 4x(l-x)/or i<
(iii) f(\+x)=f(\-x) for 0<x<l;
(iv) /"(xn)<xn_,-*0 as w
(v)

Proof. Let h(x) = (2/TT) arcsin *Jx~. Then h is a homeomorphism of [0,1] and h and
h~x are C1 on (0,1). It is straightforward that

lj"1°g°/i(x) = 4x( l -x) for all xel.

Let yn = h(xn). Then 0< • • -<yn+1<yn < • • • <yt <h Now let / be as in Lemma
3.1 for this sequence {yn}. Let f(x) = h~l »/, ° h(x). We will show that / satisfies
(i)-(v) of this corollary.

Property (i) is clear. Indeed, / is conjugate to ft and f is conjugate to g(x) by
Lemma 3.2. Since

2x, 5 < x < I

property (ii) is immediate. Also, the symmetry of/ and h guarantee (iii). Property
(iv) follows from f"(xn) = h~l «fi ° h(xn) = h~\rAyn)) and/?(yn)^0 as n^oo.

To verify (v), we note that there is a sequence {sn} such that f"(y) s s , • y for
0 s y < yn and sn -* 1 as n -* oo. Thus, for 0 < x < xn,

h(x)) • h'(x)

<(h-y(sn- h(x)) • (finHx)) • h'(x).

Now (h-1nri(Hx))-h'(x)>l and (/")'(/>(x))> 1 so that (/")'(x)> 1. Since
(f")'(h(x))^ 1 as H-»OO for 0<x<x n , we only need to show that
(h~i)'(sn • h(x)) • h'(x) •* 1 as n ^ 00 to conclude that supOsxSxn (/")'(*) -* 1 as n -> 00.

To this end, we calculate:
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and

(*-)'(*„•*(*)) = 7777^77

ir(h-\sn- h(x))-(h-\sn

Replacing sn by 1 + en we obtain:

f h'(x) I2 1 . 2 / . ._.
, , , , - i , . . — , , , .„ = —r. r• [xcosz(en arcsinVx)

LA'(* (l + en)/i(x)))J x ( l - x )

+Vx-x 2 sin (2en arcsin Vx)

+ (1 - x) sin2 (eB arcsin N/X)]

• [1 - (x cos2 (en arcsin Vx)+Jx-x2 sin (2en arcsin %/x)

+ ( l -x)s in2(en arcsin Vx))].

Now let Sn be such that:

sin (2en arcsin Vx) < Snx;

and

sin2 (en arcsin Vx) s Snx for x < xn,

where 5n -» 0 as n -* oo. Then, continuing from above, we have

h'(x) x( l -x)

Thus (/" )'(JC) -»1 uniformly as n -* oo for x € [0, xn].

LEMMA 3.4. Given a sequence {zn}"= ) , -\<zx<- • • <zn <zn+1 < • • • < 0 , there is a
Cl map/:[-i0]->[-i0] satisfying:
(i) f(x)>xforxe[-iO) andf(0) = 0;

(ii) 0< / (x )< 1 for x € [ - i O ] and/(0) = l;
(iii) /"(zn)<z,_,^0 as n ^ oo; and
(iv) supz,,sxs0(/")'U)-*l as n^co.

Proof. The construction of such an / is much like the construction for Lemma 3.1
and is also omitted.

Now, given sequences {xn}"=1 and {zn}"=1 as in Corollary 3.3 and Lemma 3.4
respectively, let / : [- i f]-»[-£,!] be given by

/(x) as in Lemma 3.4, for - \ < x < 0

/(*) = /(x) as in Corollary 3.3, fo rO<xs l

/ ( x - 1 ) as in Lemma 3.4, f o r l < x s | .
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Then / has the properties:

(ii) /l[o,i] is topologically conjugate to

339

(iii) /"(in)<x,_1->0 and/n(zn)3=zn_j-»0 as «-»oo; and
(iv) supZnSXSZn(/n)'(x)->l as n-*oo.

The function G:S2^S2 that we wish to construct will be of the form

G(x,y) = (f(x), k(x,y)) on B = {(x,y)\-*<x<l, \y\^Q,

where/ is as in (3.5) for sequences {*„} and {zn} to be determined.
We now construct the function k. The map it will have the form it(x, y) = ko(y)

for — | < x s | .

LEMMA 3.6. Given a sequence of intervals, /„ = [/„, rn], n = 1, 2 , . . . such that

Jn+Xcinterior (/„), /, = - i ^ /
length (/„+,)

length(/,) + 2 l " . , length(/„) = \, there is a Cl map

-> 1 asn-»oo,

[-i±] such
that

(0
(ii) b | y [ J ]
(iii) k'0(y) < 1 /or a// y e \_-\, \\, and
(iv) (kS) 'U- l .
Proof. We construct a ^ o n [ ~ i | ] . Let /"„ = -(rn - i ) = i -rB , rn = - ( / n - i ) = i - / n ,
and^ /n = [fn,rn] = - / n + i Let an = length (/„) = length (/„). We have: a,+
2 I " = 1 a n = j and r, = l.

Let 6n = fn - /"„_, for n > 2 and let bY = 0. Also, let Sn = a , + ! " „ 2a, for « > 1 and
let S0 = a,. We define fcoI:[0,|-2aI]^[0,|] by

10, forx = 0.

The above pn is the cubic polynomial satisfying, for n > 1:

Explicitly,

Pn\x)—
-2[2(an-an+1

\x u — •

U Jn

for/ i>l .
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Then k^1 is C1 on (0 , | -2a , ] . Furthermore,

for xe [i-Sn+1 + an+,, f - SJ . Now, since (an/an+l) = (length (/n)/length (Jn+i))-» 1
as n -» oo and

an+i an+i an+l an + 1 an + 1

we see that p|,(x)-» 1 uniformly for x e [ j - 5 n + 1 + a n + 1 , | -S n ] , as «-»oo. Thus feo1

is C1 on [0, | -2a!] . The above calculation also shows that (£o')'(*)^1 for all
x€ [0 , | -2a , ] so that ^ , : [0 , | ]^ [0 , | -2a , ] is C1 andk'0(y)<l for all ye[0, | ] and

Finally, fcS(y) = ̂ - 2 I " = 1 a, ~ I " = , b, for y e Jn so that (^S)'(y) = 1 for y € Jn and
n = l, 2, Now let Jto(3')=5-fco(l-y) for ye[-{,\~\ and extended K to [~ i i ]
by fco(x) = |+sin ( x - | ) for x e f U ] . Then fco is C1 and has properties (i)-(iv).

We proceed to the explicit construction of G. Let G:[\,|]x[-l, l]-»

where

«(>>) = 0,

(3.7)

Then G is C1 and G collapses the interval / = {(3, y)|-|<_v<5} to the point (1,0).
It is straightforward to check that G is a C1 diffeomorphism from [\, |] x [—1,1] — J
onto its image.

Now let Kn: [U] x [-1,1] ̂  B, n = 2 ,3 , . . . by

G(x,y),

for |x - II < ——5 and \y\ < | ;

The functions appearing in the above definition have the following formulas:
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an{y) = (2«)8[-l + (y + 1)2 + cn(y)];

and

By construction the Kn are continuously differentiable and Kn = G oS of

Moreover, we will establish the following proposition.

PROPOSITION 3.8. There is an N such that for all n> N, Kn is a C1 diffeomorphism
onto its image and

uniformly for

[ U ] x [ - l , l])as«-»oo.

Temporarily assuming the validity of the above proposition, we complete the
construction.

Let JV>2 be as in Proposition 3.8 and define Gn on [ i | ] x [ - l , 1] by Gn = Kn+N

for n = 1,2, Also, let Un = Vn+N. Note that

5 1

Let L be such that

Then O<L<1. Define fci:[-2,1]-*[~i,i] by fc,(y) =-Ly + (L-1)/2, let 7,=

\ /5(w+2+N)2 + 2\l\

M 8(n + 2+N)4 JJ/ for " = 2'3'" •""
Then the intervals Jn satisfy the conditions of Lemma 3.6. Let fc0: [—5,5] -*• [~5,5]
be the map determined by Lemma 3.6 and these Jn.

Next, set
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for n = 1,2,..., and let / be as in (3.5) for these sequences {xn} and {zn}.
We now define G:Bu([ i i ]x [ - l , 1])-»B by:

'(/(*), *d(>0), fo r - i

as in (3.7),

[(fix), M
In the above definition of G, k(x, y) is a C1 function that smoothly interpolates the
other values of G and is such that

and,forx>!,0<
dk

Then G restricted to B u ( [ i | ] x [-1,1]) - ({|} x [-±, |]) is a Cl diffeomorphism
into B and G({|} x [- | , |]) = {(1,0)}. Moreover, / and fco have been constructed in
such a way that G"( Un) n Gk( Uk) = 0 for n # fc, n, k > 1 and G"( l/n) n t/, = 0 for

Now it is clear that G can be extended to S2 in such a way that

is a C1 diffeomorphism. We then define Gn:S
2-*S2 to agree with G off of Un.

Then Gn is a C1 diffeomorphism of S2 for each n = 1,2,
Let P : B -> / = [0,1] be given by

x, forO<x<l,

1, f o r l < x < | .

B

|
i rrT M •

Lijjxo^M-ry

FIGURE 2. G takes vertical line segments in B into vertical line segments, G(i)
^l(Bu([U]x[-i,i]))-j ' s a C diffeomorphism onto its image.

= {q}) and
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We now have that (2.1)-(2.5) and (2.7) are satisfied by G, Gn, P, and/ | , . That
the diameter of G"(Un) goes to zero follows from diameter (f([zn,xn]))-*0 and
diameter (fcS(/n))-»0. Thus (2.6) is satisfied.

That (/")'|[2n,xn]-* 1 uniformly as n -> oo and (fcS)'L ™ 1 implies

and

uniformly as n ->oo for ze G"( t/n) and w € G2( Un).
Assuming Proposition 3.8 and letting ze G"{Un) we have:

D(Gnl - Gn+1 o G^1 o G-<"-»>)(z) = DG""2(G ° Gn+1. G

• DG-\G-in-2\z)) • DG~(n-2\z).

Now ze G"(l/J so that G°Gn+x ° G'1 ° G - ( H ) ( : ) e G ! ( ( / J . Thus

DG"-2(G o Gn+l o G^1 • G-("-"(z)) •

and

DG-(-2>(z)-(j J)
uniformly for ze G"(Un). By Proposition 3.8,

uniformly for ze G"(C/n) and, since Gn+, ° G^1 goes to the identity uniformly,

DG(Gn+i ° G;1
 O G - ' - ' ^ Z ) ) • DG-l(G-in-

uniformly. Thus,

D(Gni • Gn+1 o G^1 • G-<"-1))(z) -

uniformly for ze G"{Un) as n-»oo and 2.8 is satisfied.

Corollary 2.14 now supplies the example diffeomorphism F:S2-*S2 promised in
§ 1. The diffeomorphism F has an attracting set A £ interior (B) and F\A is topologi-
cally conjugate to the homeomorphism / : ( / , / ) - » ( / , / ) . By Corollary 3.3, f\i is
topologically conjugate to

<2x,

Thus / : (/,/) -»(/,/) is topologically conjugate to g: (/, g) -»(/, g). The continuum
(/, g) is the indecomposable Knaster continuum and g: (/, g) -* (I, g) is transitive
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(i.e., has a dense orbit). Thus, the attractor A for F is the indecomposable Knaster
continuum and F\A is transitive. The construction is complete with the proof of
Proposition 3.8.

Proof of Proposition 3.8. The determinant of DKn(x,y), dn(x,y), is:

[a'n(y)(x - i )4+ b'n(y){x-\Y + c'n{y)},

for |x- | |<-
1

We wish to show that, for n sufficiently large, dn(x,y)>0.

Case 1.

1 , 1

We get

Case 2.

In this case

3.

5 / 1
-,+ l for all n.

..-ISyS-J-Jj.

dn(x,y) ^2(^2 for all
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Let x = \+s/(2n)2, y = \+t/n\ - 1 < X < 1 , and 0 < f < l . Then

For r> | , the last term dominates and dn(x, y)>0 for n sufficiently large. For
t < 5 the first, third, and fourth terms are non-negative and the fourth term dominates
the second term unless t = 0. If t = 0 the sum of the first and third terms is positive.
In any case, dn(x,y)>0 for all (x,y) and n sufficiently large.

Case 4.

'" " (2ny
Letx-5=f/(2n)2, - l < f < l . We then get

The quantity in the brackets is zero when

2_(l+3jQ±>/(l+3y)2-4( |
2

The polynomial in y inside the radical is negative for j>> — \ so that, for real zeros,
y must be less than -\. But then, l + 3y<0 and, if y> —5, we have t2<0. Therefore
the quantity (§+3.y)f4-(l + 3>>)r! + (!>> + l) is bounded above zero for - l < f < l
and - \ < y < \ and we have dn (x, y) > k/ «4 for some positive constant k and all n > 0.

Case 5. | x - l | < l/(2n)3 and -\< l/n3<y<-j. Let x=j+.s/(2n)2 and y =
-\-t/n2, - 1 < 5 < 1 , 0 < f < l . Then:

First consider t > 1/n. Then the first term above is positive, the second term is bigger
than k/n2 for some positive constant k, and the last two terms are smaller in absolute
value than 1/n4 for some /. Thus, for t>l/n, dn(x,y)>k/n2 for some positive k
and sufficiently large n.

Now if t < 1/n, the second term is larger than fc(l/n3) for some positive constant
k and the other three terms are in absolute value less than 1(1/n4) for some /. Thus,
dn(x, y) > k(l/n3) for some positive constant k and sufficiently large n. In any case,
dn(x, y) is positive for sufficiently large n.
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We have established the existence of N such that Kn is a difieomorphism for
n > AT. Our final task is to show that D(Kn+1 ° K~l) goes to the identity as n-»oo
(narJV).

Let n>JV and (x, >>)€[£ |] x [-1,1], let I = (J?) be the identity matrix, and
0 = (o o) the zero matrix. The expression (DKn+1(x, y))(DKn(x,y))~*-I takes on
one of seven forms depending on (x, y).

Case (i). | x - | | > l / (2n ) 3 or \y\>\+\/n3. In this case, (DKn+l(x, y))
•(DK^y))'1 -1 = 0.

Case («)• |x-^|<l/(2n)2, \<y<\+\/n2 and either |x-^|> l/(2(« + l))2 or y>
)3. Let

be denoted by

Replacing x by 5+s/(2n)3, - 1 < S < 1 , and y by 5+t/«3, 0< r s 1, we get:

If / s 1/n then the numerator of Au clearly goes to zero faster than the last term
in the denominator so that An-»0 as n-»oo. On the other hand, if t<\/n then
y < H l/(n +1)2 so that |x -\\ > l/(2(n +1))3, then s2> n4/(n +1)4. We see that the
numerator then goes to 0 with the 1/n6 while the denominator is greater than k/n*
for some positive k. Thus, in any event, A,,-»0.

A2l isn't quite as messy: A2X = 0. For A12 we have:

where dn is the same denominator as in Au. We saw before that dn > k/n4 for some
positive constant k and n > N. Thus, A,2-*0 as n -»oo.

Finally, /422 = 0 for all (x, jO and case (ii) is finished.
Case (Hi). |x-^ |< l/(2(n + l))2 and | < ^ < | + l / ( n + l)3. Again, let

2l A 2 2
We have:

Au = H2(am(y) - an+1(y)) + (b> + l)(a'm+l(y) - a'n(y))](x - | ) 4

1

dn(x,y)
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where dn(x, y) is as in case (ii). We calculate:

For 0 < y - | < l/(« + l)2 (as in this case) we see that

\an(y)-an+l(y)\^n- k

for some positive constant k. Similarly:

\a'n+1(y)\-a'n(y)\<n3-k;

and

Thus, if | x - | | < l/(2(n + l))2, the numerator of Au is smaller in absolute value than
(l/«5)fc for some positive k. In case (ii) we determined that dn(x, y)s(l/n4)fc for
some k > 0. Thus Au -*• 0 as n -* oo. In this case also, A21 = 0.

A12 is given by:

•(l/dn(x,y)).

For |x - | |< l / (2 (n + l))2 and \<y<\+\/{n + \)2 one finds that the numerator of
An is in absolute value smaller than (l/«8)fe for some k > 0. Since dn(x, >>) > (l/n4)fc,
A12-»0 as n-»oo.

A22 = 0 for all n so that in case (iii) we have

(DKn+1(x,ymDKn(x,y)rl-l-»0 as«^oo.

Case (iu). l/(2(« + l ) ) 3 < | x - i | < l/(2n)3 and M==i Again letting

(DKn+l(x, y)){DKn{x, ( ^ ^
\/i21 /i22

and \x-j\ = s/(2n)3 we have:

(2»)4

dn(x,y)

Here

on

It was demonstrated in the previous Case 4 that dn{x, >>)>fc(l/n4) for some fc>0.
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Since ;? = (2«)2|x-i| and

M.

1
(2(« + l))2"

( " V<

Barge

= S<1.

1

(2«)3

Thus, 5 -» 1 as « -» oo and An-*0 as « -» oo.
A2i is identically zero.

1

as n-»oo since dn(x,^)

/422 = 0 for all (x, y). Thus, in Case (iv),

(DKn+1(x, y))(DKn{x,y)Tl -I-»0 as«->oo.

(u). |x - | |< l / (2( / i + l))2, b | < i With the notation as above, we have

We see that the numerator of A u is in absolute value less than k(l/ns) for some
k > 0 (|x - II < l/(2(« +1))2). The dn(x, j;) is as in Case (iv) and is larger that
for some k > 0. Thus An -* 0 as « -*• oo.

i421 = 0 for all (x, >»).

One sees that, for |x| < l/(2(n +1))2, the numerator is in absolute value ( / )
for some fc>0. Since dn(x,y)>k(\/nA), A,2-»0 as M->OO. A22 = 0 for all (x,_y).
Thus, in Case (v),

(DKn+l(x,yMDKn(x,y)yl-1^0 a

There are two remaining cases to be considered. One of these is: | x - j | g
l/(2(« + l))2, - | - l / ( « + l ) 2 < _ v < - | . The analysis of this case proceeds almost
exactly as in Case (iii).The other remaining case is: | x - | | < l/(2n)2, - 5 - l / n 3 < j <
- 3 , and either y < - l / ( « +1)3 or | x ~ i | > 1/(2(M + 1))2 . This case is very much like
Case (ii). We trust the reader to check these cases. Our construction is complete.
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