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Abstract

A radical ρ is called prime-like if for every prime ring A, the polynomial ring A[x] is ρ-semisimple. Let
α be a radical satisfying the polynomial equation α(A[x])= (α(A))[x] for every ring A. A radical γ is
called α-like if for every α-semisimple ring A, the polynomial ring A[x] is γ -semisimple. In this paper,
we study properties of α-like radicals. We show that α-likeness is a generalization of prime-likeness and
extend some results concerning prime-like radicals. This allows us easily to find distinct special radicals
which coincide on simple rings and on polynomial rings, which answers a question put by Ferrero.
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1. Introduction

In this paper all rings are associative and all classes of rings are closed under
isomorphisms and contain the one-element ring 0. The fundamental definitions and
properties of radicals can be found in [1, 7]. A class µ of rings is called hereditary
if µ is closed under ideals. If µ is a hereditary class of rings, U(µ) denotes the
upper radical generated by µ, that is, the class of all rings which have no nonzero
homomorphic images in µ. For any class µ of rings an ideal I of a ring A is called
a µ-ideal if the factor ring A/I is in µ. As usual, for a radical γ , the γ radical of a
ring A is denoted by γ (A) and the class of all γ -semisimple rings is denoted by S(γ ).
π denotes the class of all prime rings and β = U(π) denotes the prime radical. The
notation I C A means that I is a two-sided ideal of a ring A. An ideal I of a ring A is
called essential in A if I ∩ J 6= 0 for every nonzero two-sided ideal J of A. A ring A
is called an essential extension of a ring I if I is an essential ideal of A. A class µ of
rings is called essentially closed if µ= µk , where

µk = {A : A is an essential extension of some I ∈ µ}

is the essential cover of µ. A hereditary and essentially closed class of prime rings
is called a special class and the upper radical generated by a special class is called
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a special radical. A hereditary radical containing the prime radical β is called a
supernilpotent radical. Given a ring A, the polynomial ring over A in a commuting
indeterminate x is denoted by A[x]. We say that a radical γ has the Amitsur property
if γ (A[x])= (γ (A[x]) ∩ A)[x] for every ring A. A radical γ is called polynomially
extensible if A[x] ∈ γ for every ring A ∈ γ . It is well known [7, Proposition 4.9.21]
that γ is polynomially extensible if and only if γ = γx , where γx = {A : A[x] ∈ γ }.
A semiprime ring R is called a ∗-ring [2–4, 9] if R/I ∈ β for every nonzero ideal I
of R. The nonnil Jacobson radical ring

W = {2x/(2y + 1) : x, y ∈ Z and (2x, 2y + 1)= 1}

is an example of a commutative ∗-ring without minimal ideals, as observed in [2, 3, 9].
The class of all ∗-rings is denoted by ∗. The importance of the class ∗k is underlined
by the two facts that follow.

THEOREM 1.1 [3, 9]. If R is a nonzero ∗-ring, then the smallest special (respectively,
supernilpotent) radical l̂R (respectively, lR) containing R is an atom in the lattice of
all special (respectively, supernilpotent) radicals.

THEOREM 1.2 [4, Proposition 2]. If R ∈ ∗k and µ is a special class of rings, then
R ∈ S(U(µ)) if and only if R ∈ µ. Thus, in particular, a ring R ∈ ∗k is Jacobson
semisimple if and only if R is primitive.

A radical α is said to satisfy the polynomial equation if α(A[x])= (α(A))[x] for
every ring A. It was proved in [8] that α satisfies the polynomial equation if and only
if it is polynomially extensible and has the Amitsur property. In this paper α always
denotes a radical that satisfies the polynomial equation.

A radical γ is called prime-like [11] if A[x] ∈ Sγ for any prime ring A. The
importance of prime-like radicals stems from the fact that, as was shown in [11],
they allow us to easily construct pairs of distinct special radicals that coincide on
simple rings and on polynomial rings, which answers a question posed by Ferrero [12].
Also, the long-standing open question of Gardner [6, Problem 1], which asks whether
β = U(∗k), is equivalent to the question whether the radical U(∗k) is prime-like.

It was shown in [11] that if γ is a prime-like radical, then A[x] ∈ Sγ for every
semiprime ring A. Inspired by this fact, we introduce the following definition.

DEFINITION 1.3. Let α be a radical that satisfies the polynomial equation. We say
that a radical γ is α-like if A[x] ∈ Sγ for any A ∈ Sα.

It is well known [7, p. 275] that β(A[x])= (β(A))[x] for every ring A. Thus we
have the following lemma.

LEMMA 1.4. γ is a prime-like radical if and only if γ is β-like.

In this paper we study properties of α-like radicals containing α. In particular,
we give necessary and sufficient conditions for a radical γ k α to be α-like. These
generalize some results of [11] and allow us easily to construct pairs of distinct special

https://doi.org/10.1017/S0004972711002231 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002231


[3] On α-like radicals 113

radicals that meet Ferrero conditions [12]. We also show that β = U(∗k) if and only if
U(∗k) is β-like. This gives a reason for studying α-like radicals.

2. Main results

We will start by describing some properties of α-like radicals.

LEMMA 2.1. α is α-like.

PROOF. Since α satisfies the polynomial equation, for any A ∈ S(α) we have
α(A[x])= (α(A))[x] = 0[x] = 0. Thus α is α-like. 2

LEMMA 2.2. A polynomially extensible radical γ k α is α-like if and only if γ = α.

PROOF. Let γ k α be a polynomially extensible radical.
If γ = α, then γ is α-like by Lemma 2.1.
Conversely, let γ be α-like and suppose that γ % α. Then there exisits 0 6= A ∈

γ ∩ S(α). But then, since γ is α-like and is polynomially extensible, it follows that
0 6= A[x] ∈ S(γ ) ∩ γ , a contradiction. Thus γ = α. 2

COROLLARY 2.3 [11, Corollary 4]. A polynomially extensible radical γ k β is
prime-like if and only if γ = β.

It was shown in [5] that the special radical U(∗k)k β is polynomially extensible.
Thus Corollary 2.3 implies the following.

COROLLARY 2.4. U(∗k)= β if and only if U(∗k) is β-like.

LEMMA 2.5. If α k β and γ is β-like, then γ is α-like.

PROOF. Let A ∈ Sα. Then A ∈ Sβ since α k β implies Sα j Sβ. But then A[x] ∈
Sγ because γ is β-like, which shows that γ is α-like. 2

LEMMA 2.6. If γ and ρ are radicals with γ j ρ and ρ is α-like, then γ is also α-like.

PROOF. Let A ∈ Sα. Then, as ρ is α-like, it follows that A[x] ∈ Sρ. But Sρ j Sγ
since γ j ρ. So A[x] ∈ Sγ which shows that γ is α-like. 2

COROLLARY 2.7. Neither the locally nilpotent radical L, nor the nil radical N , nor
the Jacobson radical J , nor the Brown–McCoy radical G is β-like.

PROOF. Since L is polynomially extensible [13, Example 2.1(ii)] and β & L, L is not
β-like by Corollary 2.3. Since L⊂N ⊂ J ⊂ G, the result follows from Lemma 2.6. 2

REMARK 2.8. Note that for some radicals α, in particular for β, there exist radicals
γ k α that are not α-like. Consider, for example, L⊃ β. Since β satisfies the
polynomial equation, it follows from Lemma 2.1 that β is β-like but L is not by
Corollary 2.7.
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The general question is interesting: do there exist radicals γ k α that are not α-like
for any α?

Our next result gives various characterizations of α-like radicals that contain α and
forms a generalization of [11, Corollary 13, Theorem 14].

THEOREM 2.9. Let γ be a radical containing α. The following conditions are
equivalent:

(1) γ is α-like;
(2) γx = α and γ has the Amitsur property;
(3) γ (A[x])= α(A[x]), for every ring A.

PROOF. (1)⇒ (2). Let γ k α be α-like. Then αx j γx . But, since α satisfies
the polynomial equation, it is polynomially extensible so α = αx . So, it follows
that α j γx . Suppose that there exists A ∈ γx such that A /∈ α. Then A[x] ∈ γ and
0 6= A/α(A) ∈ Sα. Now, since γ is α-like, it follows that (A/α(A))[x] ∈ Sγ . On
the other hand, since α satisfies the polynomial equation, we have (A/α(A))[x] '
A[x]/(α(A)[x])= A[x]/α(A[x]) ∈ γ because A[x] ∈ γ and γ is homomorphically
closed. Thus 0 6= (A/α(A))[x] ∈ Sγ ∩ γ , a contradiction. Therefore γx = α. In view
of [13, Theorem 3.5], to show that γ has the Amitsur property it suffices to show
that A[x] ∈ Sγ for every A ∈ Sγx . Let A ∈ Sγx . Then, as seen above, α j γx so
Sγx j Sα. Therefore A ∈ Sα. But, as γ is α-like, it then follows that A[x] ∈ Sγ ,
which shows that γ has the Amitsur property.
(2)⇒ (3). Let γx = α and let γ have the Amitsur property. Since α satisfies the

polynomial equation, it suffices to show that γ (A[x])= (α(A))[x]. Now, since γ has
the Amitsur property, it follows that (γ (A[x]) ∩ A)[x] = γ (A[x]) ∈ γ which implies
that γ (A[x]) ∩ A ∈ γx . This implies that γ (A[x]) ∩ A j γx (A)= α(A), because
γx = α. Then γ (A[x])= (γ (A[x]) ∩ A)[x]j α(A)[x].

But, since α(A)= γx (A) ∈ γx , it follows that α(A)[x] ∈ γ . Thus, as α(A)[x]C
A[x], it follows that α(A)[x]j γ (A[x]). Thus γ (A[x])= (α(A))[x].
(3)⇒ (1). Let γ (A[x])= α(A[x]), for every ring A. Let B ∈ Sα. Then,

since α satisfies the polynomial equation, we have γ (B[x])= α(B[x])= (α(B))[x] =
0[x] = 0. Therefore B[x] ∈ Sγ , which shows that γ is α-like. 2

Ferrero asked [12] whether two distinct special radicals can coincide on all simple
rings as well as on polynomial rings. An affirmative answer was given in [10, 11, 14].
The following result shows that some α-like radicals also meet Ferrero’s requirements.

COROLLARY 2.10. Let α be a special radical satisfying the polynomial equation. For
any special and α-like radical γ % α whose semisimple class contains all prime simple
rings, α and γ satisfy Ferrero’s requirements.

PROOF. Since α is special, β j α. Since γ is α-like, it follows from Theorem 2.9 that
γ (A[x])= α(A[x]), for every ring A. Let A be a simple ring. Then either A2

= 0
or A2

= A ∈ π . In the first case, A ∈ β j α j γ so α(A)= A = γ (A). In the second
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case, α(A)= 0= γ (A) since all simple prime rings are in Sγ and Sγ j Sα because
α j γ , which concludes the proof. 2

COROLLARY 2.11 [11, Corollary 15]. For any special and prime-like radical γ % β

whose semisimple class contains all prime simple rings (for example, l̂W is such a
radical), the prime radical β and the radical γ satisfy Ferrero’s requirements.
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