Bull. Aust. Math. Soc. **84** (2011), 111–115 doi:10.1017/S0004972711002231

ON α-LIKE RADICALS

H. FRANCE-JACKSON

(Received 9 November 2010)

Abstract

A radical ρ is called prime-like if for every prime ring *A*, the polynomial ring A[x] is ρ -semisimple. Let α be a radical satisfying the polynomial equation $\alpha(A[x]) = (\alpha(A))[x]$ for every ring *A*. A radical γ is called α -like if for every α -semisimple ring *A*, the polynomial ring A[x] is γ -semisimple. In this paper, we study properties of α -like radicals. We show that α -likeness is a generalization of prime-likeness and extend some results concerning prime-like radicals. This allows us easily to find distinct special radicals which coincide on simple rings and on polynomial rings, which answers a question put by Ferrero.

2010 Mathematics subject classification: primary 16N80.

Keywords and phrases: prime-like radical, α -like radical, special radical, Amitsur property of radicals, polynomially extensible radicals.

1. Introduction

In this paper all rings are associative and all classes of rings are closed under isomorphisms and contain the one-element ring 0. The fundamental definitions and properties of radicals can be found in [1, 7]. A class μ of rings is called hereditary if μ is closed under ideals. If μ is a hereditary class of rings, $U(\mu)$ denotes the upper radical generated by μ , that is, the class of all rings which have no nonzero homomorphic images in μ . For any class μ of rings an ideal I of a ring A is called a μ -ideal if the factor ring A/I is in μ . As usual, for a radical γ , the γ radical of a ring A is denoted by $\gamma(A)$ and the class of all γ -semisimple rings is denoted by $S(\gamma)$. π denotes the class of all prime rings and $\beta = U(\pi)$ denotes the prime radical. The notation $I \triangleleft A$ means that I is a two-sided ideal of a ring A. An ideal I of a ring A is called an essential extension of a ring I if I is an essential ideal of A. A ring Ais called an essential extension of a ring I if I is an essential ideal of A. A class μ of rings is called essentially closed if $\mu = \mu_k$, where

 $\mu_k = \{A : A \text{ is an essential extension of some } I \in \mu\}$

is the essential cover of μ . A hereditary and essentially closed class of prime rings is called a special class and the upper radical generated by a special class is called

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

H. France-Jackson

a special radical. A hereditary radical containing the prime radical β is called a supernilpotent radical. Given a ring *A*, the polynomial ring over *A* in a commuting indeterminate *x* is denoted by A[x]. We say that a radical γ has the Amitsur property if $\gamma(A[x]) = (\gamma(A[x]) \cap A)[x]$ for every ring *A*. A radical γ is called polynomially extensible if $A[x] \in \gamma$ for every ring $A \in \gamma$. It is well known [7, Proposition 4.9.21] that γ is polynomially extensible if and only if $\gamma = \gamma_x$, where $\gamma_x = \{A : A[x] \in \gamma\}$. A semiprime ring *R* is called a *-ring [2–4, 9] if $R/I \in \beta$ for every nonzero ideal *I* of *R*. The nonnil Jacobson radical ring

$$W = \{2x/(2y+1) : x, y \in \mathbb{Z} \text{ and } (2x, 2y+1) = 1\}$$

is an example of a commutative *-ring without minimal ideals, as observed in [2, 3, 9]. The class of all *-rings is denoted by *. The importance of the class $*_k$ is underlined by the two facts that follow.

THEOREM 1.1 [3, 9]. If R is a nonzero *-ring, then the smallest special (respectively, supernilpotent) radical \hat{l}_R (respectively, \bar{l}_R) containing R is an atom in the lattice of all special (respectively, supernilpotent) radicals.

THEOREM 1.2 [4, Proposition 2]. If $R \in *_k$ and μ is a special class of rings, then $R \in S(U(\mu))$ if and only if $R \in \mu$. Thus, in particular, a ring $R \in *_k$ is Jacobson semisimple if and only if R is primitive.

A radical α is said to satisfy the polynomial equation if $\alpha(A[x]) = (\alpha(A))[x]$ for every ring A. It was proved in [8] that α satisfies the polynomial equation if and only if it is polynomially extensible and has the Amitsur property. In this paper α always denotes a radical that satisfies the polynomial equation.

A radical γ is called prime-like [11] if $A[x] \in S\gamma$ for any prime ring A. The importance of prime-like radicals stems from the fact that, as was shown in [11], they allow us to easily construct pairs of distinct special radicals that coincide on simple rings and on polynomial rings, which answers a question posed by Ferrero [12]. Also, the long-standing open question of Gardner [6, Problem 1], which asks whether $\beta = U(*_k)$, is equivalent to the question whether the radical $U(*_k)$ is prime-like.

It was shown in [11] that if γ is a prime-like radical, then $A[x] \in S\gamma$ for every semiprime ring A. Inspired by this fact, we introduce the following definition.

DEFINITION 1.3. Let α be a radical that satisfies the polynomial equation. We say that a radical γ is α -like if $A[x] \in S\gamma$ for any $A \in S\alpha$.

It is well known [7, p. 275] that $\beta(A[x]) = (\beta(A))[x]$ for every ring A. Thus we have the following lemma.

LEMMA 1.4. γ is a prime-like radical if and only if γ is β -like.

In this paper we study properties of α -like radicals containing α . In particular, we give necessary and sufficient conditions for a radical $\gamma \supseteq \alpha$ to be α -like. These generalize some results of [11] and allow us easily to construct pairs of distinct special

radicals that meet Ferrero conditions [12]. We also show that $\beta = \mathcal{U}(*_k)$ if and only if $\mathcal{U}(*_k)$ is β -like. This gives a reason for studying α -like radicals.

2. Main results

We will start by describing some properties of α -like radicals.

LEMMA 2.1. α is α -like.

PROOF. Since α satisfies the polynomial equation, for any $A \in S(\alpha)$ we have $\alpha(A[x]) = (\alpha(A))[x] = 0[x] = 0$. Thus α is α -like.

LEMMA 2.2. A polynomially extensible radical $\gamma \supseteq \alpha$ is α -like if and only if $\gamma = \alpha$.

PROOF. Let $\gamma \supseteq \alpha$ be a polynomially extensible radical.

If $\gamma = \alpha$, then γ is α -like by Lemma 2.1.

Conversely, let γ be α -like and suppose that $\gamma \supseteq \alpha$. Then there exisits $0 \neq A \in \gamma \cap S(\alpha)$. But then, since γ is α -like and is polynomially extensible, it follows that $0 \neq A[x] \in S(\gamma) \cap \gamma$, a contradiction. Thus $\gamma = \alpha$.

COROLLARY 2.3 [11, Corollary 4]. A polynomially extensible radical $\gamma \supseteq \beta$ is prime-like if and only if $\gamma = \beta$.

It was shown in [5] that the special radical $\mathcal{U}(*_k) \supseteq \beta$ is polynomially extensible. Thus Corollary 2.3 implies the following.

COROLLARY 2.4. $\mathcal{U}(*_k) = \beta$ if and only if $\mathcal{U}(*_k)$ is β -like.

LEMMA 2.5. If $\alpha \supseteq \beta$ and γ is β -like, then γ is α -like.

PROOF. Let $A \in S\alpha$. Then $A \in S\beta$ since $\alpha \supseteq \beta$ implies $S\alpha \subseteq S\beta$. But then $A[x] \in S\gamma$ because γ is β -like, which shows that γ is α -like.

LEMMA 2.6. If γ and ρ are radicals with $\gamma \subseteq \rho$ and ρ is α -like, then γ is also α -like.

PROOF. Let $A \in S\alpha$. Then, as ρ is α -like, it follows that $A[x] \in S\rho$. But $S\rho \subseteq S\gamma$ since $\gamma \subseteq \rho$. So $A[x] \in S\gamma$ which shows that γ is α -like.

COROLLARY 2.7. Neither the locally nilpotent radical \mathcal{L} , nor the nil radical \mathcal{N} , nor the Jacobson radical \mathcal{J} , nor the Brown–McCoy radical \mathcal{G} is β -like.

PROOF. Since \mathcal{L} is polynomially extensible [13, Example 2.1(ii)] and $\beta \subsetneq \mathcal{L}$, \mathcal{L} is not β -like by Corollary 2.3. Since $\mathcal{L} \subset \mathcal{N} \subset \mathcal{J} \subset \mathcal{G}$, the result follows from Lemma 2.6. \Box

REMARK 2.8. Note that for some radicals α , in particular for β , there exist radicals $\gamma \supseteq \alpha$ that are not α -like. Consider, for example, $\mathcal{L} \supset \beta$. Since β satisfies the polynomial equation, it follows from Lemma 2.1 that β is β -like but \mathcal{L} is not by Corollary 2.7.

The general question is interesting: do there exist radicals $\gamma \supseteq \alpha$ that are not α -like for any α ?

Our next result gives various characterizations of α -like radicals that contain α and forms a generalization of [11, Corollary 13, Theorem 14].

THEOREM 2.9. Let γ be a radical containing α . The following conditions are equivalent:

- (1) γ is α -like;
- (2) $\gamma_x = \alpha$ and γ has the Amitsur property;
- (3) $\gamma(A[x]) = \alpha(A[x])$, for every ring A.

PROOF. (1) \Rightarrow (2). Let $\gamma \supseteq \alpha$ be α -like. Then $\alpha_x \subseteq \gamma_x$. But, since α satisfies the polynomial equation, it is polynomially extensible so $\alpha = \alpha_x$. So, it follows that $\alpha \subseteq \gamma_x$. Suppose that there exists $A \in \gamma_x$ such that $A \notin \alpha$. Then $A[x] \in \gamma$ and $0 \neq A/\alpha(A) \in S\alpha$. Now, since γ is α -like, it follows that $(A/\alpha(A))[x] \in S\gamma$. On the other hand, since α satisfies the polynomial equation, we have $(A/\alpha(A))[x] \simeq$ $A[x]/(\alpha(A)[x]) = A[x]/\alpha(A[x]) \in \gamma$ because $A[x] \in \gamma$ and γ is homomorphically closed. Thus $0 \neq (A/\alpha(A))[x] \in S\gamma \cap \gamma$, a contradiction. Therefore $\gamma_x = \alpha$. In view of [13, Theorem 3.5], to show that γ has the Amitsur property it suffices to show that $A[x] \in S\gamma$ for every $A \in S\gamma_x$. Let $A \in S\gamma_x$. Then, as seen above, $\alpha \subseteq \gamma_x$ so $S\gamma_x \subseteq S\alpha$. Therefore $A \in S\alpha$. But, as γ is α -like, it then follows that $A[x] \in S\gamma$, which shows that γ has the Amitsur property.

(2) \Rightarrow (3). Let $\gamma_x = \alpha$ and let γ have the Amitsur property. Since α satisfies the polynomial equation, it suffices to show that $\gamma(A[x]) = (\alpha(A))[x]$. Now, since γ has the Amitsur property, it follows that $(\gamma(A[x]) \cap A)[x] = \gamma(A[x]) \in \gamma$ which implies that $\gamma(A[x]) \cap A \in \gamma_x$. This implies that $\gamma(A[x]) \cap A \subseteq \gamma_x(A) = \alpha(A)$, because $\gamma_x = \alpha$. Then $\gamma(A[x]) = (\gamma(A[x]) \cap A)[x] \subseteq \alpha(A)[x]$.

But, since $\alpha(A) = \gamma_x(A) \in \gamma_x$, it follows that $\alpha(A)[x] \in \gamma$. Thus, as $\alpha(A)[x] \triangleleft A[x]$, it follows that $\alpha(A)[x] \subseteq \gamma(A[x])$. Thus $\gamma(A[x]) = (\alpha(A))[x]$.

(3) \Rightarrow (1). Let $\gamma(A[x]) = \alpha(A[x])$, for every ring *A*. Let $B \in S\alpha$. Then, since α satisfies the polynomial equation, we have $\gamma(B[x]) = \alpha(B[x]) = (\alpha(B))[x] = 0[x] = 0$. Therefore $B[x] \in S\gamma$, which shows that γ is α -like.

Ferrero asked [12] whether two distinct special radicals can coincide on all simple rings as well as on polynomial rings. An affirmative answer was given in [10, 11, 14]. The following result shows that some α -like radicals also meet Ferrero's requirements.

COROLLARY 2.10. Let α be a special radical satisfying the polynomial equation. For any special and α -like radical $\gamma \supseteq \alpha$ whose semisimple class contains all prime simple rings, α and γ satisfy Ferrero's requirements.

PROOF. Since α is special, $\beta \subseteq \alpha$. Since γ is α -like, it follows from Theorem 2.9 that $\gamma(A[x]) = \alpha(A[x])$, for every ring A. Let A be a simple ring. Then either $A^2 = 0$ or $A^2 = A \in \pi$. In the first case, $A \in \beta \subseteq \alpha \subseteq \gamma$ so $\alpha(A) = A = \gamma(A)$. In the second

114

On α -like radicals

case, $\alpha(A) = 0 = \gamma(A)$ since all simple prime rings are in $S\gamma$ and $S\gamma \subseteq S\alpha$ because $\alpha \subseteq \gamma$, which concludes the proof.

COROLLARY 2.11 [11, Corollary 15]. For any special and prime-like radical $\gamma \supseteq \beta$ whose semisimple class contains all prime simple rings (for example, \hat{l}_W is such a radical), the prime radical β and the radical γ satisfy Ferrero's requirements.

Acknowledgement

The author is indebted to the referee for his invaluable and constructive comments which considerably improved the paper.

References

- V. A. Andrunakievich and Yu. M. Ryabukhin, *Radicals of Algebra and Structure Theory* (Nauka, Moscow, 1979) (in Russian).
- [2] H. France-Jackson, '*-rings and their radicals', Quaest. Math. 8 (1985), 231–239.
- [3] H. France-Jackson, 'On atoms of the lattice of supernilpotent radicals', *Quaest. Math.* 10 (1987), 251–255.
- [4] H. France-Jackson, 'Rings related to special atoms', *Quaest. Math.* 24 (2001), 105–109.
- [5] H. France-Jackson, 'On supernilpotent radicals with the Amitsur property', *Bull. Aust. Math. Soc.* 80 (2009), 423–429.
- [6] B. J. Gardner, 'Some recent results and open problems concerning special radicals', *Radical Theory, Proceedings of the 1988 Sendai Conference*, Sendai, 24–30 July 1988 (ed. S. Kyuno) (Uchida Rokakuho, Tokyo, 1989), pp. 25–56.
- [7] B. J. Gardner and R. Wiegandt, Radical Theory of Rings (Marcel Dekker Inc., New York, 2004).
- [8] M. A. Khan and M. Aslam, 'Polynomial equation in radicals', *Kyungpook Math. J.* 48 (2008), 545–551.
- [9] H. Korolczuk, 'A note on the lattice of special radicals', Bull. Pol. Acad. Sci. Math. 29 (1981), 103–104.
- [10] S. Tumurbat, 'On special radicals coinciding on simple rings and on polynomial rings', J. Algebra Appl. 2(1) (2003), 51–56.
- [11] S. Tumurbat and H. France-Jackson, 'On prime-like radicals', Bull. Aust. Math. Soc. 82 (2010), 113–119.
- [12] S. Tumurbat and R. Wiegandt, 'A note on special radicals and partitions of simple rings', *Comm. Algebra* 30(4) (2002), 1769–1777.
- [13] S. Tumurbat and R. Wiegandt, 'Radicals of polynomial rings', Soochow J. Math. 29(4) (2003), 425–434.
- [14] S. Tumurbat and R. Wiegandt, 'On radicals with Amitsur property', Comm. Algebra 32(3) (2004), 1219–1227.

H. FRANCE-JACKSON, Department of Mathematics and Applied Mathematics, Nelson Mandela Metropolitan University, Summerstrand Campus (South), PO Box 77000, Port Elizabeth 6031, South Africa e-mail: cbf@easterncape.co.uk

[5]

115