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Abstract

We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas
in the thermodynamic limit. We show that the free energy at density p and inverse temperature 8
differs from the one of the noninteracting system by the correction term 47 p%|Ina?p|'(2 — [1 —
ﬂc/ﬁ]i). Here, a is the scattering length of the interaction potential, [-]; = max{0, -} and B, is the
inverse Berezinskii—Kosterlitz—Thouless critical temperature for superfluidity. The result is valid in
the dilute limit a’p < 1 and if Bp > 1.

2010 Mathematics Subject Classification: 16W10 (primary); 16D50 (secondary)

1. Introduction and main result

1.1. Introduction. Dilute quantum gases have proven to be a fruitful field of
research for several decades in both experiment and theory. One of the milestones
in the field was the experimental observation of Bose—Einstein condensation in
alkali gases [2, 9], which was followed by an impressive activity in the field
and also by a reexamination of fundamental properties of interacting Bose and
Fermi systems. Since the dilute setting is characterized by a small parameter, it
allows for an investigation of the many-body problem with rigorous mathematical
techniques.
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One of the fundamental quantities of a quantum gas is its ground state energy
per unit volume in the thermodynamic limit. In the case of a three-dimensional
dilute Bose gas, the leading order asymptotics is given by

eP(p) = 4mwap*(1 + o(1)). (1.1.1)

Here, a denotes the scattering length of the interaction potential and p is the
density of the gas. The above formula becomes exact in the dilute limit a®p — 0.
An upper bound for the case of the hard sphere gas was obtained in 1957 by
Dyson [10]. The corresponding lower bound was established only much later by
Lieb and Yngvason in 1998 [28] and can be considered as a major mathematical
breakthrough. An upper bound for general interaction potentials can be found
in [26]. Rigorously proving the form of the next order correction term for the
ground state energy (the Lee—Huang—Yang formula), predicted to equal

4 ap? (1.1.2)

128
15J_
in [21, 22], has been an open problem in mathematical physics for a long time
and was recently achieved in [47] (upper bound) and [14] (lower bound); see
also [8, 11, 15] for partial results in this direction and [7] for related work on
the Gross—Pitaevskii limit. For predictions of higher order corrections to these
formulas, we refer the reader to [23, 30, 46].

In two dimensions, the leading order term for the ground state energy per unit
volume is given by

ZD( )

| |(l—i- o(1)) (1.1.3)
as proved in [29]. In this case, the o(1) correction term is small when a?p is
small, which is the dimensionless small parameter characterizing the diluteness
of the system in two dimensions. In contrast to the three-dimensional case, the
two-dimensional ground state energy is not the sum of the ground state energy
of N(N — 1)/2 pairs of particles; it is much larger. In particular, the coupling
parameter |Ina?p|~! depends on the density. The first prediction of (1.1.3) can be
found in [41]. The next order correction to (1.1.3) is expected to be of the form

—47p?1n |Ina’p|

; 1.1.4
Ina?pl? (1D

see, for example, [1, 33].
At positive temperature, the natural analogue of the ground state energy is the
free energy. In three dimensions, the free energy per unit volume of a dilute Bose
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gas in the thermodynamic limit satisfies the asymptotic formula

BP0\
P, 0) = f(B. p) +dmap® [2— |1 - (T) (1 +o(1)).
+
(1.1.5)
Here, f(fD(ﬁ, p) is the free energy of noninteracting bosons, [ -], = max{0, -}
denotes the positive part, § is the inverse temperature and

2/3
B (p) = % (1.1.6)
is the inverse critical temperature for Bose—Einstein condensation of the ideal
Bose gas in three dimensions. The form of the interaction term results from
the bosonic nature of the particles. Two bosons in different one-particle wave
functions feel an exchange effect that increases their interaction energy by a factor
of two compared to the case when they are in the same one-particle wave function.
The [-],-bracket in (1.1.5) equals the condensate fraction of the ideal gas, which
is to leading order also the fraction of those particles that do not feel an exchange
effect. The free energy asymptotics (1.1.5) was proved in [44] (lower bound)
and [48] (upper bound). It is valid in the case Bp*? 2> 1, that is, if B is of the
order of the critical temperature of the ideal gas or larger (as a’p — 0).

Corresponding formulas for the ground state energy and the free energy of the
two- and the three-dimensional dilute Fermi gas have been proven in [25] and [43].
We also mention the series of works [13, 34-36], where the ground state energy
and the free energy of the dilute Bose gas in two and three spatial dimensions
were investigated by restricting attention to quasifree states. These articles contain
formulas for the energy and critical temperature that are conjecturally valid in a
combined dilute and weak-coupling limit.

In this work, we consider the free energy per unit volume of the two-
dimensional dilute Bose gas. More precisely, we are going to prove a lower bound
of the form

4702 (), 2
FPB.0) = fPB )+t (2 [1 - M} (1—o(1)). (1.1.7)
napl 1,

Here, ,302D(,0, a) is the inverse Berezinskii—Kosterlitz—Thouless critical
temperature for superfluidity given by

In |In a2
B (p,a) = Inflnap] p'; (1.1.8)

dmp
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see [5, 6, 18, 19]. The term p[1 — B2 (p,a)/Bl; in (1.1.7) has the physical
interpretation of the superfluid density [12]. For a thorough discussion of the
physics of the superfluid phase transition in the two-dimensional Bose gas, we
refer the reader to [38]. We emphasize that the inverse critical temperature
,BCZD(p, a) depends on the interaction potential via its scattering length. This
has to be contrasted with the situation in three dimensions, where the critical
temperature for Bose—Einstein condensation of the ideal gas appears in formula
(1.1.5) for the free energy. A comparable behavior cannot be expected in two
space dimensions because the Mermin—Wagner—-Hohenberg theorem [17, 32]
excludes Bose—Finstein condensation at positive temperatures in this case. To the
best of our knowledge, formula (1.1.7) does not seem to have appeared explicitly
in the literature before. It ought to be possible, however, to obtain it from the
analysis in [12]. The corresponding upper bound for f2P(B, p) is of the same
form as (1.1.7) and is given in [31]. In combination, (1.1.7) and this upper bound
establish the first two terms in the free energy asymptotics of the two-dimensional
dilute Bose gas.

In the following, we will exclusively deal with the two-dimensional system and
therefore drop the superscript ‘2D’ on the free energies f°° and f2°, as well as
on the inverse critical temperature 82°(p, a).

1.2. The model. We consider the Hamiltonian for N bosons in a two-
dimensional torus A, given by

N N
Hy == A+ v(d,x)), (1.2.1)
i=1

i<j

where A; is the Laplacian on A acting on the ith particle, d(x, y) is the distance
function on the torus and v > 0 is a measurable two-body interaction potential
with finite scattering length a (to be defined properly below). The interaction
potential is allowed to take the value 400 on a set of nonzero measure, which
in particular permits us to model the interaction between hard disks. This
Hamiltonian acts on the symmetric tensor product of square integrable functions
on the torus

N
Hy = Q)L (A). (1.2.2)
sym

We will describe the torus A as a square of side length L embedded in the plane
with opposing sides identified, that is, we have A = [0, L]*> C R?. Then A is the
usual Laplacian on [0, L]*> with periodic boundary conditions, and the distance
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function d(x, y) is explicitly given as

d(x,y) =min|x —y —kL|. (1.2.3)
keZ?

The quantity of interest is the free energy per unit volume of the system as a
function of the inverse temperature § = 1/T and density p defined by

1 3 1 —BHN
f(B,p) = —BleIEOOEInTrHNe . (1.2.4)
N’/LZ:p

The limit is the usual thermodynamic limit of large particle number N and large
volume L? (area, really) while keeping the density p = N/L? fixed. (Existence
of this limit, and independence of the boundary conditions used, can be shown
by standard techniques; see, for example, [39, 40].) The free energy asymptotics
we will give applies to the setting of a dilute gas, where the parameter a’p is
small while Bp is of order one or larger. In other words, the scattering length is
supposed to be small compared to the average particle distance while the thermal
wave length of the particles is of the same order as the average particle distance
or larger.

1.3. The ideal Bose gas. For noninteracting bosons, the free energy density
can be calculated explicitly. One has to solve the maximization problem

1
fo(B, p) = sup {up + 75 | In(1 — e %) dp} . (1.3.1)

The chemical potential w, that maximizes the free energy satisfies the equation

! /L—p (1.3.2)

42 Jpo eBP o) —1

and therefore reads as
1
wmo(B, p) = Eln(l —e V), (1.3.3)

This corresponds to the following explicit form of the free energy

1
fo(B, p) = p° [—ln(l — e4mhry

1 . _ L—4np
5 —471(/3,0)2 Lir(1 —e p):| , (1.3.4)

where

Liy(z) = — / @ dt (1.3.5)
0

https://doi.org/10.1017/fms.2020.17 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.17

A. Deuchert, S. Mayer and R. Seiringer 6

is the polylogarithm of order 2 (also called the dilogarithm). From this expression
for the free energy of free bosons, we directly obtain the scaling relation

In particular, we see that for the free system, the dimensionless parameter Sp
completely determines (up to a factor of p?) the free energy. We have the
asymptotic behavior

T
24x2

folx, 1) = —l (1 —In(4nx)) —Tm+O(x) asx — O.
X

(1 4+ O(e™*Y) as x — 00,

Jolx, 1) = —

(1.3.7)

1.4. Scattering length. The scattering length a is defined by a variational
principle; see [29, Appendix A]. Let us first assume that the potential v : R, —
R, has a finite range Ry, that is, we have v(r) = 0 for r > R,. Then for R > Ry,
we define the scattering length of v by

L / IVel? + ~ g}, (1.4.1)
nR/a) ¢ | /s 2

where the infimum is taken over functions g € H'(Bk) with value one on the
boundary, that is, they satisfy g|, -z = 1. Here, By C R? denotes the disk of
radius R centered at the origin. The unique function g, for which the infimum on
the right-hand side of (1.4.1) is attained, is nonnegative, radially symmetric and
satisfies the equation

—2Ag0+vgy =0 (1.4.2)

in the sense of quadratic forms, that is, when integrated against any test function
@ € Hy(Bg) with fBR lp(x)|*v(x) dx < 4o00. Outside the range of the potential,
that is, for Ry < r < R, the minimizer g, is explicitly given by

In(r/a)
In(R/a)

go(r) = (1.4.3)
As noted in the remark after the proof of [29, Lemma A.1], the definition of
the scattering length can be extended to potentials of infinite range by cutting off
the potential at a finite range and then letting the cutoff grow to infinity. From [20,
Lemma 1], we know that finiteness of the scattering length is equivalent to a
certain integrability condition of the potential. More precisely, if a < oo, then

/ v(|x|) In*(Jx|/a) dx < oo (1.4.4)
|x|>a
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holds. Conversely, if (1.4.4) holds with a replaced by some b > 0, then the
scattering length of the potential is finite.

We remark that defining the scattering length via this variational principle also
makes sense for potentials that are not necessarily nonnegative. One has to assume
that —A + v/2 as an operator on L*(R?) has no negative spectrum, however.

1.5. Main theorem. The main result of this work is an asymptotic lower
bound on the free energy in terms of the free energy of noninteracting bosons and
a correction term coming from the interaction. It is the two-dimensional analogue
of [44, Theorem 1]. The bound becomes useful for small ap and if Bp > 1. We
use the standard notation x < y to indicate that there exists a constant C > 0,
independently of x and y, such that x < Cy (and analogously for ‘>"). If x <y
and y < x, we write x ~ y.

THEOREM 1 (Free energy asymptotics of two-dimensional dilute Bose gas).
Assume that the interaction potential satisfies v > 0 and has a finite scattering
length. As a*p — 0 with Bp = 1, we have

4702 (0, a) T
FB. o) > folB. o)+ -T2 (2—[1—M])<1_o<1», (15.1)

lIna?p| B 1,
with ,
Inln|In
o(1) < inflnapl (1.5.2)
In|Ina?p|
Here, [-], = max{-,0} denotes the positive part, and the inverse critical

temperature B.(p, a) is defined in (1.1.8).

Remarks

(1) The proof of a corresponding upper bound of the same form as (1.5.1) is
given in [31]. In combination with our result here, this establishes (1.5.1) as
an equality, that is, the first two terms in the asymptotic expansion of the free
energy of the two-dimensional Bose gas in the dilute limit.

(2) The lower bound on the o(1) error term given here is uniform in Sp as long
as Bp 2 1. The proof will show that the actual error rate is much better for Sp
some distance away from . p (either above or below); see (2.16.13). For very
low temperatures, we utilize the proof method of [29]; this way, we recover
the ground state energy error rate |Ina’p|~!/° for very low temperatures,
which was proved for 7 = 0 in [29].
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(3) The statement is uniform in the interaction potential in the following
sense. In the case of finite range potentials, the error term depends on the
interaction potential only through its scattering length a and its range R,.
This dependence could be displayed explicitly. To prove the theorem for
infinite range potentials with a finite scattering length, one has to cut the
potential at some radius Ry, which results in an error term (contained in the
o(1) in (1.5.1)) of the form

1

— U(|x|)ln2(|x|/aR0) dx, (1.5.3)
|1n(’Z 10| [x|>Ro

where ag, is the scattering length of the potential with cutoff. When R is
chosen such that ag, # 0, this term is much smaller than the main error
term (1.5.2) but is nonuniform in the potential since ag, depends on v. Note
that in contrast to the three-dimensional case, one does not need to choose
Ro/a > 1. How one obtains (1.5.3) is explained in detail in Lemma 2.

(4) Even though the temperature dependence of the correction term in (1.5.1)
looks very similar to the three-dimensional case (1.1.5), the two-dimensional
case is actually rather different. Although in three dimensions it is possible
to obtain a term of the correct form by naive perturbation theory (with
(87)~" [ v in place of the scattering length), this fails to be the case in
two dimensions for two reasons. First, one would similarly obtain the
integral of the potential as a factor in the correction term, which does not
yield the correct behavior in the density (namely, the inverse logarithmic
factor |Ina’p|™"). Second, the temperature dependence in the correction
term would come out wrong, as the critical temperature for Bose—Einstein
condensation in two dimensions is equal to zero; hence a factor 2 (compared
to zero temperature) would appear at any 7 > 0. In other words, in two
dimensions, a naive perturbation theory would yield

fo(B, /0)+/02/U(IXI)dx, (1.5.4)

which differs from the true result in the two instances just described.

(5) The origin of the temperature dependence in the interaction term in (1.5.1)
can be understood from the variational principle

inf {fo(ﬁ p = po) + ———5—2p° —po)}

A
0<po<p lIna?p|

= fo(B, p) + n |(2,0 — p)(1 —o(1)) (1.5.5)
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as a’p — 0. To leading order, the optimal choice of p, turns out to be
ps = pl1 — B.(p, a)/Bl+, which coincides with the superfluid density of the
system [12]. One key ingredient of the proof of the lower bound for the free
energy is a c-number substitution for low-momentum modes. These modes
are described by coherent states that do not experience an exchange effect,
which decreases their energy relative to the energy of the high-momentum
modes that have not been substituted. The c-number substituted momentum
modes take the role of py and one obtains a formula for the energy that is
approximately given by the left-hand side of (1.5.5).

The proof of Theorem 1 is given in Section 2. It suitably adapts the technique
used to prove the related formula in the three-dimensional case [44] and, for
ease of comparison, we shall use the same section numbers and names as in that
reference. For the convenience of the reader, we give a short sketch of the proof
highlighting the main ideas before we start with the detailed analysis.

The proof strategy A key ingredient in the proof of the lower bound for the free
energy of the interacting gas is the observation that the second term on the right-
hand side of (1.5.1) (the interaction energy) is, in the dilute limit, much smaller
than the first term f,(8, p). As remarked above, a naive version of first-order
perturbation theory fails, however, for two reasons. First, the interaction potential
is so strong that the interaction energy of the Gibbs state of the ideal gas is
too large (it is even infinite in the case of hard disks). Second, the temperature
dependence of the interaction term comes out wrong, as p[l — B.(p,a)/B]l.
depends on the scattering length, which clearly cannot be captured by an ideal
gas state.

The first problem is overcome with the aid of a version of the Dyson
Lemma [10]. This lemma allows us to replace the strong interaction potential v
by a softer potential with a longer range that can later be treated using a rigorous
version of first-order perturbation theory. The price one has to pay is a certain
amount of the kinetic energy. It is important that only modes with momenta much
larger than B~!/2 are used in this procedure because the other modes are needed to
build up the free energy fo(B, p) of the ideal gas. A version of the Dyson lemma
fulfilling such requirements was for the first time proven in [25] to treat the ground
state energy of the dilute Fermi gas.

After this replacement, we utilize a rigorous version of first-order perturbation
theory at positive temperature, which was developed in [44]. The method is
based on a correlation inequality [42] that applies to fermionic systems at all
temperatures and to bosonic systems at sufficiently large temperatures. The main
ingredient needed for this method to work is that the reference state in the
perturbative analysis (usually the Gibbs state of the corresponding ideal gas)
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shows an approximate tensor product structure with respect to localization in
different regions in space. In the case of a quasifree state, this is true if its one-
particle density matrix shows sufficiently fast decay (in position space). In order
to overcome this restriction, highly occupied low-momentum modes leading to
long-range correlations have to be treated with a c-number substitution. That
is, coherent states on the bosonic Fock space are used to replace creation and
annihilation operators of the low-momentum modes by complex numbers. Since
coherent states show an exact tensor product structure with respect to localization
in different regions in space, they fit seamlessly into the framework. Although
there is no Bose—Einstein condensation in the two-dimensional Bose gas, we are
also faced with highly occupied low-momentum modes at very low temperatures.
As explained in Remark 5 above, the use of coherent states for the low-momentum
modes naturally leads to the correct temperature dependence of the interaction
energy in (1.5.1), whose origin is nonperturbative.

In order to be able to use a Fock space formalism, which is essential for
the formalism of the c-number substitution, it will be necessary to replace the
interaction potential v by an integrable potential v with uniformly bounded
Fourier transform. In contrast to the three-dimensional case, we will need that
the integral of v is suitably small in order to control various error terms. This
replacement will be done in the first step of the proof.

2. Proof of Theorem 1

We will frequently use the Heaviside step function in the proof and use the
convention
1 ifx >0,

o(x) = 0 ifx <O. 0.

In particular, 6(0) = 1.

2.1. Reduction to integrable potentials with finite range. The statement of
Theorem 1 is general in the sense that it allows interaction potentials that are
infinitely ranged and possibly have an infinite integral (for example, in the case of
a hard disk potential), while still having a finite scattering length. In the following,
it will be convenient to work with integrable potentials with a finite range. The
first condition is of importance because for the Fock space formalism, we need
to assume that the interaction potential has a bounded Fourier transform. Since
we want to prove a lower bound, we can replace the original potential by a
smaller one. The scattering length of the new potential is smaller, however. The
following two lemmas quantify the change of the scattering length if we do such
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a replacement. We start with a lemma that quantifies the change of the scattering
length when the potential is replaced by one that is cut off at some finite radius Ry.

LEMMA 2. Let v be a nonnegative radial potential with finite scattering length
a. We denote by vg, the potential with cutoff at Ry > 0 (that is, vg,(r) =
0(Ry — r)v(r)) and its scattering length by ag,. Then

1 -1
ln(R/a)—i—E/ v(|x|)1n2(|x|/aR0)dx> 2.1.1)

[x[>Ro

i~ (
In(R/ag,)
forall R > R,.

Proof. The claim is equivalent to the inequality
1
In(ag,/a) = i v(|x]) In*(|x|/ag,) dx. (2.1.2)
T JixizRo

To show (2.1.2), we use the variational principle for the scattering length of the
potential with cutoff at R, where R, is such that Ry < R; < R. Let quRO denote
the minimizer of the energy functional (1.4.1) with potential vg,. Then we have

27T UR
—g V v 2 _1 v 2)
T f (V6 + 1|

A fR' () pug, (P d
=——+7 v(r) |y, ()| rdr
In(R/ag,) Ro 0
gl (1+ L [ mwe )d) 2.13)
= v(r)In“(r/ag)rdr ). (2.1.
In(R /ag,) 2In(R/ag,) Jx, fo
This implies
In(R
—Inag, > 1 niR/am) —InR (2.1.4)
1+ TnRjary) J ko v(r) In“(r/ag,)r dr
and by taking the limit R — oo, we obtain
1k
In(ar,/ar,) > =5 / v(r) In*(r/ag,)r dr. (2.1.5)
Ro
We can now take the limit R; — o0 and obtain (2.1.2). ]

When we apply Lemma 2, the cutoff parameter R, has to be chosen such
that ag, > 0, which is the case if vg, # 0. We shall choose R such that
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In(R/a) ~ |Ina’p| > 1; hence the second term on the right-hand side of (2.1.1)
is indeed a small correction to the first term. The relative error term we obtain this
way is proportional to

1

T v(|x]) In*(|x|/ag,) dx, (2.1.6)
|1na pl |x|>Rg

which is much smaller than other error terms that we shall obtain below; see
(2.16.14).

From now on, we can thus assume that the interaction potential v has a fixed
finite range R,. For simplicity of notation, we shall drop the subscript R, from v
and a.

The next lemma quantifies the change of the scattering length if we replace a
potential v with finite range R, by a smaller potential v whose integral is bounded
by some number 4w ¢ > (. The error term we obtain is small as long as ¢ is
much greater than 1/In(R/a). In particular, ¢ can be chosen as a small parameter,
which is different from the corresponding three-dimensional case.

LEMMA 3. Let v be a nonnegative radial potential with finite range R, and
scattering length a. For any 0 < § < 1 and any ¢ > 0, there exists a potential v
with 0 < U < v such that [g, 0(|x|) dx < 4wy and the scattering length a of

satisfies
1 - 1 (1 1 . In(1 — 6)) 2.1.7)
In(R/a) ~ In(R/a) JoIn(R/a) In(R/a) o
forall R > R,.
Proof. Let
t:inf{s :/ rv(r)dr <oo}, (2.1.8)
and note that ¢ < a holds. To see this, let s > a and bound
/oo (r)dr < : /oo (r)In*(r/a)d
ruv(r ' X ro(r)mi(r/a r
In*(s/a) Jy
1 o0 2In(R
< 2—/ ro(r) I (rfa) dr < 2 MR/D) ) 1 g)
In*(s/a) J, In"(s/a)

where the last inequality follows from an easy calculation; compare with [20,
Equations (34)—(36)]. From this calculation, we see that ﬁ *ru(r) dr is finite for
all s > a.
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Now we distinguish two cases. Assume first that froo rv(r)dr > 2¢ (which
includes the possibility that v — oo in a nonintegrable sense as r — ¢). Then we
choose s > ¢ such that fsoo rv(r)dr = 2¢ and define v(r) = v(r)0(r — s). Let ¢,
denote the minimizer of the energy functional (1.4.1) and define the function

In(R
d(r) = (4’5(1”) — ¢i(s) ]EER?:;) O —s), (2.1.10)

which is nonnegative and continuous. We use ¢ as the test function in the
variational principle for the scattering length and obtain the upper bound

ln(an/a) / <|V¢| t3 |¢|2) - /BR$<_A * g) ot /aBR Vo

21"”2;‘; ;[ B0 meszhoqe —axt | G9gon
2.1.11)

where we integrated by parts and used the zero-energy scattering equation (1.4.2)
for v as well as the fact that the function r +— In(R/r) is harmonic away from
zero. In the boundary integral, we denoted by n the outward facing unit normal
vector of the disk (which is in this case just the unit vector pointing in the radial
direction). We note that the first term on the right-hand side is negative and can be
dropped for an upper bound. Since R > R, the boundary term can be explicitly

¢ ¢ ( / ) ( / ) . ( 1.

Hence,
Lo 9 (s)
In(R/a) ~ In(R/a) In(R/s)
Using the fact that ¢; (s) is always greater than or equal to the asymptotic solution
given by In(s/a)/ In(R/a), we obtain

dols) _ 1 1

(2.1.13)

In(R/s) ~ In(R/a) 1/¢s(s) — 1’ (2.1.14)
We get an upper bound on ¢;(s) via the monotonicity of ¢;(7):
1 > 1 > l/mrv(r)fﬁa(r)zdr > ¢i(5)20. 2.1.15)
In(R/a) ~ In(R/a) ~ 2 J,
Therefore,
50 < S (2.1.16)

VoIn(R/a)
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In conclusion, we have shown that

1 1 1
In(R/a) > In(R/a) (1 B JW)’ (2.1.17)

which proves the statement (for § = 0) in the first case.

It remains to consider the second case. Assume ftoo rv(r)dr = 2¢ —T for some
T > 0. We may assume further that ¢t > 0 since if = 0, we can take v = v and
there is nothing to prove. By the definition of 7, we have that for any 0 < 6 < 1,

t
/ rv(r)dr = oo. (2.1.18)
(1-8)t
Therefore, there exists a T = (T, §) such that
t
/ rmin{v(r), t}dr =T. (2.1.19)
(1-8)t
We define
v(r) ifr >1¢,
v(r) = {minf{v(r),t} If (1 =8 <r <t, (2.1.20)
0 otherwise.
Note that N -
/ ro(r)dr = / ro(r)dr = 2¢. (2.1.21)
0 (1=8)t

By the same argument as before (cf. Equation (2.1.13) with s = ¢) and with this
definition of v, we obtain

L1

< _ . (2.1.22)
In(R/a) ~ In(R/a)  In(R/1)

Similarly to (2.1.15), we have

1 1 Lt P
s P s % 2 fu_a),r”(r)"b“(” dr > ¢o((1 — ). (2.1.23)

Therefore,

¢ ((1 = 8)1) < (2.1.24)

1
VeIn(R/a)
From (1.4.2), we deduce that A¢; defines a positive measure, and using the Gauss
theorem, we have

/ Ads :/ Vs - n = 2mre(r). (2.1.25)
lx|<r [x|=r
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Since the left-hand side is increasing in r, we conclude that r — r¢;(r) is
monotone increasing. This implies for any s < r and for r > R,

spi(s) < rey(r) = n(R/a)" (2.1.26)
Thus, using the fundamental theorem of calculus,
1
¢ (1) — ¢ (1 — &)1) = 5t/ ¢5((1 = sw)t) dw
0
In(1 — 8)
< = / = — — . (2.1.27)
In(R/a) J, 1—3dw In(R/a)

Putting (2.1.22), (2.1.24) and (2.1.27) together as well as using t < a and a < a,
we obtain

1 < 1 _ @5 (1)
In(R/a) ~ In(R/a) ln(R/t)

1 1 1
S n(R/a) ln(R/t) @) = sl =00 + S ok )
! _ln(l—8)+ 1 1 2.128)
S In(R/a) In(R/a)>  In(R/a) JoIn(R/a) o
Rearranging the terms, we obtain (2.1.7). O

In the following, we denote by ¥ the interaction potential that is obtained from v
(which is assumed to have finite range R, as discussed after Lemma 2) by cutting
it, as indicated by Lemma 3, such that its integral is bounded by 47 ¢ > 0. As
mentioned already before, we have Hy > H N, Where H v denotes the Hamiltonian
with v replaced by v.

2.2. Fock space. In our proof, we relax the restriction on the number of
particles, which is possible for a lower bound and is motivated by the fact that
this allows us to use the formalism of the c-number substitution, as detailed in
the next subsection. We denote by F the bosonic Fock space and define the Fock
space Hamiltonian

H=T+V+K+ uoN 2.2.1)

with

T=) (p*—mo)ala, V= 2|A| Z d(p)ay, ai_,ara (2.2.2)
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and
dnC

K= ——F—
|AllIna?pl

Here, the chemical potential p is given by (1.3.3) and a; and a, are the usual
creation and annihilation operators that create and annihilate a plane wave with
momentum p, respectively. The sums over p, k and ¢ are taken over QT”ZZ. By
v we denote the Fourier transform of ¥ (we drop the ~ in the Fourier transform
for notational clarity), which is given by 9(p) = [, 9(d(x,0))e”"? dx =
f]RZ v(|x|) e7"P* dx. Here and in the following, we assume that L > 2R, which is
no restriction since we are interested in the thermodynamic limit L — oo. Note
that v is uniformly bounded, which is one reason we introduced v. We have

(N—N)> (2.2.3)

[0(p)| < 9(0) < 4mo. (2.2.4)

The number operator is defined by

N=> dla,, (2.2.5)
p

and the operator K was introduced to have a control on the number of particles
in the system after the extension to Fock space. Note that K vanishes on all states
with exactly N particles. The parameter C > 0 in the definition of K will be
suitably chosen later.

Recall that we defined the total Hamiltonian for N particles by Hy (in
Equation (1.2.1)) and that we denote by Hy the operator Hy where v is replaced
by v. We then have Hy > Hy = HPy, where Py is the projection on the Fock
space sector with N particles. This implies in particular that

Try, exp(—BHy) < Try, exp(—ﬂI:IN) < Trr exp(—pH). (2.2.6)

We will proceed deriving an upper bound for the expression on the right-hand
side.

2.3. Coherent states. We use the method of coherent states (see, for
example, [27]) in order to obtain an upper bound for the partition function
Trrexp(—BH). This method is based on the fact that coherent states are
eigenfunctions of the annihilation operators, which can be used to replace the
operators a, and a; by complex numbers. This procedure is also called c-number
substitution. Although we have no condensate in our system, this separate
treatment of a certain number of low-momentum modes is necessary for low
temperatures, as pointed out in the proof strategy in Section 1.5. We start by
introducing the necessary notation related to the c-number substitution.
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Pick some p. > 0 and write ' = F_ ® F.. Here F_ and F. denote the Fock
spaces corresponding to the modes |p| < p. and |p| > p., respectively. We define
M = lekpc 1=#{pe %”Zz . |p| < pc} and introduce for z € C™ the coherent
state |z) € F. by

|z) = exp ( > za) - z,,a,,) 0) =: U(2)|0). (2.3.1)

IpI<pe

Here |0) is the vacuum vector in F_, and the last equality defines the Weyl
operator U (z). The lower symbol H(z) of H is the operator on F. given by
the partial inner product

H(z) = (z|H|z) = Ts(2) + V(2) + Ki(2). (2.3.2)

We can use the fact that a,|z) = z,|z) and obtain the lower symbol by simply
replacing all a, by z, and a; by z, for |p| < p. in the normal-ordered form of
the Hamiltonian. To display it explicitly, let us introduce the notation

Ap = 2,1(|pl < po) +a,1(Ipl = pe) (2.3.3)
with adjoint AZ. The lower symbols of the operators on the right-hand side of
(2.3.2) are given by

. 1 . L
T(2) =) (p* — ) ALA,, Vi) = — > D(p)AL,,Al_,AcA, (2.34)
14 k.l

2| Al s

and

AnC
_ Z At Z T 2
p.q

P

The upper symbol of an operator is the operator-valued function that is obtained
by starting from the anti-normal-ordered form of the operator and then replacing
a, by z, and a; by z, for |p| < p.. This implies that the upper symbol can be
calculated from the lower symbol by replacing, for example, |z,|* by |z,|* — 1
and similarly for other polynomials in z, (see [27] for more details). The upper
symbol H*(z) of H satisfies

H= H*(2)|z){z| dz, (2.3.6)
(CM

where dz = ]_[M 95 dz = dx; dy;, is the product measure related to the real

i=l 7

and imaginary parts of z; € C. The Berezin—Lieb inequality [3, 4, 24, 27] implies
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Trr exp(—BH) < / Trr exp(—BH(z)) dz. (2.3.7)
cM

We prefer to work with the lower symbol instead, and therefore will replace the

upper by the lower symbol on the right-hand side of (2.3.7). Let AH(z) = H;(z) —

H?(z) be the difference between the two symbols, which reads as

1
AHG) = Y (P> — po) + m[ﬁ(oszNs (2) — M?)

[pl<pe

+2 Y ie-baa+ Y ﬁ<6—k)(2|zk|2—1>]

1€1< pe. |K|> pe €], 1kl <pe
nC )
+ —— [2]z|]" + M(2N;(z) — 2N — M)], (2.3.8)
|AllIna?p|

where |z|* = > pl<me |z,|* and Ny(s) = |z]* + > e a;ap. Using the bound
[0(p)] < 9(0) < 4@, we have

8 8
AH() < M(P? — o) + L MN,(2) + ————[|z]* + M(N,(z) — N)].
| A | AllIna?pl
(2.3.9)
The lower symbol of K reads as
4nC 4nC
Ki(z) = ————((Ny(z) = N)* +1z]") > —————(Ny(z) — N)* (2.3.10
(@) = i (@) = NP 12 > e (N = N) (23.10)
and allows us to estimate
1 8T N C
—K(z) — AH(z) = —M(p> — o) — —— (oM + ———
S K@) (2) (P; — 1o) Al (</> +|1na2p|>
BRACM + 17 (| ¢lind’p] :
|Al[Ina?p| C
=: —ZW, (2.3.11)

Note that M ~ pZ| A| in the thermodynamic limit. We will choose the parameters
Pe, ¢ and C such that Z" « |A|p?/|Ina®p| for small a®p. We also define

F.(B) = —% InTrz_ exp (—ﬂ (Ts(z) + Vi(2) + %K&z))) . (2.3.12)

Equation (2.3.7) and the above estimates imply the bound

—%mTrf exp(—pBH) > uoN — %mf exp(—BF.(B))dz — Z". (2.3.13)

C
In the following subsections, we will derive a lower bound for F,(f).
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The free energy F,(8) can also be written in terms of the free energy of a Gibbs
state. In fact, let I'* be the Gibbs state of T,(z) + V(z) + %Ks(z) on F., that is,

- exp (_IB [TS(Z) + VS(Z) + %KS(Z)])
Trr exp (—B[Ts(2) + Vo(2) + 1K,@)])’

(2.3.14)

and define the state
T =UQ@MU@) ®T* (2.3.15)

on F, where 1y, = |0)(0| denotes the vacuum state on F_. With these definitions,
we obtain the identity

F.(B) =Trx [(?I‘ +V+ %K) TZ:| - %S(TZ), (2.3.16)

where S(7%) = —Trz[7*In77?] is the von Neumann entropy of the state 1°*
(which equals the one of I'%).

2.4. Relative entropy and a priori bounds. To prove a lower bound for F,(8),
we will need some information on the state 7 defined in (2.3.15). The a priori
information that is being used is a bound on the relative entropy (to be defined
below) of 7% with respect to a suitable reference state describing noninteracting
bosons and a bound on the expected number of particles in the system. To
obtain this a priori information, we will assume that a certain upper bound for
F,(B) holds. This does not lead to a loss of generality because there will be
nothing to prove if the assumption is not fulfilled. That is, the statement will hold
independently of the assumption.

Let I be the Gibbs state on F. for the kinetic energy operator T,(z) (which
is independent of z) and define the state 25 on F by 25 = U(2)IToU (2)" ® I%.
Since V > 0, we have

1 1 1
F.(B) = 3 In(Trx_[e 7)) + > Trz[KT*] + ES(TZ, £2%), (2.4.1)
where

S(Ye, 28) = Trr[Y*(InT? — In 29)] (2.4.2)

denotes the relative entropy of Y°* with respect to £2§. Since 7'* and £2§ are equal
on F_, we have S(Y*, £2§) = S(I'?, I'y). We distinguish two cases: either

1 87| Alp?
F.(B) > — In(Trz. [eT]) + SA1P (2.43)
B [Ina?p|
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holds or it does not hold. In the latter case, we have

87| A|Bp?
(T, 925) = S(™, Iy < AP (2.4.4)
[Ina?p]
as well as
167 | Al p>
Trp (KT < 74P (2.4.5)
[Ina?p]

From now on, we will assume to be in the second case. The lower bound we are

going to derive on F,(f) will actually be worse than (2.4.3), that is, the bound is

true in any case, irrespective of whether assumptions (2.4.4) and (2.4.5) hold.
Equation (2.4.5) implies the following upper bound on |z|*:

2P = N < Trz[(N — N)T?] < (Trz[(N — N)* 7))

|Alllnap| " 2
= — Tr2[KT)/? < —|Alp.
( inC (Ter[KTD' < —=lAlp
(2.4.6)
In other words,
p-—@<p(1+i) 2.4.7)
STl Jc ) o

We will choose C > 1 below.

2.5. Replacing vacuum. In this section, we replace the vacuum state I1j in
the definition of 7°¢ in (2.3.15) by a more general quasifree state I7 on F_ and
estimate the effect of this replacement on (2.3.16). The replacement will become
relevant in Section 2.13 when we estimate the relative entropy of the above state
with respect to a certain quasifree state describing noninteracting bosons. For that
purpose, we require the momentum distribution to be sufficiently smooth, and do
not want it to jump to zero for momenta less than p,.

Let IT be the unique quasifree state on F_ whose one-particle density matrix is
given by

m= ) mlp)pl. (2.5.1)

Ipl<pe

The coefficients m, will be chosen later. We denote the trace of 7 by P. Define
the state 77 on F by

Y:=U@NU(z)' ®TI*. (2.5.2)
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Using [0(p)| < 4w, we see that

1
Trr[V(Y; =79 = mv(o)(l”2 + 2P Trr [Ny(2)I™])

1

— ok — ¢ 2lzel?
+ 2A] |k|g2|<p.v( My + 2| zi|“7,]

1 .
+ — Z Ok — €)m, Trr_[a)a, 7]

|A]
Wkl <pe. €12 pe

|A| (P2 + 2P Trr [Ny(z) )

47r<p

Al —Z(P?>+ 2P Tr#[NY?)). (2.5.3)

(We note that in [44, first line of (2.5.4)], there is an erroneous term
-2 Zlk\< e Tk |Zk |2. Since it is negative, it was dropped for the following estimate,
which resulted in an analogous upper bound on Tr=[V(7;? — 7°%)].) To obtain the
bound, we used that the term in the second line plus the term in the third line are
bounded from above by the term on the right-hand side in the first line. In (2.4.6),
we have shown that Tr=[NT?*] < N(1 4+ 2/ «/6), and we therefore obtain from
(2.5.3)

Trr[VY?] > Trx[VY?] — Z® (2.5.4)

with
Z@ .=

AroP? 8P 2
il il ‘pN( ) (2.5.5)

1+ —=
|A] | Al

NG

We will later choose ¢ > |[Ina’p|~! and C > 1. Hence, Z® <« |A|p?/|Ina®p|
aslongas oP < N/|Ina’p|.
The replacement of 7* by 77 causes also a change in the kinetic energy given
by
Ter[TY] = Ter[TY] = Y (p* — po),. (2.5.6)
Ipl<pe

By combining (2.3.16), (2.5.4) and (2.5.6), we therefore obtain the lower bound

F.(B) 2 Trz[(T+ V)T 1+ > Trf[KTZ] - ES(T )= Y (PP — o), — 2@

[pl<pe

(2.5.7)

2.6. Dysonlemma. As already mentioned in the proof strategy in Section 1.5,
in order to be in a perturbative regime, we have to replace the short ranged and

https://doi.org/10.1017/fms.2020.17 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.17

A. Deuchert, S. Mayer and R. Seiringer 22

possibly very strong interaction potential v by a softer interaction potential with a
longer range. To achieve this goal, we have to pay with a certain amount of kinetic
energy. More precisely, we will only use modes with momenta much larger than
B2 for this procedure because the other momentum modes are needed to obtain
the free energy fy(B, p) of the ideal gas.

To separate the high-momentum part of the kinetic energy (which is the relevant
part contributing to the interaction energy) from the low-momentum part, we
choose a radial cutoff function x : R> — [0, 1] and define

1 ‘
h(x) = o D= x(pye . (2.6.1)
P
We assume that y(p) — 1 sufficiently fast as |p| — oo so that A € L'(A) N

L*°(A). Define further for Ry < R < L/2

2
fr(x) = sup |h(x —y) —h(x)| and wg(x) = _fR(x)/ Jr(y)dy. (2.6.2)

yI<R T A
Finally, we introduce the soft potential Uk, which is a nonnegative function
supported on the interval [ Ry, R]. Its integral should satisfy

R
f Ur(t)In(t/a)tdt < 1. (2.6.3)
R

0

We then have the following statement.

LEMMA 4. Let yy, ..., Yy, be n points in A and denote by yxn(x) the nearest
neighbor of x € A among the points y;. Then for any € > 0, we have

1 n
—Vx(p)’V + 3 ; v(d(x, y1) = (1 — €)Ur(d(x, ynn(x)))
- %/ Ur(D)tdt Y we(x —y). (2.6.4)
Ry i=I

We remark that yyn(x) is well defined except on a set of zero measure. The
lemma above is a two-dimensional version of [44, Lemma 2]. It is referred to as
the Dyson lemma because Dyson was the first to prove a statement of this kind
in his treatment of the dilute Bose gas at 7 = 0 in [10]. A version of the Dyson
lemma for two and three space dimensions, where only high-momentum modes
are used to replace the interaction potential by a softer one, appeared for the first
time in [25]. The proof of Lemma 4 can be obtained by combining the ideas of
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the proofs of [44, Lemma 2] and [25, Lemma 7]. The main differences between
Lemma 4 and [25, Lemma 7] are the boundary conditions for the Laplacian and
the fact that we do not assume a minimal distance between the particles here.
Since the proof of [25, Lemma 7] was not spelled out in detail, we include a proof
of Lemma 4 in Appendix A.

We will use Lemma 4 for a lower bound on the operator T + V. In the Fock
space sector with n particles, this operator reads as

L 1
H, = Z[—A, +3 > Bd(x, x,))] (2.6.5)

Jj=l1 i i#j

We want to keep a small part of the total kinetic energy for later use and therefore
write for 0 < « < 1

pPP=pA—=—10—-)x(p))+ 1 —K)p°x(p) (2.6.6)

The kinetic term in H, will be split accordingly, and we apply Lemma 4 to the
last part of the kinetic term plus the potential term. Using also the positivity of v,
we obtain forany set J; € {1,...j—1,j+1,...,n}

1
—4i+5 Z U(d(xi, x))) = =V;(1 = (1 =) x(p))V;
i i#j

, 1
(1= 1 = UG ) - [ Uerdr Y wnty; =),
R+ icJ;

(2.6.7)

Here x;{N (x;) denotes the nearest neighbor of x; among the points x; whose index
i is contained in J;, and interaction terms for particles k ¢ J; are simply dropped
for a lower bound. The subset J; is defined via the following construction (which
is not unique). Fix x; and consider those x; whose distance to the nearest neighbor
(among all other x;, k # i, j) is at least R/5, and add the corresponding index i
to the set. Next, we go in some order through the set {xi, ..., X;_1, Xj41, ..., X4}
and add i to the setif d(x;, x;) = R/5 for all k that are already in the set J;. Note
that this last step depends on the ordering of the x;, and therefore J; will depend
on the ordering as well. Hence, the right-hand side of (2.6.7) is not permutation
symmetric, and strictly speaking, it should be replaced by its symmetrization. We
do not need to do this, however, as we are only interested in expectation values of
this potential in bosonic (permutation symmetric) states anyway.

The motivation to introduce the set J; is the following. By definition, all
particles whose index is contained in J; have a minimum distance R/5 to their
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nearest neighbor, which is needed in order to control the error terms coming from
wg. On the other hand, the set J; is constructed to be maximal in the sense that
if [ ¢ J;, then there exists a particle x; with k € J; such that d(x;, x;) < R/5.In
other words, we need the disks of radius R centered at the particle coordinates to
be able to have sufficient overlap in order to obtain the desired lower bound. For
certain values of z, the system could be far from being homogeneous and many
particles could cluster in a relatively small volume; we want to be able to detect
this as an increase in the interaction energy. (Recall that z = (zy, ..., zy) € C¥
is the complex vector introduced in Section 2.3.)

2.7. Filling the holes. After having applied Lemma 4, we want to replace the
resulting interaction potential Uy by a potential without a hole of radius R, at the
origin because it will be advantageous to work with a potential of positive type. To
obtain such a potential, we use Lemma 5. Its proof requires a different technique
than the corresponding lemma in the three-dimensional case [44, Lemma 3] due
to the fact that a sufficiently weak attractive potential in three dimensions has no
bound state, while it always does in two dimensions.
For some unit vector e € R?, we define the function j : R, — R, by

) 32 1 1
](f)=—/ 9(——|y|)9<——|y—te|) dy. (2.7.1)
b R2 2 2

Note that the support of the function j is given by the interval [0, 1] and that we
have fol j(®)tdt = 1. An explicit computation yields

i) = 1{—6 [arccos(t) —/1- t2] L. (1), (2.7.2)

where 19 1 denotes the characteristic function of the interval [0, 1]. The potential
we intend to work with is given by Ug (t) = R2In(R/a)~"j(t/R). To obtain this
potential, we choose Ug(t) = Ux (t)0(t — Ry) when we apply the Dyson lemma.
This choice indeed satisfies the integral condition (2.6.3) since

R 1 R
/R UR(t)ln(t/&)tdtzm i Jj(@/R)In(t/a)t dt

R
j(t/R)t dt =/

Ro/R

1

1

j@di < / fordr = 1.
0

(2.7.3)

g_
R? J,

The following lemma will allow us to quantify the error we make when we replace
U R by U R-
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LEMMA 5. Let yy, ..., y, denote n points in A, with d(y;, y;) = R/5 fori # j,
and let Ry < R/10. Then

1

n 6 n
““m ;e(Ro—d(x, W) == ;0<R/10—d<x, ) (27.4)

holds for a universal constant C>0.

Proof. 1t is sufficient to prove that

1
v 2 (R — 2\ 4
/x@/lo (I ¢ ()] RZIn(R/Ro) (Ro |x|)|¢(x)|) x

> —% g (x)]* dx (2.7.5)

R* Jivi<ry10

holds for any function ¢ € H'(R?) with C > 0 being independent of that function.
In other words, we need to show that the lowest eigenvalue of the quadratic form
on the left-hand side of Equation (2.7.5) is bounded from below by a constant
times —R 2.

Denote by EY this lowest eigenvalue and by ¢} the corresponding normalized
eigenfunction. We will bound EY from below in terms of E,, the lowest
eigenvalue of the Schrédinger operator

h=— O(Ry — |x|) (2.7.6)

Ae
RZIn(R/Ry)

acting on L*(R?). By rearrangement, ¢% is a radial decreasing function, satisfying
Neumann boundary conditions. Choose A € C*([0, o0)) such that A(0) = 1,
M) =0, A(t) = 0fort > 1and |M()|> < 2, |A()] < 1forall z > 0. We
define

¢x (x) if |x| < R/10,

Pr(x) = nk(@) if [x| > R/10,

(2.7.7)

where 7 is chosen such that ¢g(x) is continuously differentiable, that is, n =
R (eR/10) with e € R? being a unit vector. We have
— R/10
(i)
R

2

Eo < = dx

(Pr. Br) (P, Pr)

(Gr- hr) 1 <EN 7

R 2
R |x|>R/10

(2.7.8)
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With |A/(¢)|> < 2and A'(¢t) = 0 for t > 1, we see that the integral on the right-hand
side of Equation (2.7.8) is bounded from above by 127 R?/5. We therefore have

27 ,

E} 2 Eollgel” — =", (2.7.9)

With the definition of A, we conclude

5 ) 5 R/10+R 67T -
lorll” <14 2mn rdr=14—n"R (2.7.10)
R/10 5
and since E; < 0, we have
6 12

EY > E, (1 + ?”;721#) _ T”n% 2.7.11)

It remains to derive upper bounds for 1 and | E]|.

Since ¢ is symmetrically decreasing and has L*-norm equal to one, its value at
the boundary {x : |x| = R/10} is at most (7t (R/10)?)~'/2, thatis, n < 10/(,/T R).
On the other hand, we know from [45, Theorem 3.4] that

E ! —4n uf (2.7.12)
0 N — —_—— exp _ — . . .
R] TRy Ja O (Ro = |x]) dx R

Here Ey ~ — exp(—b/8) means that for all € > 0, there exists a §, > 0 such that
exp(—(b +¢€)/8) < —Ey < exp(—(b —€)/8) forall 0 < § < &. Together with
Equation (2.7.11) and the upper bound on 7, this shows that for all € > 0, there
exists a §, > 0 such that

121 [ Ry\*° 240
N 0
EN > — <?> - (2.7.13)
holds as long as Ry/R < Jo.
If this is not the case, we use the simple bound
N 1
Ep > ———"7"— (2.7.14)

" RJI(R/Ry)
Since Ry < R/10 by assumption we know that In(R/Ry) > In(10). On the other
hand, R} > R?8? implies that

1
EN> ——— 2.7.15
R R2821In(10) ( )

for Ry/R > 8y. This proves claim (2.7.4). O
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For the simple step function potential in Lemma 5, one can also compute the
lowest eigenvalue explicitly in terms of Bessel functions. The method of proof
given here is more general, however.

Recall that d(x;, x,) = R/5 for i, k € J;. With Ur(t) < j(0)/(R*In(R/a)) =
8/(R*In(R/a)), as well as using @ < Ry, we see that Lemma 5 implies

(U — Up)(d(x}, x3u(x))) < O(Ro — d(x;, XNN(XJ)))ﬁ&/R)
= 8< ) l;e(RO d(xi, x; ))m
<8 (%)2 _—A, + % gé(R/IO —d(xi, x;))
-3 <1;°> —A;+ %9(13/10 —d(x;, ngN(x,«)))} : (2.7.16)

The constant C > 0 is determined by Lemma 5. On the other hand, we know

that Ug(¢) can be bounded from below as Ug(t) > j(1/10)/(R*In(R/a)) for

t < R/10, and this implies

Ur(d(xj, xan(x)R*In(R /@)
J(1/10)

Equations (2.7.16) and (2.7.17) together show that

(Ur — Ur)(d(x}, 50k (X))

O(R/10 — d(x;, x3x(x))) <

(2.7.17)

R\’ 8C R\’ - ;.
< -8 <—> A+ - <?> In(R/a)Ug(d(x;, xxx(x,))). (2.7.18)

R j(/10)
Define a’ by the equation (assuming that the last factor on the right-hand side is
positive)
1 1 8C (R’ i
= —(1 - —-k)|1———=—) n(R/a)] (2.7.19)
In(R/a’) In(R/a) j(1/10) \ R
and let /R
7/ J
Up(t) = —/————. 2.7.20
#(®) R2In(R/a’) ( )
We also define
Ry
K —K—8< > (2.7.21)
R
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and write the remaining kinetic energy as (compare with (2.6.7))
R\ 2
— V(=1 =)x(p))V,; + (1 —e)(1 —k) (8 (7> Aj>

2 Ry ?
=z -=V,1-0-)x(p))V; +8 (F) A
=—-Aik' — (1 =)V;(1 = x(p)HV;. (2.7.22)

In the following, we will choose x >> Rj/R?, which, in particular, implies " >
0. Concerning the attractive part of the interaction potential that we obtain after
applying Lemma 4, we use the definition of Uy to see that

/R+ Ur(t)tdt < n(R/a) (2.7.23)
Equations (2.6.7), (2.7.18), (2.7.22) and (2.7.23) then imply
T+V>T 4+ W, (2.7.24)
where
T=) e(paya, and e(p)=k'p’+(1=k)p’(1=x(p))) — po. (27.25)

p

In the Fock space sector with particle number n, the operator W is given by the
(symmetrization of the) multiplication operator

n

Z Up(d(x;, xan(x))) — eln(R/a) Z

j=l1 i€l;

wR()Cj — )C,') . (2726)

We recall that the set J; depends on all particle coordinates x;, 7 # j.

We conclude this section with the choice of the cutoff function yx. Let v : R? —
R, be a smooth radial function with v(p) = 0 for |p| < 1, v(p) = 1 for p > 2
and 0 < v(p) < 1in between. For some s > R, we choose

x(p) =v(sp). (2.7.27)

We will choose p. < 1/s below. This implies in particular that e(p) =
(1 —k +«")p? — g for | p| < p.. With 7% and T defined in (2.3.15) and (2.5.2),
respectively, we therefore have

Trr[TT7) = Trr[T T+ > (1= +&)p* — o), (2.7.28)

IpI<pe
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Using Equations (2.5.7), (2.7.24) and (2.7.28) and further
Trz[T°T?] — %S(TZ) > —% InTrz_ exp(—BT:(z)), (2.7.29)
we conclude that
FAB) > = 3 InTrz, exp(=BTS(E) + Tex[WTE) + 5 TenlT)

— =« Y p'm,—2Z%. (2.7.30)

|pl<pc

The first term on the right-hand side of (2.7.30) can be computed explicitly and
reads as

1
~3 InTrz_exp(—BT;(z))

1
= > (I —k+6)p* = po)lz, "+ - Y In(l — exp(—Be(p))).
Ipl<pe IpIZpe

(2.7.31)

In the following, we will derive a lower bound on Trz[W77].

2.8. Localization of relative entropy. In order to compute Trz[W77], we
will replace the unknown state I, in the definition of Y? = U(z)I1U (z)" ® I'* by
the quasifree state I, the Gibbs state for the kinetic energy operator T(z). The
error resulting from this replacement will be controlled via the a priori bound
on the relative entropy (2.4.4). For that purpose, we need a local version of the
relative entropy bound, which will be derived in this section.

Let us denote by £2, the unique quasifree state whose one-particle density
matrix is given by

an(p)lp Z o 1Pl (2.8.1)

where

In(1 +1/7,) if [p| < pe,
Up) = ) __ (2.8.2)
B(p” — o) if[p| = pe

In other words,
2, =M QT (2.8.3)

We will choose 7, such that £(p) > B(p* — o) holds for all p. Let n : R, —
[0, 1] be a function with the following properties:

https://doi.org/10.1017/fms.2020.17 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.17

A. Deuchert, S. Mayer and R. Seiringer 30
e 1€ CTRy);
e n(0)=1,and n(x) =0 forx > 1;
e 1(p) = [pn(lx]) e dx > O forall p € R%.

Such a function can be obtained by choosing a smooth radial and nonnegative
function on R? with compact support and then convolving it with itself. Given a
function with these properties, we define 1, (x) = n(x/b) for some b < L/2. We
also define the one-particle density matrix w, by its integral kernel

wp(x, y) = w7 (x, y)np(d(x, y)). (2.8.4)
The unique quasifree state related to w;, will be denoted by £2, and
2, =U@2U@R)". (2.8.5)

We also introduce the notation p, = w;,(x, x) = w, (x, x).

To state the inequality we are looking for, we need to define spatial restriction
of states. To that end, we denote for r < L/2 by x,:(x) = 6(r — d(x, §)) the
characteristic function of a disk of radius r centered at § € A. Since .. defines a
projection on the one-particle Hilbert space H = L*(A), the Fock space F over
‘H is unitarily equivalent to the product of two Fock spaces

FH) = F(xe M) © F((xeH)H). (2.8.6)

Any state on F can be restricted to the Fock space over x, :H by taking the partial
trace over the second tensor factor in (2.8.6). The restriction of the state I” will be
denoted by I, .

If d(&, ¢) > 2r, the multiplication operator x, ¢ + x,. defines a projection, and
using the fact that w,(x, y) = 0 as long as d(x, y) > b, we easily check that

Qb~Xr,E+Xr.{ = 'Qh.x,-,s ® 'Qb,x,-,; (2-8-7)

holds if d(&¢, ¢) > 2r + b. More precisely, we use that the one-particle density
matrix of 2, .y, is given by (xer + Xer)Op(Xer + Xer) = Xer®pXer +
Xe.r0p Xe.r- The right-hand side is nothing but the one-particle density matrix of
§2y, 4, plus that of §2; , ., which proves the claim. The above identity also holds
for £2; because U (z) has the same product structure.

Concerning spatial localization, the relative entropy is superadditive in the
following sense.
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LEMMA 6. Let X;, 1 < i < k, denote k mutually orthogonal projections on H.
Let 2 be a state on F that factorizes under restrictions as 2y x, = ), 2.
Then, for any state I', we have

S(I. 25.x) > Y STy, 2x,). (2.8.8)

The proof of Lemma 6 can be found in [44, Section 2.8]; see also [42,
Section 5.1]. We emphasize that the factorization property of §2 is crucial; the
relative entropy need not be superadditive, in general. This is the reason for
introducing the cutoff . Without it, the state £2; would not factorize as in (2.8.7).

We apply Lemma 6 with £ = £ and X; multiplication operators by
characteristic functions of balls with radius r that are separated by the distance
2b. When we average over the position of the balls (see [42, Section 5.1] for
details), we obtain for » < 2b and L/(2b) € N the inequality

1
SU2) > s fA STy, $25,,,) dé. (2.8.9)

That is, the integral over local relative entropies of I" with respect to £2; can be
estimated from above by their global relative entropy. The restriction L/(2b) € N
is of no further importance since we take the thermodynamic limit. From (2.8.9)

for I' = T}, we infer
) 12
at <141 ([ | a)
1 " 1

/A ‘
172
< ﬁ|A|l/2 (/ S(I;,xy;’ .Q,j,m)dé)
A ' '

< 23/2b|A|1/25(T;, _Q;)l/2 (2.8.10)

i

s Xr§ b;Xr.E

z Oz
TU,XI'.E ‘Q

b;erE

for any b > 2r. This estimate follows from using the Cauchy—Schwarz inequality
for the integral over £ and the fact that the relative entropy of two states I and
I is bounded from below by the square of the trace norm distance; by Pinsker’s
inequality (see [37, Theorem 1.15]),

S(r,r’yzir—=r'm. (2.8.11)

In Section 2.13, we will estimate the effect of the cutoff b and obtain a bound on
(2.8.10) in terms of the a priori bound (2.4.4) on the relative entropy. We remark
that Pinsker’s inequality could not be used with benefit for the global relative
entropy. This is because the relative entropy is an extensive quantity while the
trace norm difference of two states is always bounded by 2.
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2.9. Interaction energy, part I. In the following three subsections, we shall
derive a lower bound for Tr=[W7?]. Estimate (2.8.10) will play an important
role in this analysis. We start by giving a bound on the first term in (2.7.26) in
this subsection, and postpone the analysis of the second term to Section 2.10.
In Section 2.11, we combine these bounds to obtain the final bound. A main
difficulty is related to the fact that the vector z is rather arbitrary, and hence
the density of the particles described by the coherent states can be far from

homogeneous.
Let us give a name to the positive and the negative part of the interaction energy.
We write
W=W, —W,, 2.9.1)
where
Wi =@ D" Ur(dlr, xa(x)) (2.9.2)
n=2 j=1
and
o0 n 1
W, = ——————wp(x; — X;). 293
’ @;; eln(R/&)wR(xJ x;) (2.9.3)

We start by giving a lower bound to the expectation of W, in the state 17:. First of
all, recalling the definition of j from (2.7.1), we note that since L > 2R, we can
write

32
Jdx, y)/R) = —03 / O(R/2—d(&, x)0(R/2—d(E,y)ds  (294)
A

for x, y € A. Inserting this into (2.7.20), we have

Ur(d(x, y)) = O(R/2—d(§, x))0(R/2—d (&, y))dE. (2.9.5)

32 /
mIn(R/a’)R* J,
This gives rise to a similar decomposition of W, which we write as

32

W] = —4
mIn(R/a")R

/ w(§)dé, (2.9.6)
A
with

w®) =P Y 0R/2—dE. x;)0(R/2 — d(E. x3(x)))). (2.9.7)

n=2 j=1
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For r > 0, define n, ¢ as the number operator of a disk of radius r centered at
& € A, which is nothing but the second quantization of the multiplication operator
O(r —d(&, -)) on L?(A). We claim that

w(&) = ngjioedMro: — 2). (2.9.8)

This is the second quantized version of
O(R/2 —d(&, x))O(R/2 — d(E, i (x)))

> 0(R/10 —d(§, x;)) (1 — l_[ 0(dE, x;) — R/lO)) , (2.9.9)

i i#]j

which can be shown using the defining property of J;. More precisely, (2.9.9) says
that if x; and some x; with k # j are in a disk of radius R/10 centered at & (that
is, if the right-hand side is equal to one), then the nearest neighbor of x; in the set
J; is in a disk of radius R/2 with the same center (that is, the left-hand side equals
one). Assume therefore that x; and x; are in a disk of radius R/10 centered at &
and k € J;. Then we have

d(x;, s (x;) < d(xj, x) <

R (2.9.10)
5 9.

which implies d(g,x;{ﬁ(xj)) < 3R/10. Conversely, if k ¢ J;, then by the
definition of J;, there exists / € J; such that d(x;, x,) < R/5. Therefore

d(xj, X () < d(xj, x) < (2.9.11)

?7

which implies d (&, xlf,’l'\](xj)) < R/2 and proves (2.9.9).
In particular, the above implies

w(&) > w) :=w&)0Q2—nsgpe)+nrnoed Mroe—2)0(n3gp0:—3). (2.9.12)
We also have
w(&)0(2 —n3gps) =nrpeMrpe — 102 —n3gpe), (2.9.13)

which can be seen from the following consideration. Assume two particles x; and
x; are in a disk of radius R/2 and no other particle is in the bigger disk of radius
3R/2 (with the same center). Then these two particles must be nearest neighbors
and by construction i € J; and j € J;, which implies (2.9.13).
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We note that the operator in (2.9.13) is bounded. Its operator norm equals 2 and
in combination with ngi0¢ < n3g/2¢, this implies that

[W() —ngpoel <2, (2.9.14)

as can be seen using (2.9.12) and an easy counting argument. Equations (2.9.6),
(2.9.12) and (2.9.14) imply that

4 32 EYTY Z
32

> W/ Trf[w(f)ﬂ,;' + nR/loyg’_—(T; — Qg)] d%‘

dé. (2.9.15)

TX3R/2E b X3R/2.6

Cow ln(R/a/)R“ / ‘
The second term on the right-hand side of (2.9.15) can be written as
R\?
A
On the other hand, Equation (2.8.10) implies that

/A(T — 2

dg < 2PhIAI'PS(TE, 292 (2.9.17)

T, X3R/2.6 b, X3R/2.¢

holds as long as 3R < b.

In the following, we will derive two different lower bounds to Trr[w(§)£2;]
in order to have a good bound for all values of z. To obtain the first bound, we
use (2.9.12) (where we drop the last term for a lower bound) and (2.9.13). This
implies

Tr;[ﬁ(é)ﬂ;] P [Trf[nR/z,s(”R/z,s - 1)92]
— Trrlnsgpe(zrpe — D(3ppe — 2)95]]% (2.9.18)

where we take the positive part of this bound since the right-hand side can
become negative, in which case we simply estimate the left-hand side by zero.
The advantage of the right-hand side of (2.9.18) is that all terms can be evaluated
explicitly because §2; is a combination of a coherent and a quasifree state. Let
@, denote the one-particle wave function |®,) = Z‘ pl<pe & »|p). With the aid of
U(z)'a,U(z) = a, + @.(x) and Wick’s theorem, we compute
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Trr(nsgpe(M3gpe — D(n3gpe — 2)82;]
= (TYJ-‘["3R/2,5-Q§])3 + 2tr(X3R/2,§wb)3 + 6(@z|(X3R/2,swa3R/2,§)2|¢z>
+ 3Trr[nsre LD | X3r2.6 @6 X3R 26 | P2) + tr(X3R/2,605)7)
< 6(Tr}‘[n3R/2,s~QZ])3, (2.9.19)

with wj, being the one-particle density matrix of £2, in (2.8.5). Here the symbol tr
denotes the trace over the one-particle Hilbert space L*(A). The first lower bound
is thus given by

Trr[w(€)$2] = [Trrlngpe rpe — DR — 6(Trrnag:2:1)°]+. (2.9.20)
To obtain the second lower bound for Trz[w(£)£2;], we use

Trr[w(£)82;] 2 Trrlngsioe60(ngrjoe — 2)82;1, (2.9.21)

which follows from (2.9.8). Let us denote by I1] the vacuum state on F. The

state £2; ., 18 @ particle number conserving quasifree state, whose vacuum
expectation is given by

F
Tr]:(XR/lO.s,H)[quXR/H),E HO’XR/lo,s] = exp(_ trin(l + XR/IO,&waR/IO,S))

= exp(—tr Xr/10,6®p XR/10,¢)
= exp(—7(R/10)*p,), (2.9.22)

where p,, was defined after (2.8.5) to be the density of £2,,. Hence,

‘QhXR/lo.s > eXp(—T[(R/lO)zpw)HO]’:XR/IO.S, (2.9.23)
as well as
25 yepos = EXD(=T(R/10)>0,) (U ()T U (2)") a0 - (2.9.24)

This in particular implies

Trr[w()$2;] > e (RN 00 Trr[ngsi0:0 (Mrsos — 2)U(Z)HOFU(Z)T]~ (2.9.25)
The state U (Z)HOF U (z)" as well as its restriction to the Fock space over 0eH
are coherent states. In the Fock space sector with n particles, the latter is given by

the projection onto the n-fold tensor product of the wave function xg,io.¢ P, times
a normalization factor. We therefore have
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(®1|XR/10,§ |D.)"

Trr[ng0:0(Mrpoe — 2)U @I U(z)'] = e (Plxrnosl®a) Zn l

n>=2
<¢z|XR/10,§ |¢z>2
1+ (D | xr/109)

= (D | Xr10 D) (1 — e Pelrrnoel®ay > (2.9.26)

To arrive at the last line, we used the estimate x(1 — e™*) > x2/(1 + x) for x > 0.
We combine the estimates from Equations (2.9.15), (2.9.17)—(2.9.19), (2.9.25)
and (2.9.26) to see that for any 0 < A < 1, we have
128+/2b| A|'/2

z 8 O\ _ z z2\1/2
Ter(Wi 251 > oo TRDT Ter (NG = 2] - —- SRR S(YE, 27

321
_ T — D2 — 6(T §2° d

+ 2 In(R /)R /[ tr(ngpeMrpe —1)82;] (Trr[nsrpe$271)° ], d€

32(1 — A) e R/10700 / (D1 xr/10.6]P:)°

7 In(R/a")R* A 1+ A(D [ xr/10|9P:)

The choice of A will depend on the function |®,|. If it is approximately a constant,
in a sense to be defined in Section 2.11, we will choose A = 1; otherwise, we
choose L = 0.

dt. (2.9.27)

2.10. Interaction energy, part II. In this section, we give an upper bound
for the expectation value of W, in (2.9.3). The two-dimensional version of [44,
Lemma 5] is the following statement. (In [44, Lemma 5], the corresponding bound
in three dimensions is incorrectly claimed with C, = 1.)

LEMMA 7. Let 0o : R> — C be a smooth function, supported in a square of
side length 4, and for s > 0, let u(x) = L2 > pe2z2 0(SP) e~'P*. Then for any
nonnegative integer n, there exists a constant C,, > 0 such that

wol < (==Y ¢, max ool (2 + Z2HLY (2.10.1)
“\dx, 0 " al=2 s L : T

l]=2n

Here 0“0 denotes the partial derivative of o with respect to the multiindex «.
Proof. For x € R?, we write x = (x;, x,). We have

(o (2o (57) - (%))
u(x)|2L —cos| —— ) —cos
L L

1
= m e " (=A0)"[o(sp)], (2.10.2)
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where (—Ag) f(p) = L*(4f(p) — Z\e\:l f(p + 2me/L)) denotes the discrete
Laplacian in momentum space. It is easy to check that the discrete Laplacian can
be estimated by maximizing over the second partial derivatives as

I(=40)" f(P)I < Gy max 0% oo (2.10.3)

for an n-dependent constant C,, independent of f. Note also that if f is supported
in a square of side length ¢, then after n-fold application of — Ay, the support is
contained in a square of side length £ 4+ 4mn/L. An easy counting argument then
allows us to estimate

C,
12:10.2)] < 75 max [19%0(s - >||w2nsupp<_w,,@,,)

C,s% 2L g
< max [|[0%0|lee | 1 + — + 2n
TS

|A|  lel=2n
2 m+1Y\
= C,s™" max [|[00]|eo | — + . (2.10.4)
lee|=2n TS L
We also estimate
ZJTXI' 8
l1—cos| — | > —mm lx; — kL|? (2.10.5)
L L? kez
and obtain
2 2
202 (2 —cos [ ) —cos (222 ) ) = 16d(x, 0)%. (2.10.6)
L L
Absorbing the factor 16 into the constant C,, we arrive at (2.10.1). O
By the definition of f% in (2.6.2), we have
Sr(xX) <R sup [VA(y)| <R sup [Vh(y)l, (2.10.7)
d(x,y)<R d(x,y)<s

where we used R < s. By applying Lemma 7 to Vi, we conclude that for L large
enough, there exists a smooth function g of rapid decay (that is, g decays like
an arbitrary power) that is independent of L such that the function wy defined in

(2.6.2) satisfies
2

R
wr(X —y) S 78(d(x, y)/5). (2.10.8)
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For W, this implies

R? [d(x;, x;)
DY e (C22). o)

n=2 j=1iel;

Next we decompose the function g into an integral over characteristic functions
of disks. For this purpose, we use [16, Theorem 1], which allows us to write

g(t) = /Oom(r)j(t/r)dr (2.10.10)
0
with

16

and j defined in (2.7.1). Since the third derivative of g, denoted here by g, is of
rapid decay, the same is true for m. As j is a decreasing function, we have

mr) = —— g’ ()s(s? —rH)~2ds (2.10.11)

1 00
8(1) < j(t)/ lm(r)| dr +/ lm(r)|j(t/r)dr, (2.10.12)
0 1

which implies

. . & : A A
e (C2) < [T (50 =9 [ mwrare s mosn) 5 (F2) ar

(2.10.13)
The integral over the § function is understood as evaluation at r = s, that is, the
right-hand side of (2.10.13) is nothing but the right-hand side of (2.10.12) with
t =d(x;, x;)/s. As noted before in (2.9.4), we can write

32
Jdxi, xp)/r) = —2/ Xr 2.6 (Xi) Xrj26 () d§ (2.10.14)
r A

as long as L > 2r. Equations (2.10.9) and (2.10.13) together with
Equation (2.10.14) show that

32 R [* : .
W, g—neln(R/[l)s_é_/S‘ dr {S(r—s)/ |m(t)|dt + s |m(r/s)|}

/ dé§ @ZZXr/zs(X ) Xr/2. (%)

n=0 j=1 ieJ;

1 R? d(x;, x;)
¢ | e @YY (1)

n=0 j=1 ielJ;
(2.10.15)
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holds. Here, we have split the integral over r into two parts, one with s < r < b
and one with b < r. In the second part, we do not have the same representation of
j asin (2.10.14) as eventually 2r > L. The cutoff parameter b is chosen the same
as in the definition of £2; in (2.8.5).

Let v,(§) denote the integrand of the integral over & in (2.10.15). Because
d(x;,x;) = R/5 for i,k € J;, the number of x; inside a disk of radius r/2 is
bounded from above by (1 + 5r/R)>. Hence,

5r\?
V(&) <y (1 + E) . (2.10.16)

On the other hand, we trivially have

v (&) <npe(npe —1). (2.10.17)

Combining these two bounds gives
. 5r\°
v, (&) < f(n,ne) where f(n) =nminy(n—1), |1+ z . (2.10.18)

We use the above bounds and | f (n) —n (14 35)?| < (14 (1+ 35)?)?/4 to estimate
Trrlv, )Y < Trelf (nr26) 7]
2
S Trrlf(npe) 2,1+ (1 + 5%) Trrln e (Y7 — $2))]
+ l(1+<1+5—r)2>2‘
4 R
When integrated over &, the second and the third term on the right-hand side of

(2.10.19) can be estimated as in (2.9.16) and (2.9.17), respectively. Using Wick’s
rule and a similar estimate as in (2.9.19), we bound the first term from above by

T — F

T Xr 2,6 b, xr2.6 |

(2.10.19)

. 5r\°
Trz[f(n,2.6)$2;] < min {Trf[nr/z,g (e — 1)82;], (1 + E) Trf[nr/z,sﬂ;f]}

. N 57\°
< min {2(Trf[nr/z,59;])2, (1 + E) Tr]-"[nr/Z,éQZ]}

4(Trf[nr/2,s~91§])2
S+ 2Trrn,0:281/(1 + 57 /R)*

(2.10.20)
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Moreover,
2

. mr
Trr[n, 82,1 = o P

Using convexity of the function x — x%/(1 + x), we obtain
8(¢Z|Xr/2,é |¢z>2

1+ 4P | X261 P:) /(1 + 5r/R)?

Putting these considerations together, we find (for R < s <r < D)

: Al 5
Trr[v,(5)Y;1dE < T(ﬂr Pe)
A

+ (D | X261 D). (2.10.21)

1
Trelf (n22)82;]1 < 5(7”2/0«))2 + (2.10.22)

®.|x e P

+/ (D] Xr 26| D) a
A 1 +HDP X2l P,) /(1 + 5r/R)

b|A|12

7

In order to be able to compare the second term on the right-hand side of the
above inequality to the last term in (2.9.27), we use the pointwise bound

(14 5r/R)?
w(r/2+ R/10)* Ju1<r21r/10
We first use the monotonicity of the map x +— x?/(1 4 x) to replace X,/ (x)
by the right-hand side of the above equation in the second term on the right-hand

side of (2.10.23). Afterward, we use the convexity of the same map and Jensen’s
inequality to see that

8<‘pz|Xr/2,g|‘pz)2
1+ XD x, 26 |P.) /(1 + 5r/R)?
(1+5r/R)* 8(P.| Xk /10,640 P2)*
= w(r/24 R/10)? lai<r2+r/10 1+ HP: | Xr/10.644|P:)

holds. Now we integrate in £ over A and obtain

(1 +5r/R)4 / 8(P.| Xr/10.64a ] DP:)?
7(r/2 + R/10) \a|<r/2+R/10 1+ 4P| xr/10,644|P2)
8(D | xr10.£|P; )
1+ 4P| xr/1061P:)

) )
<(6r/R)4/ 8(P:lxryoe|®:)” dE. (2.10.26)
4 1+ AP | xr10,6|9P;)

Ter(N(T; — 21+

9 4
+ = 372(r) S(YE, 252, (2.10.23)

Xr/2.€ (x) < XR/10,6+a (x)da. (2.10.24)

da (2.10.25)

dad&

d§

—(1+5/R)/
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The integral in the first term on the right-hand side of (2.10.15) is therefore
bounded from above by

b 1
/ {6(r—s> / |m<r>|dt+s—‘|m(r/s>|} / Trr[v, () TE1dE dr
s 0 A

T, {65\ b A2
< 2 =) Trr[N(Y? — 27
C[ s (R) rr[N(Y; 2]+ NG

6s\* [ 8(D.lxrj0:l®.)? 1A ]
+ = - : dé + —(7r pw) (2.10.27)
<R> /A 1+ (D | xr/10|D:) 5

372 (3)4 (Y2, 25)'V2
R T’ b

where

1 oo
c =/ m(t)| dt +/ lm(t)|t* dt. (2.10.28)
0 1

It remains to bound the second term on the right-hand side of (2.10.15), where
r > b. We use (2.7.2) and the same argument that led to (2.10.16) to see that

(d(x, x)) 5r\2
E J (—) <8 (1 + —) ) (2.10.29)
r R

ie
This implies
d(x;, x;) 65\’ o°

“Hm(r s)| ( ! ) dr < N(—) 8/ lm(r)|r*dr.
(2.10.30)

In the following, we denote
J(b/s):/ |m(r)|r? dr. (2.10.31)

b/s

Since |m| decays like an arbitrary power, the same holds true for J. The
contribution to Trz[W,7;?] from this part (except for the prefactor) is therefore
bounded from above by

6 2
(%) 8J(b/s) Trr[NY:]. (2.10.32)
In combination, (2.10.15), (2.10.27) and (2.10.32) show that
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Trr[W, T3] <

2 P =52
32R (97T Trr[N(Y; — £2)] (c+ J(b/s))

enrs?In(R/a) R?
97 Trr[NS2; T Alerm?p?
b TR 404 2 arescry, e AT
VAR 2
6\* o b,
n (—) 8c/ (| xrj06]P:)” dg) (2.10.33)
R A L+ A{D | xr/1061P;)

holds. This is the equivalent of [44, Equation (2.10.27)]. (We note that in [44,
Equation (2.10.27)], the first factor J (b/s) on the right side is missing. This is of
no consequence, however, as J (b/s) is small for s < b.)

2.11. Interaction energy, part III. In this subsection, we will put the bounds
of the previous two subsections together in order to obtain the final lower bound
for Trz[WTY?]. To do so, we will distinguish two cases depending on the value of
a certain function of @,.

Assume first that

/ (‘pz|XR/1o,g|¢z>2
A 1+ AP xr10.61D:)

2
2 32
d§ > §|A|(R p) (2.11.1)

holds. Essentially, this condition means that @, is far from being a constant. In
this case, we choose A = 0 in (2.9.27). Using condition (2.11.1), we check that
the difference of the last term in (2.9.27) and the last term in (2.10.33) is bounded
from below by

2 2 4 p2 ,
4r|Alp? (1 . (5) . 8%) _ o112
In(R/a’) 10 es?In(R/a)

Here we used that for our choice of parameters, the term in parentheses will be
positive (in fact, close to 1).

Next we consider the case when (2.11.1) does not hold, in which case we
choose A = 1 1in (2.9.27). We start by proving some bounds that will turn out to
be helpful below. Using (2.10.24) with the choice r = 3R and the monotonicity
as well as the convexity of the map x — x2/(1 + x), we see that

/ <¢z|X3R/2,E|¢z)2
A 1 +1672(D | X321 P)

2
dt < 164%|A|(R2,o)2 2.11.3)

holds in this case. Pick some D > 0 and let B C A be the set

= (£ € A (D:]x3r2¢|P:) = 16’ DR’ p}. (2.11.4)
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Using (2.11.3) as well as the monotonicity of the map x — x /(1 + x), we obtain

1
/(¢Z|X3R/2,$|(p2)d‘§ < 327° | AIRp (5 + Rzp) : (2.11.5)
B

We proceed similarly to find an estimate for the volume of B:

A

Bl <
e] 3?2

(1+ DR?*p). (2.11.6)

We choose A = 1 in (2.9.27) and estimate the relevant term from below by
/[(Tff[nR/z,s(nR/z.g — D271 — 6(Trr[nsge 2.1, d€
A
> / (Trxlngpe(nrpe — 1)827]) — 6(Trelnsrpe27)°) dé. (2.11.7)
A\B

Recall that we defined 2] = U (z)$2,U (z)", where U (z) is the Weyl operator from
(2.3.1) and £2, is the quasifree state with one-particle density matrix w, defined
in (2.8.4). In order to derive a bound on the second term on the right-hand side,
we note that Trr[nsg/:§2;] = T(3R/2)*p, + (P, |x3r/2.6|P;). Together with the
convexity of the map x — x* and (2.11.4), we conclude that

/ (Trrlnseps2:D)° d§ < 4|A|((BR/2)po)’ +4/ (D1 X3r)2 D)’ dE
A\B A\B

< 4|Al(w(BR/2)°p,)* + (16° DR’ p)*97 R* |z
(2.11.8)

holds.
Now we investigate the first term on the right-hand side of (2.11.7). Similarly
to (2.9.19), we have
Trr(ngpe(rpe — 18201 = Trrlngpe(Mgpe — 1)82;]
T
+ 2P| Xr2.6@p XR /2.6 |P2) + ERzpw(¢z|XR/2.E|¢z> + (DI xr | D2)°.
(2.11.9)

Note that we have used the translation invariance of the state £2,. Since £2;, is
quasifree, the first term on the right-hand side can be expressed in terms of the
one-particle density matrix w, and its density p,,. It reads as

Trr[ngpe(mpp: — 1)82,] = (T R*p,/4)° + tr{xrp2ewp XRp2e0p].  (2.11.10)
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In order to quantify how much the integral of the first term on the right-hand side
of (2.11.7) differs from the one with A\B replaced by A, we estimate

/ Trrlngpe(ppe —1)§2,]dE < 2|B|(7TR2/%/4) (2.11.11)

To arrive at the right-hand side, we used that the second term on the right-hand
side of (2.11.10) is bounded from above by the first term on the right-hand side.
Since (D@, | xr2.6@p Xr/2,6|P:) < XRy2,6Wp (P X2, | P, ), WeE also have

big
[ (0w contnnel® + SR pul0xuncl.)) ds
B
1
< TRp, / (@, xrpel®.) dE < wR>p,327%| AIR?p (5 + Rzp)
B
(2.11.12)
For the last inequality, we used (2.11.5) and the fact that f (Pl xRl P;) dE is

bounded from above by [ (P.|x3r2¢|P.) d&. For the last term in (2.11.9), we
use Schwarz’s inequality and (2.11.5) to estimate

1 2
/ (D x| D) dE > (/ <¢Z|XR/2,E|¢Z>ds>
s 4]

i o 1_62 2
|A| R p> —mp.p— (1 + DR*p)|. (2.11.13)

Here we have again used the notation p, = |z|*/| A|. Putting all these estimates
together, we have the lower bound

/ Trrlngme )QidE > Al Ry (| 7 (1+ DR*p)
rrn n — ' > —(1-—=
5 FLR2.6NR2 ¢ b 16 1D2 P
+ / tr[XR/z,gwaR/z,swb]dS+2/(¢z|XR/2,gwaR/2.s|¢z)d5
4 162 2
+ IAI R 20.00 + P2 — TP, p—(1+DR P)

1
— 32|A|73R*p,p (5 + R2p> . (2.11.14)

We denote w,(x) = wy(x,0) = w,(x,0)n,(d(x,0)). The first term in the
second line of (2.11.14) can be written as
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/ Xrj2.e(X) Xrj2e oy, VI d(x, y, &)
A3

=/ Xr/2.e(x +Y)XR/2,s(y)|60h(x)|2d(xvyw‘?)
A3

_ |A|zR?
32

fj(d(x,O)/R)|wb(x)|2dx. (2.11.15)
A

An application of the Cauchy—Schwarz inequality implies

A R2 A 2R4
Al /j(d(x,o)/R)lwb(X)lzdx> L)ﬁf, (2.11.16)
32 A 16
where we defined
1
Vo = —/ wp(x)j(d(x,0)/R)dx. (2.11.17)
2w R? J,

We note that y;, ~ p,, for b > R and 8'/> > R. Below, we will give more precise
estimates (see (2.11.28)). It remains to give a lower bound on the second term in
the second line of (2.11.14). We claim that

2 p4

,T°R
(D | Xr/260pXR/2,6|DP,) dE 2 |2] 6
A

(Vs = PuPcR). (2.11.18)

To see this, we write

32 . (dx,0)
TR /A<‘pz|XR/2,gwaR/2,s|‘pz)df - |Z|2/Awb(3€)]( R )dx

i ; . (d(x,0)
= (P, (x+y) =P, (y)P(y)wp(x) ] R d(x,y)
AxA
. (d(x,0)
Z =2 | 1P.(x+ ) — D.()llwp(x)]] dx. (2.11.19)
A
We estimate |w,(x)| < wp(0) = p,. Moreover, writing the relevant norm
in momentum space, one easily checks that ||[@.(x + ) — @.()| <

|®. || p.d(x, 0). Since the support of j(-/R) is the interval [0, R], the integral
over A can be estimated as

f j(d(x,0)/R)d(x,0)dx <27 R>. (2.11.20)
A

This proves (2.11.18). Combining these estimates with (2.11.8) and (2.11.14), we
see that
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32 ] ]
TIn(R/aNR* In(R/a") R* /A[(Tr]-‘[nR/z,s(nR/z,s - D)) — 6(Tr]-'[n3R/2,EQ}:])3]+ dg§
27| Alp; n? ) 2| Aly;  Am|Alp.
> o (- 1+ DR — pupeR

In(R/a’) ape LT PR )+ ke i Rjary Ve T PePeR)
Al [, 16 L prepy ] - 12 TR
PP MW /1 Z e -
In(R/a’y | “FPe TP T PP p In(R/a")
322722 Alpup {1 1728 - 16| A|(DR2p)*p.

— M 4R = |AIC p)P: (2.11.21)

n(R/a’) \D In(R/a’)R?

Now we put the results of this subsection and the two previous ones together.
More precisely, we combine the estimates from Equations (2.9.27), (2.10.33),
(2.11.2) and (2.11.21) to obtain

8 288
Trr[WT3] > Tre[N(Y? — 27 — _ J(b
rr[WT7] t[N(Y; )] <251n(R/a/)R2 eln(R/a)sz(c+ ( /S)))
V2 16 - 37%cR?
— (LY A|S(YE, 20V (128 4+ ———
nln(R/El)R4( AIS(T. $2,)) + €s?
27| Al (144(p, + p.) 8cp, R 2w |Al
- = J( @ Ay, Ayl
In(R/a) ( A A R (R /) mintAL A2
(2.11.22)
To arrive at this result, we used that ¢’ < a and we defined
R\’ 6*R2In(R/a’)
Ar=2p*1=n (=) po—8c——"—= 2.11.23
L=ep ( d (10) Po S 2 In(R/a) ( )
and
Ay =pl + v, +20:(V + pu) + 2
2 DR 46 3maR?] -2 R
pa) 4D2( + )0)+ . TT Py PzPwPc
6°n 5
— 20,0 D (I+ DR"p)
864 162 6*R2p2In(R/a’)
— pp.| — - 16*D*R? — ({1 +DR*p) | — 16c0————— 7.
pp[n p (4 DRp) e In(R/a)
(2.11.24)

Later, we will choose the parameters such that In(R/a) and In(R/a’) are equal to
leading order in the dilute limit. We will also choose €s?/R? large enough such

https://doi.org/10.1017/fms.2020.17 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.17

The free energy of the two-dimensional dilute Bose gas. 1. Lower bound 47

that the factor multiplying Tr=[N(Y? — £25)] in (2.11.22) is positive. Hence, it
will be sufficient to give a lower bound for the difference of the expected particle
numbers of 72 and £2;, which will be done in the next subsection.

To simplify the expressions, we make a choice of the parameters € and D and
restrict the range of R. We claim that all the terms with a negative sign appearing
in A; and A, (together with the prefactor) can be bounded from below by

Alp? 2 \1/3 R
2] (R?p)'"*+ — + peR ). (2.11.25)

To see this, we employ the bound on p, derived in (2.4.7) as well as the following
bound on p,. Recall that ¢(p) was defined in (2.8.2) and satisfies £(p) >
B(p? — o) for all p. This implies

1 1 1 1
pw:mzmgmzmzp—{—o(l) (2.11.26)

P P

in the thermodynamic limit. In order to minimize the error terms in 4,, we choose
D = (R*p)~'/3. On the other hand, note that in the definition of 1/1In(R/a’) in
(2.7.19), there is a factor 1 — €, which means that there is competition between ¢
and R?/(es?) to leading order and thus the optimal choice is € = R/s. We also
use that @’ < a < a and make the assumption

1 < 1 .
In(R/a) ™ |Ina?p|

(2.11.27)

In combination, these considerations prove the claim.
Now we give upper and lower bounds to y, in terms of p, as promised above.
We claim that

const. R? const. R?
— —o(D), (2.11.28)

b2 B2
where the o(1) contribution vanishes in the thermodynamic limit. The upper

bound can be obtained by noting that |, (x)| < w,(0) = p,,. For the lower bound,
recall that w,(x) = w, (x, 0)n,(d(x, 0)). We use cos(x) > 1 — %xz to estimate

pw>yb>pw(1—

2

1 cos(px) d(x,0)? p
— > P, — . 2.11.2
@r (X) A 2. et _1 = P 24| Xp: ol _1 ( %)

p

We further use that || < 1 and n(t) > 1 — const. t>. With the support of j being
contained in a disk of radius one, we can estimate d(x, 0) < R inside the integral
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in (2.11.17). Additionally, we use £(p) > Bp*. In combination, the above facts
allow us to bound

Po .
Yo = zﬂRzfAn(d(x,O)/b)J(d(x,O)/R)dx
1 p? .
- AR L | a0, 0/ @ 0/ dx
Lo d(x,
Z 5 R </](d(x O)/R)dx—const/ j(d( O)/R)dx>
! / v df'(d( 0)/R) dx — o(1
- 87282 Joo er? —1 4 AJ x,0)/ x —o(l)
RZ R2
= Do (1 — const. §> — const. E —o(1). (2.11.30)

This proves (2.11.28).
To estimate the terms in .4, and A, with a positive sign, we apply the lower
bound from (2.11.28) to y, and find

2 2 2 2 2 R2 R? N
Pt Vy +20:(Vo+ p0) + 02 = 20, +4p.0,+ p; —const. —+p— o(1).

B2
(2.11.31)
In combination, our considerations imply
2r|Al 2r|Al . 2 2 2
——min{A,, A} > ————— min{2p°, 40,0, + 2
n(R/a) {Ai, Ao} n(R/a) {20, 0, +4p.p0 + 2p,}
A 2 R 2 2
— const. 1412 (R*p)'° + — + p.R ot o) - o(lA]).
nap| s B2p
(2.11.32)

Here, we can drop the terms R?/b? and R?/(B>p) as they are dominated by R/s
and (R?p)'/3, respectively. This follows from the assumptions b > s > R, Bp > 1
and R?p <« 1. Using Lemma 3 with the choice § = +/In(R/a)/¢ as well as the
definition of @’ in (2.7.19), we estimate

1 1 1 R R?
> —const. —— | — +k + —— — 2 1In(R
In(R/a’) ~ In(R/a) In(R/a) (s “T JomR/a) R ( /a))
(2.11.33)
We will choose R?p < 1 and, in particular, R>p < 1, that is,
1 2
(2.11.34)

> .
In(R/a) |[Ina?p|
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We thus finally arrive at

27| Al Am|Al
——— min{A4,, A —— min{2p%, p> + 4p, P + 2
ln(R/a/) in{A;, A2} > nap] in{2p?, p? + 4p.p P}
|Alp? > upn, R R;
— const. ———— [ (R*p)"°* + — + p.R + Kk + ——r —|lna ol
lIna?p| s \/wllna Pl

(2.11.35)

2.12. A bound on the number of particles. In this section, we give a lower
bound on the terms involving the number operator and its square. More precisely,
we consider the sum of the first term from (2.11.22) and the term %Tr;[]KTZ]
from (2.7.30). Recalling that we already chose ¢ = R/s and that K was defined
in (2.2.3), we seek a lower bound on the expression

8 288 s
= (25 1n(R/a’)R2 - ln(R/&)RS (c+ J(b/S))) TI']:[N(TH — Qb)]
2nC s
Alnazp) TFIE =N 2.12.1)

The fact that we need to give a bound for the first term on the right-hand side is
one of the reasons for introducing the operator K in Section 2.2.

Using the definition of £2, and £2,; in (2.8.3)—(2.8.5) and the fact that they have
the same density, we conclude

Trr[N(Y? — 27)] = Tre [N”(I'F — I)], (2.12.2)
where
= Y dla,. (2.12.3)
[pIZpe

For the quadratic term, we use the inequality

(N—=N)*= (lzI + Trs [N" T3] — N)?
+2(|z)* + Trr [N" Iyl — N)(N — |z — Tre [N” 1)), (2.12.4)

This implies

Trr[(N = N*T] = (jz]* + Tre [N I] — N)?

+ 2(1z) + Trz [N" I] = N) Tre, [N7(IF = Ip)].
(2.12.5)

https://doi.org/10.1017/fms.2020.17 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.17

A. Deuchert, S. Mayer and R. Seiringer 50

Hence, we obtain the following expression as a lower bound

_2nC o 2
N> e (2 4+ Tor [N 1] = )
LT [N><FZ—F)][< . R 17 )))
7 PN\ 25 Im@R/aYR? ~ In(R/@)Rs < /s
4m C 5 —
+ mﬂd + Trr [N717] N)] (2.12.6)

We will choose the parameters R, s and C satisfying the conditions C < 1/(R?p)
and R « s such that the term in square brackets on the right-hand side of (2.12.6)
is always positive (for any value of |z|), and therefore we need a lower bound on
the expression Trz [N™ (1% — Ip)].

Let

fw = 1 Y In(1 — e P@ oy, (2.12.7)

Ip1Zpe

Using the definition of the relative entropy in (2.4.2) and the Gibbs variational
principle for the ideal gas, we see that for any u < 0

S, Ty) = B Ter IN"I1 2 B(f () — £(0)). (2.12.8)
From the absolute monotonicity of f (that is, all derivatives being negative), we
obtain
Fw = FO +pnf'©) + 567 f"(0). (2.12.9)
This implies
1 . Blul 1
Trr [N (I =) > ———S(I'%, ) —
’ VT Blul V4 é cosh(B(p? — o)) — 1
(2.12.10)
as well as
12
1
Trr [N(I'* = T)] = — | SUT%, 1))
’ ’ ’ % cosh(B(p? — o)) — 1
(2.12.11)

when we optimize the right-hand side of (2.12.10) over .
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We can use the a priori bound from (2.4.4) to bound the relative entropy, while
for the sum over p, we use the bound coshx — 1 > x2/2. Thus,

Y i < B
cosh(B(p? — o)) B2 (p? — 110)?

|p1Zpe |pIZpe
[ Al / dp
= +o(lA]). (2.12.12)
21327-[2 |p1=pe (pz - /'4“0)2

The integral equals

dp T
2 27 2 . (2.12.13)
pizpe (P7 — o) P:— Mo

In conclusion, we have shown that

2.2 1/2
Trr [N7(I'* = 1)] > — < HA o ) —o(|AD)  (2.12.14)
[Ina?p|(Bp? — Bito)

holds. We now insert this into (2.12.6) and obtain

2nC

> ——— (2 + Tre [N ] = N — Z% —o(|A]),  (2.12.15)
| Alllnap|
where

70 const. |A|p?
" InapPR(Bp? — Brao)'?

x |:|lna2,0| (*) e (i n &)} . (2.12.16)
25In(R/a)R?p Nl

Note that we used (2.4.7) to bound p, as well as |A|~! Trz_ [N~ I}] < p,. Using
also (2.11.26), assumption (2.11.27) on R and choosing C <« 1/(R?p), this
simplifies to

S < 141’ 1
~ Ina’p| (lIna?p|(Bp? — Bio))'/?R*p

(2.12.17)

2.13. Relative entropy, effect of cutoff. In this section we quantify the effect
of the cutoff parameter b on the relative entropy S(Y7, §2;) appearing in (2.11.22).
The goal is to estimate S(Y7?, £2;) interms of SUIRI%, £2,) = S(I'%, I). For the
latter expression, we have the a priori bound (2.4.4). To obtain such an estimate, it
will be important that the vacuum state 1, has been replaced by the more general
quasifree state I7 in Section 2.5.
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For any quasifree state £2,, with one-particle density matrix w and any state I,
it is easy to check that the relative entropy S(I7, £2,,) is convex in w. The one-
particle density matrix of £2, is given by the convex combination

Zm(q) Z(wﬂ(p+q>+w,,(p DIp)pl. @130

wp =
14]

Convexity of the map w — S(I', §2,,) therefore implies

SUT®TI*, 82) < |A| an(q)S(F[ ® %, 2,), (2.13.2)

where £2, is the quasifree state corresponding to the one-particle density matrix
with eigenvalues % (wz(p+¢q) + w(p —q)). Further arguments based on
convexity (see [42, Equations (5.15) and (5.16)]) yield

SUTQRTI2) < (1+17") ST, Iy)

I " 1 1
+ 21y (p) = ho(p)) P (P p) ] ol ]
P
(2.13.3)

for any ¢ > 0. Here we defined

(2t e+ + o (p—9q)
h,(p) =1n .

(2.13.4)

To estimate (2.13.3) from above, we require the following lemma. Since the proof
of the analogous [44, Lemma 6] does not explicitly depend on the dimension of
the configuration space, it translates to the two-dimensional case without changes.
We therefore omit the proof of Lemma 8.

LEMMA 8. Let £ : R* — Ry, and let L. = Fsup,, sup,,_, £(q - V)*£(p) denote
the supremum (infimum) of the largest (smallest) eigenvalue of the Hessian of {.
Let w,(p) = [e"P —1]7", and let h,(p) be given as in (2.13.4). Then,

hy(p) — ho(p) < Lyg? (2.13.5)

and

hy(p) = ho(p) > ¢*L_ + ¢* min{L_, 0}
— 4¢” supl|VE(p) Poo ()] — 24°(Ig| + |p)* suplIVE(PIP/p?).  (2.13.6)
P P
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Recall that the £(p) in question was defined in (2.8.2). Now we choose the
parameters 7 ,, which determine £(p) for |p| < p.. For that purpose, let g : R* —
[0, 1] be a smooth radial function that is supported in a disk of radius one and
assume that g(p) > 1 for |p| < 3. Then we set

t(p) = B(p* — o) + Brig(p/ po).- (2.13.7)
This corresponds to the choice

1
T = eBWw?—wo)+BpZg(p/pe) 1"

(2.13.8)

Note that this choice indeed satisfies our earlier assumption on £(p), which was
2(p) = B(p* — o). Furthermore, we can estimate 7, < 1/(8(pZ? — ). This
can be seen by considering |p| > p./2 and |p| < p./2 separately and using
£(p) = B(p* — 1) in the first case and g(p/p.) > 1/2 in the second case. Using
this and M < p?| A|, we can bound P from Section 2.5 as

M 1412
P = < < ¢ . 2.13.9
2 T R G S B = ) (2-139)

IpI<pe

The bound on P is needed for estimating Z® in (2.5.5).

For our choice of Z, it is easy to see that both L, /8 and L_/fB are bounded
independently of all parameters. We further have the bounds |V£(p)| < B|p| and
w,(p) < L(p)~' < (Bp»~', and together with Lemma 8, this implies

—BBg*(1 + B(p| +1gD*) < hy(p) — ho(p) < BBg* (2.13.10)

for some B > 0. Using sinh(x)/x < cosh(x) for x € R, we estimate

1 1
(hg(p) = ho(p)) <eh0(P)+7(ho(P)hq(P)) 1 o _1)

e ha(P) 4 g=ho(p)+1(hg(p)=ho(p))

1 2
< 5(1 +1)(hy(p) — ho(p)) (1 = e ) (] — eha )’

(2.13.11)

We use

(hg(p) = ho(p))* < B*(Bg*)*(1 + B(Ipl + 1g)*)? (2.13.12)

as well as the fact that the last fraction on the right-hand side of (2.13.11) is
bounded from above by
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e ha(P) - g—ho(p)+1BBg’

(1 — e~hoP+iBBg*) (1 — e~ha(P)
1
=o' (p) + F@n(p+a) +o:(p =g+ 20" (p)), (2.13.13)

where o'(p) = [eMP~BF14* _1]~! To obtain this result, we assumed that ¢ is
small enough such that i(p) — BBtg? > 0 for all p. Since sums converge to
integrals in the thermodynamic limit, we need to bound

1
/ (+B(Ipl+lgh*? <w’(p) 5@ (ptq)+o(p—q) 1+ 260’(17))) dp.
R2

(2.13.14)
We replace w,(p — q) by @, (p + ¢g) without changing the value of the integral.
Then we use w, (p) < o'(p), change variables p — p — ¢ and use Schwarz’s
inequality to see that (2.13.14) is bounded from above by

(2.13.14) </ (14 BUpl+ 1) (@' (p) + o' (p + @) (1 + 20" (p))) dp
RrR2

<2 [ 1+ I+ 21aD ol () dp
12
([0 pap+ 100 @ o+ a2 an)
R2

12
X (4/ (1+ﬁ(|p|+Iql)2)2(w’(p))2dp)
R2

< 2/ (14 B(pl+2lg)*) @ (p)(1 + o' (p)) dp. (2.13.15)
RrR2

We choose t = min{1, (b*>q*)~'}, which implies rg*> < b~2. We also have
2

)4 , (1 B p2 pf
L — BBtq* > — — - — > — — —=1,
(p) — Bptq ﬂ[z Ko + p; (8 bngﬂ ﬂ[ Mo +

which can be seen by considering, similarly to before when estimating P in
(2.13.9), |p| = p./2 and |p| < p./2 separately. For the last inequality, we already
assumed that b and p. will be chosen in such a way that b*p? > 1 and, in
particular, B/(b*p?) < 1/16 holds. Denoting

2
T = —Buo+ ﬂl%, (2.13.17)
we thus have the bound
2 > 1
o L (&P Le T2 |:1 + —:| . 2.13.18
( ) 7 (2.13.18)
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Inserting (2.13.18) into (2.13.15), we find

2 1
2.13.15) <2 1 2lgDH2e T2 4 ———
( ) < /Rz( + B(pl+2lg)) e [ +t+ﬂp2/2]

1
w (14 err [1 n —D d
( c+pp22)) P
e’ 2 1
< 1+ “f 1+ 46_”/2|:1+—:|d
Nﬁ( ﬁq)Rz( ) e
S eﬁ 1+ B7¢HA+17h. (2.13.19)
We combine the above equations and use t~' < 1 + b%g? to see that
z 2 2 z |A| 4 2 4
STII, £2,) < 2+b°qg)S(I ,Fo)-l-TﬁCI (I1+p°g") +o(lA]) (2.13.20)

holds. Using (2.13.2) and 7,(0) = 1, we therefore have

SUT® I, 2,) < S, Iy) + g > in@)a* (1 + Bq*) + o A]). (2.13.21)
q

We will choose b such that b*> >> B and this implies, in particular, that 86~ < 1.
We therefore have

BlA|
bt
The above inequality quantifies the effect of the cutoff. From (2.11.22), we

know that we still have to multiply the relative entropy term by 5*. Using also the
a priori bound from (2.4.4), we obtain

SUT®TI™, §2) S SU, Ty) + +o(|AD. (2.13.22)

A
BAS(YE, 2) S B (S(FZ, ry+ 24 o(|A|>>
T
b2 p? 1
< BlA — 1)]. 2.13.23
< Bl |(|lnazp| + 5 o )) (2.13.23)
From this expression, it is easy to read off the optimal choice of b, which is given
by
Inap|\ "
b= ( > ) . (2.13.24)
P

The result of this subsection is therefore the following bound on the relative
entropy

Bp

brS(r:, 29 < Al | ————
(T 20 3 '((rﬂnazpnl/z

+ 0(1)) . (2.13.25)
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2.14. Final lower bound. In this section, we collect the above estimates to
give a lower bound on F,(f), which in turn will give a lower bound on the free
energy. Recall from Sections 2.2 and 2.3 that

1
—B ' InTry, e P > poN — 3 In f e PEB) gz — 70 (2.14.1)
cM

with ZD defined in (2.3.11). We combine the estimates from (2.7.30), (2.11.22),
(2.11.35) as well as (2.12.15) and (2.13.25) to obtain the final lower bound to
F,(B), which reads as

1 'c
FZ(,B) > _E 11‘1TI']:> [e—;fﬂl‘x(z)] _ Z(Z) _ Z(3) _ Z(4) _ 0(|A|)

2nC )
- Trr [N”I] — N)?
+ |A||lna2,0|(|zl + Trr_ [N" T3] = N)
47| A
ul |min{p3+4pzpw+2p;, 2p%). (2.14.2)
[Ina?pl :

Here, the error terms Z® and Z® are defined in (2.5.5) and (2.12.16),
respectively. The error term Z® contains the remaining errors and is defined by

A 2 1 1/2 1 1 2 11/4 R
7 . const. /AP ( (Bp) . J<|na Pl >+_

lIna2p| \ R*p? r1/4|lna2,0|1/4 Rsp 1/4pl/2g <
R} A|pr R?

+ (R*0)'? 4+ pR + Kk + ———e —|lna pl)—l-const.ﬂ—g.
Vollna?p| R

(2.14.3)

To obtain this form of the error term, we also used (2.11.27) to replace the
logarithmic factors In(R /a) by the desired factor |Ina®p| and inserted the choices
€ =R/sand b = (|Ina’p|/(tp*))"* made earlier. The last term in Z® originates
from the term (x — k’) Zp pznp in (2.7.30) using (2.7.21) and (2.13.9).

Let us have a closer look at the last two terms in (2.14.2). We define

o= Lo, v = r (2.14.4)
Prmqa e e ay o

where P = trm = Z‘m(pc 7, was defined in Section 2.5. Using o < p,, we

replace p,, in the last term in (2.14.2) by p° for a lower bound. When we minimize
over p_, we find
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(p: — (0 — p°))* + p2 +4p.0° + 2(0°)°

4
> —— (20" = (0= p")? = =(p"?). 2.14.5
/1+2/C<p (0= p7)" = (P ( )
Note that the right-hand side of (2.14.5) is bounded from above by 2. This

implies in particular that the minimum in (2.14.2) will be attained by the first
term when we minimize over p,. Therefore, we have the lower bound

1 c 4| A 4
FZ(IB) 2 _ElnTr]__> e_ﬂT;(Z) +$ <2p2 _ (IO _ p0)2 _ Ep2>

[Ina?p]

4
= 2,2 o). (2.14.6)

i=2

where we used
1 dp
0 = — —

pr= 472 Ipl> pe eBr*—mo) —1 +o(1) < p(1 +0(1)) (2.14.7)

in the 1/C correction term. The only remaining z dependence is then in the first
term

1 ,
—— InTrg e ?T0 = eP)lz,)* + = In(1 —eP<?),  (2.14.8)
L nTi PIEIAET DY

[pl<pe Ip\>pc

where €(p) was defined in (2.7.25) as €(p) = k'p*> + (1 — k) p*>(1 — x (p)?) — o»
with x being a cutoff function at the scale s > R. We evaluate the integral over
C™ in (2.14.1) to give

1

e~ B Y ipi<pe €Dz dz = - (2.14.9)
/ch Be(p)

IpI<pc

Now we estimate the term that contributes to the free part of the free energy. Using
the factthat x > 1 — e forx > 0, we find

> In(Be(p)) G Z In(1 —e 7<)

[pl<pe |P|>Pc

ﬁlen(l f’E<P>)>4ﬂ1n /ln(l e PPy dp — o(1).
(2.14.10)

ﬂll
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We split the integral into two parts, |p| < s~! and |p| > s~'. In the first part, we

have €(p) = (1 — k + k') p?> — o, while in the second part, we have the bound
e(p) = «'p*. Hence,

/ In(1 —e PPy dp
RZ

1 1
> —/ In(1 — e #P~1) dp 4 — In(1 — ™) dp.
1l —k+«k" Jpe K'B IpI2=k'B/s?
(2.14.11)

The parameter s will be chosen such that s? < «’B; the second integral is then
exponentially small in the parameter s2/(k’B).
Define

In |In a2
00 ::p[l——n|na p'} . (2.14.12)
4mpp 1,

Our goal is to bound p — p° by p, plus an error term. This will be achieved by
introducing a new parameter p, that satisfies

1 dp

— — = . 2.14.13
4}y, P —1 =P ( )
By an explicit computation, we find
5 1 etmhe
p. = -1 . 2.14.14
We remark that p. will be chosen such that p. > p. holds, and we use (2.14.7) to
write
1 dp
0
—p =ps+ — ——— +o(1). 2.14.15
Prr TR T pe<ipi<pe PP —1 M ( )

The remaining correction term can be estimated as

1 / dp _ 1 dp L, (pf—uo)
- < = n — .
A Jsecipigp 8070 =1 T Am2B J5 g PP — o ATB T\ B2 — 1o

(2.14.16)
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In combination, the above estimates show that

—BHN >

InTry, e > wop + —— 4,3 ln (1 - e’ﬂ(l’z’“‘))) dp

_ 1
BlA|

4
Z9 —o(l 20° — pd).
— a1« Z o) + o5 20* = )
(2.14.17)
where
G) . 14l —B(p*—10)
Z" = const. (k —K)F In(1 —e )dp
R2

A
- |—|2 In(1 —e ") dp
K'B% Jippsepys

t.|A 1 2 1 P —
. const.| |p? [ L1 1n<13; M0>+ 21n2<13; Mo)]
lna?p| [C ~ Bp P: — Mo (Bp) P: — Mo
(2.14.18)

Note that the right-hand side of (2.14.17) has the desired form. The sum of the first
two terms on the right-hand side equals fy(8, p), the free energy of noninteracting
bosons, since pg is given by (1.3.3). The last term in (2.14.17) is the desired
interaction energy. It remains to choose the parameters in the error terms and
show that they are of lower order than this interaction energy.

2.15. Minimizing the error terms. In this section, we show how to choose
the parameters in order to optimize the error terms of the lower bound.

To simplify the notation, we replace the factor 1/16 in the definition of T from
(2.13.17) by one, that is, we redefine

T = —Buo+ Bp> anddenote T = —Buy+ Bp:. (2.15.1)
For brevity, let us also introduce the notation
o = [Ina’p|. (2.15.2)

Similarly as in the three-dimensional case, the following terms are relevant for the
minimization: p?! from Z, p20~'(k + R/s) and p*c ' (Bp)"*(R*p)*(to)~'/*
from Z® as well as

1

—— In(1 —e ") dp (2.15.3)
K'B2 Jippsepys
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from Z®. It turns out, however, that in the two-dimensional case, the additional
error terms p?o "' (R%p)'/? from Z® and p*0~'In(r/7)/(Bp) from Z® are also
relevant for choosing the parameters. The constraints on the parameters, that is,
pe <1/s,5> R, s> < kB, RE/R* < Kk,b> 1/p.,b> Rand b > B2, will be
automatically satisfied with the choice of the parameters below. The same is true
for (2.11.27) and (2.11.34), which have to be obeyed by the parameter R. Since
R appears in these expression only in the argument of a logarithm, we still have
quite some freedom in its choice.

In order for (2.15.3) to be small, we require that s> < k’f, with «’ defined in
(2.7.21). This is equivalent to s* < k8 since we will choose Rj/R* < «. If we
take k' = (1+8)s?B ! Ino for some § > 0, (2.15.3) is bounded by (s?8)'o~'7%,
which will be negligible compared to the other terms. We can now optimize the
term |A|p%0 "' (k + R/s) over s, resulting in the choice

BR 1/3
s = <E) . (2.15.4)
With this choice of s, the error term becomes
Alp? s’lnc R Alp® (R?Ino\"’
';p ((1+5) ; +;>~| ;p ( . ) : (2.15.5)

Among the main terms, there are now only three terms left that depend on
R, namely (2.15.5), |A|p?0c "' (R*p)'? and |A|p%0~'(Bp)*(R*p)2(to)~ V4.

Denoting
o\ /3 N\
d=1+ (—0) ~ 14 (’3—) , (2.15.6)
Bp B
we write the sum of the first two terms as | A|p?0 ~!(R%*p)'/*d. Hence, the optimal
choice of R is s
(R2p) = PP (2.15.7)

- dl/7(.[o-)1/28’

and the resulting error term reads as

2 2 2 1/28
P (R ) Pd = Lo <@) . (2.15.8)
o o

TO

We are thus left with the following three error terms:

AP 1 oy 1Al 1 Bp2 —In(l — e=)
Al = —In (:) = —In = s
o pp \t o Bp \Bp:—In(l —e )
Ay = |A|p,
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A, = 412 o ((ﬂp)2>”28

o T0

6/7 1/28
_|Alp? B\ (Bp)?
o <1+<F> <(,3pg_1n<1_e4nﬁp))g> - @B

They depend solely on p., Bp and o, as p,. is given explicitly in (2.14.14). By
minimizing over p., we therefore obtain the final error rate min, {A, + A, + A3},
which depends only on Sp and ¢ . Optimization turns out to lead to the choice

0 if1§4n,8p<1n<(lnow>,
(Bp)™ . o
ﬁpf = o 1n28(([3p)30/(0’f)) i in (W) S 47[pr S 01/59’ (21510)
29/57
((,3:0)2) ifol/59§,3,0,§01/2-
o

The upper limit Bp < o!/? is a natural restriction since the interaction term is
comparable to the noninteracting free energy if Bp ~ o!/? (compare with (1.3.7)),
and hence the perturbative argument, on which the proof of the lower bound is
based, cannot be expected to work anymore in this regime. For Bp of the order
o'/? or larger, an additional argument using the result at 7 = 0 [29] as a crucial
ingredient will be given in Section 2.16 to complete the proof of the lower bound.

The parameters ¢ and C in the remaining error terms (which we did not need
to consider for the choice of p.) may be chosen according to

1 Bp
S l«CKo (2.15.11)

if Bp is such that p. # 0. In case Bp is so small that p. = 0, we find that the
upper restrictions to ¢ and C do not apply anymore and their choice only needs
to satisfy the lower ones.

We now explain how to arrive at the choice (2.15.10) of p.. We start by
discussing what can be expected. For Sp far below S.p, in a sense to be made
precise below, we have that the (absolute value of the) chemical potential — S o
is large enough compared to o~! to control the term A; and even allows for the
choice p. = 0, which means that A; and A, both vanish. This changes when Sp
comes close to B.p, where we need that Bp? is larger than o ~'. Here, only A; and
Aj; have to be considered for the optimization, while A, is subleading. For Sp far
above f.p, the optimal error rate changes as the term A; becomes irrelevant and
we optimize using the terms A, and Aj;.

https://doi.org/10.1017/fms.2020.17 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.17

A. Deuchert, S. Mayer and R. Seiringer 62

Consider first the case p. = 0, which means p. = 0 by the assumption p. > p.,

which also means e*™# < o or B < B.. This implies A, = A, = 0 as well as
T = —Buo = — In(1 — e™*"#*). The remaining error term is given by
A 2 ) 2/7 2 1/28
Ay < A (B (bo) . (2.15.12)
o B o e~4rbr

It can be read off that e*"# < o/(Ino)? is the upper limit for this error to be
smaller than the interaction scale, which is much smaller than the value of that
function at the inverse critical temperature, e*"Per — 5. Hence, we need to choose
a nonzero p. already well above the critical temperature.

Next, we consider the case p. # 0. This will be the case only in the regime
B 2 B.; hence d in (2.15.6) satisfies d ~ 1. Since we have three main error terms
to consider, there are three different possibilities of how to obtain the optimal p.,
out of which only two will be relevant. The first way of choosing p. is obtained
by optimizing A, and Aj. This leads to the equation

1 o\ 1/28
L (E) = (82 , (2.15.13)
Bp T oT
which, to leading order, is solved by
(B)*

T = Bpl — Buo = (2.15.14)

o In*® (—(’3”230) ‘
oT

As mentioned before, the reason for switching to p. # 0 is that — 8, becomes
too small in order to control the term A (that is, to ensure that A; is smaller
than the interaction scale | A|p? /o). Therefore, we can take the right-hand side of
(2.15.14) as the defining equation for Bp? and neglect the term — B 0. The error
terms with this choice of p. become

2 30
A1~A3§|A|p iln< _ 28(ﬁp) ] >
o Bp \oTIn™((Bp)*/(07))
2 58
Ay S 4le (bo) (2.15.15)

o o In*((Bp)*/(0 7))

Note that A; = A, to leading order by our choice of p. and that A, is indeed of
lower order than A; or A; for Bp ~ B.p.

Now we can compare the term A, from (2.15.15) to the term A; we obtained
by choosing p. = 0 (from (2.15.12)) to determine the point at which we switch
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to p. # 0 as given in (2.15.14). This gives

(Bp) )“28 I ( (Bp)* )
=—1 2.15.16
<a e~info o \otn™((Bp)"/ (7)) ( )
which we solve to leading order by
o

For this value of Bp, we switch to p. as given in (2.15.14).

It is clear, however, that for larger Bp, the term A, from (2.15.15) will become
larger than A or Aj as it is increasing in Sp. The point at which this happens is
given by the solution of the equation

L ( Bp)* >_ (Bp)™
—In

Bp 3 (Bp)* ) ~ o In®(Bp)*° (2.15.18)

To leading order, we solve it by Bp = o!/**. From here on, we use the second way
of optimizing p. by considering the terms A, and A; with the result

2\ 29/57
Bp? = ((ﬂp) ) . (2.15.19)
o
The error terms then become
2
Ay 2L oy 5o,
T o PBp
A 2 2\ 1/57
4, < 14lP (wp)) . (2.15.20)
o o

Note that from this form of A,, we can also read off the natural upper limit Sp <
o'!'/2 for the error terms to be small.

2.16. Uniformity in the temperature. For Bp of the order o!/? or larger, we
apply a technique that uses in an essential way the result for the ground state
energy [29]. This will allow us to obtain the desired uniformity in Bp, as already
mentioned in the previous subsection.

Starting from the original Hamiltonian with potential v (which we denoted by
Hy), we use Lemma 4 to obtain
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N
W > Z[—v,(l — (=X POV, + (1= )1 = ) U(d(x;, 13k (x)))

Jj=1

1
_ E/R Ur(t)tdt Y wp(x; — x)i| (2.16.1)

ieJ;

Strictly speaking, we should work with a symmetrization of the right-hand side
of (2.16.1) since the potential that we obtained from Lemma 4 is not permutation
symmetric. As already mentioned before, this does not need to concern us since
we only consider expectation values in bosonic states. The last term in (2.16.1)
can be estimated using the integral condition on Ug (from (2.6.3)), the decay
property of g (which was introduced in (2.10.8)) as well as the definition of J;:

Z /UR(t)tdtZwR(x,—x,

iel;
< ZZ @ x)fs) S e (2162)
\eln(R/a) — L 4g X)) S R Y

To find a lower bound for the remaining terms, we use the main result from [29]
(for the choice k = o~/3, Rp'/? = o=/19) and find

N K 7, 4w Np const
Z(—EAj+(1—6)(1—K)UR(d(xj,xN‘é\](xj))))2 - <1—€— )

ol/3

(2.16.3)
Even though the result in [29] was for Neumann boundary conditions and the
full nearest-neighbor interaction, it is straightforward to check that it also holds
in our case. The ground state of the noninteracting system for periodic boundary
conditions is also a constant, and the difference between the nearest-neighbor
interaction in that paper and our interaction can be bounded by a constant times
N%(R?/L*)*||Ug |- A term like this is already contained in the original estimate
in [29, Equations (3.18) and (3.19)]. In [29], the potential Uk (d(x;, xxn(x;))) is
used, where the nearest neighbor was determined among all other particles while
here we only look for the nearest neighbor in the set J;. The related error can be
controlled with an estimate for the probability of finding a particle coordinate that
is not contained in the set J;. It is straightforward to check that this probability is
bounded by a constant times N2(R?/L?)? times the L>-norm of the potential Uyg.

The above considerations allow us to show that

N
47 Np const.  const.
N>;fz(,/—A,)+ - <1—E—W—m>, (2.16.4)
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where £(p) = p*(1—o0 =13 /2—(1—073) x(p)?). We already inserted the choice
k = o~'/3 from above. Next, we consider the free energy related to Hy, introduce
the chemical potential 1y and drop the restriction on the particle number. When
we also take the thermodynamic limit, we find

f(B.p) = fo(B, p) + const. ;/ In(1 — e PP*=10) gp
RZ

B3
1 2
+ —— In(l1 —e”/*d
p*o's? /;>2>ﬁ/<x2al/5) ( Jap
47 p? const.  const.

As before, we require s*0!/° /B « 1 for the correction term to the noninteracting
free energy to be small. If we choose

52 1

B ~ 2605 no (2.16.6)

for some § > 0, this error term is bounded from above by a constant times
~20=1/5-% and will be negligible compared to other terms. Optimization over

1
€= (2.16.7)
\ s%p
Therefore, we have

47 0? 4/5 1 17101 12
f(B,p) = fo(B,p) + il (1 — const. [ G + + ﬂ}) )

€ yields

o B> 05T (Bp)'?
(2.16.8)
It remains to estimate the term depending on the critical temperature as
47p? 2k ’ Be
Ll . [1 —ﬂ—} <P (2.16.9)
o B 1. o B

Hence the total error to consider is bounded from above by a constant times
0? ( ot N 1 N Ino Ul/lo(lno)W)
(Bp)* o' Pp (Bp)'?

The optimal point at which we switch from the error given in (2.15.20) to this
error is determined by comparing the term A, with the first term in (2.16.10).

(2.16.10)

o
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This leads to the equation

4/5 2\ 1/57
o =<(ﬂp)> , 2.16.11)

(Bp)? o

which is solved by Bp = o2*/3%0_If Bp is larger than or equal to this value, we
use the result derived in this section.

In conclusion, by combining the results from the previous estimates in
(2.15.12), (2.15.15), (2.15.20) and (2.16.10), we have shown that the bound

47 p> BT’
FB.p) > folB.p) + - [1 _ ﬂ I—o(1)  (21612)

g +

holds uniformly in 8p = 1, where

1/28
Ino\*/7 (Bp)? o
- - if 1 <4 <In| ——5 ),
(ﬁp> (—aln(l—e—4ﬂﬂﬂ) s e n((lna)3°>
1 (Bp)*° ) (Bp)* . ( o > 1/59
—1In + if In|——=) <4nBp <o ,
=128 ((Bp)¥ 56 ( (Bp)*0 Ino)30 ~
o) < P (arln < (’ff ) oln ( (’ff ) (Ino)
5\ 1/57
Lln((ﬂp)58/57028/57) n (Bp) ito1/% < pp < 233/580,
Bp o
4/5 1/10 12
ot/ N 1 N a1/10(n o)1/ £ 5233/580 < .
Bp)> o' (B!

(2.16.13)
The largest error occurs in the second regime if Sp ~ B.p, and is given by

1 ( (Ino)3° ) (Ino)® < Inlno

Ino In**((In0)30) o In*®((Ino)3) ~ Ino

(2.16.14)
Ino

for o large. We note that T ~ o~! in this case, which follows from (1.3.3),

(2.14.14) and (2.15.1). This concludes the proof of Theorem 1.
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Appendix A. Proof of Dyson lemma in two dimensions

The proof of Lemma 4 can be obtained by combining the ideas of the proofs
of [25, Lemma 7] and [44, Lemma 2]. Since the proof of the two-dimensional
version of the relevant lemma in [25] is not spelled out explicitly, we give the
proof of Lemma 4 here. For simplicity of notation, we shall drop the ~ for v and
a.

Given the points y;, we partition the torus A into Voronoi cells

By ={x e A:d(x,y) <d(x,y) forall k # i}. (A.1)

Ifor any perioc}ic ¥ € H'(A), denote by & the function with Fourier coefficients
&(p) = x(p)¥(p). To obtain (2.6.4), it is enough to show that

1
/B IVE@IP + S0, 3y )P dx
> —e)/B Ur(d(x, y) ¥ (o) dx
1
- —/ UR(r)zdt/wR<x—y,»)|w<x)|2dx. (A2)
€ Jr, A

Using the positivity of v and summing over i, as well as realizing that for x € B;
we have y; = ynn(x), we obtain (2.6.4):

/A IVE)I” + %Xi:v(d(x, YW () ? dx

1
= Z/B <|V§(X)|2 + Ev(d(x, y,-))|1//(x)|2> dx

>3 —e)/ Ur(d(x, y)) |y (x)I* dx
B;

1
_ E/ﬂ; UR(t)tthi:/;wR(x_Yi)W(X)Izdx

- e)/ Ur(d(x, yan () [ () dx
A

1
_ 2/ UR(t)tdt/ > wrx = y) Y (x) P dx. (A3)
Ry A
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Figure A.1. An example of a partition of a subset of A into Voronoi cells given
by the y; for n = 8. For one of the y; the region By is shaded. Note that this
image does not show the whole of A but merely a cutout (that does not respect
the periodic boundary conditions).

We shall show that (A.2) actually holds with I3; replaced by the smaller set
Br =B, N{x € A:d(x,y) < R} on the left-hand side of the inequality. Since
the support of Uy, is contained in the interval [Ry, R], the integral over B; on the
right-hand side is also over Bg. See Figure A.1 for an illustration of the case n = 8.
We shall in fact prove that

1
/B V&) + Ev(d(x, YD () dx

S 1 1—¢ 2y 1 , .
“ mR/a) | R /BBRW/(X” a)R—E/A|1ﬂ(x)| wr(x — y)dx |,
(A4)

where 8Z§R denotes the part of 3By that is at a distance R from y;; in Figure A.1,
this set corresponds to the dashed arc. This proves the statement for the special
case of Uy being a radial § function supported on the circle of radius R, that is,
Ur(r) = (RIn(R/a))"'8(r — R). By replacing R in the above inequality by r,
multiplying by Ug(r)r In(r/a) and then finally integrating in r from R, to R, we
obtain
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2 1 2
IVE@I" + Zv(d(x, y) Y ()| dx
Br

R
> / Ur(r)rin(r/a) |:/ IVE@) ] + %v(d(x, )’i))|¢(x)|2dx} dr
Ry B,

K l1—e¢ ) 1 )
2/ UR(I’)V[ / [V ()] doy — —/ 1V (x)] wr(x—yi)dx] dr
R r ] € Ja

0 Br

R
> —e)/ UW)/~ W) do, dr
Ry B,
1
! / Un(t)t dt / () P (e — ) dx
€ Jr, A
_a —€>/B Un(d (e, y) (o) dx

1
- —/ UR(t)tdt/ [ () Pwr(x — y;) dx, (A.5)
€ Jr, A

where we used (2.6.3) in the first inequality and the fact that w, is monotone
increasing in r in the last inequality. This proves (A.2).

In order to prove (A.4), we can without loss of generality assume that 3Br
is nonempty, and set y; = 0. We may also assume that ¥ € H'(Bz) and
fBR [ (x)>v(]x|) dx < oco. Forw € S', let

~12
ﬁ(/ W(X)Izdwze) Y (Rw) if Rw € 3B,
n(w) = a8

Bk (A.6)

0 otherwise,

which satisfies fSl [7(w)|*> dw = 1. In other words, we choose 7 to attain the value

of i at those boundary points that are at a distance of R from the origin and

zero elsewhere, while maintaining an L2-normalization. By abuse of notation, we

shall use the same letter for the function on R? taking values n(x/|x|). Recall the

notation ¢, for the minimizer of (1.4.1) with boundary condition ¢, |,z = 1.
Consider the expression

_ 1 -
A= / n(x) (VS(X) Voo (x —yi) + EU(IXI)W(X)%(X)) dx. (A7)
Br
An application of the Cauchy—Schwarz inequality gives
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2 2 1 2
|AI" < IVE@I" + Sv(x Y (01" | dx
Br

1
x /B (IV%()C)I2 + EU(IXI)I%(X)IZ) In(0)1* dx. (A.8)

Since ¢, is radial, the angular integration over 7 in the second integral contributes
a factor of one. Using the definition of the scattering length, the remaining radial
integration gives a factor 1/In(R/a). Thus,

AP In(R/a) < /

Br

1
<|VS()C)|2 + EU(IXI)W(X)IZ) dx. (A.9)
For a lower bound, we note first that by integrating by parts we obtain
/ NX)VEX) - Vo, (x)dx = — | E)n(x) A, (x) dx
BR BR

+ E(x)n(x)n - Vo, (x) dwg, (A.10)
9B

where dwy is the surface measure of the boundary of By, n is the outward unit
normal, and we have used that all relevant derivatives are radial ones since ¢,
is a radial function, and n depends only on the angles x/|x|. Note that £(x) =
P(x) — 2m) 'h x Y (x), where h * Y (x) = fAh(x — ¥ (y)dy, as an easy
calculation using the definition of & shows. If we insert this as well as (A.10) into
the definition of A and use the zero-energy scattering equation (1.4.2) for ¢,, we
obtain

A= / . [V () — Qo) " (x 9) ()] nG0)n - Vb, (x) daog
0Bg

1 -
+ 5= | (xy)(0)nx)Ad,(x)dx

27'[ Br
_ 1 _
_ w(x>n<x>n-V¢v(x>dwR+2—/ wx)/ h(y — x)dp(y) dx,
3Br T JA Br
(A.11)
where
dn(x) = 1(x) A () dx — 1 - Vb (1)1 (x) deo (A12)

is a measure supported on Bg. It satisfies

/ dp(x) =/ n(x)Ag,(x) dx —/ n-Vé,(x)nx)dor =0, (A.13)
Br Br 9Bg
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as can be seen using again integration by parts. Moreover, since A¢, > 0 and also
n - V¢, > 0 on the boundary of B,

R 24/2
f dlp| = 2/ n(x)|Ad,(x)dx <2 (/ |77|>/ A, (r)r dr z
Br Br s 0 ln(R/a)
(A.14)

where we used the Cauchy—Schwarz inequality in the last step. Therefore, by
invoking the definition of fx from (2.6.2), we obtain

J_

fR( ).
(A.15)

/Bhu—xwu(y)‘ V (h(y —x) — h(X))du(y)‘

This enables us to estimate the second term in (A.11) from below as

LN 1 2V2n
s /Aw(x)/BRh(y—x)du(y)dx E—Em/hﬁ(x)lﬁg(x)dx
172
ln(R/a) (/wf(xn wR(X)dX> :

(A.16)

where we used again the Cauchy—Schwarz inequality as well as the definition of
wg from (2.6.2). Using (A.6) as well as the explicit form of ¢, outside the support
of v, we see that the first term in (A.11) equals

B 1 172
Y (x)nx)n -V, (x) dog = «/_ln(R/a) (/ ¥ () dwR) - (A7)

aBr
Therefore,
1 1 1/2 1/2
|A] > n(R/a) [ﬁ (ABR |1/f(X)|2dwR> - (/A Il//(X)Isz(X)dX> :| -

(A.18)
Another application of the Cauchy—Schwarz inequality gives for any € > 0

2
|Al" In(R/a) > n(R/a)

1 - 1
<t [ wrdon =L [ e - ]
aBg € A
(A.19)

Hence, combining (A.9) and (A.19), we obtain (A.4). This completes the proof.
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