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Abstract

We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas
in the thermodynamic limit. We show that the free energy at density ρ and inverse temperature β
differs from the one of the noninteracting system by the correction term 4πρ2

|ln a2ρ|−1(2 − [1 −
βc/β]

2
+
). Here, a is the scattering length of the interaction potential, [·]+ = max{0, ·} and βc is the

inverse Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity. The result is valid in
the dilute limit a2ρ � 1 and if βρ & 1.

2010 Mathematics Subject Classification: 16W10 (primary); 16D50 (secondary)

1. Introduction and main result

1.1. Introduction. Dilute quantum gases have proven to be a fruitful field of
research for several decades in both experiment and theory. One of the milestones
in the field was the experimental observation of Bose–Einstein condensation in
alkali gases [2, 9], which was followed by an impressive activity in the field
and also by a reexamination of fundamental properties of interacting Bose and
Fermi systems. Since the dilute setting is characterized by a small parameter, it
allows for an investigation of the many-body problem with rigorous mathematical
techniques.
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One of the fundamental quantities of a quantum gas is its ground state energy
per unit volume in the thermodynamic limit. In the case of a three-dimensional
dilute Bose gas, the leading order asymptotics is given by

e3D(ρ) = 4πaρ2(1+ o(1)). (1.1.1)

Here, a denotes the scattering length of the interaction potential and ρ is the
density of the gas. The above formula becomes exact in the dilute limit a3ρ → 0.
An upper bound for the case of the hard sphere gas was obtained in 1957 by
Dyson [10]. The corresponding lower bound was established only much later by
Lieb and Yngvason in 1998 [28] and can be considered as a major mathematical
breakthrough. An upper bound for general interaction potentials can be found
in [26]. Rigorously proving the form of the next order correction term for the
ground state energy (the Lee–Huang–Yang formula), predicted to equal

4πaρ2 128
15
√
π

√
a3ρ (1.1.2)

in [21, 22], has been an open problem in mathematical physics for a long time
and was recently achieved in [47] (upper bound) and [14] (lower bound); see
also [8, 11, 15] for partial results in this direction and [7] for related work on
the Gross–Pitaevskii limit. For predictions of higher order corrections to these
formulas, we refer the reader to [23, 30, 46].

In two dimensions, the leading order term for the ground state energy per unit
volume is given by

e2D(ρ) =
4πρ2

|ln a2ρ|
(1+ o(1)) (1.1.3)

as proved in [29]. In this case, the o(1) correction term is small when a2ρ is
small, which is the dimensionless small parameter characterizing the diluteness
of the system in two dimensions. In contrast to the three-dimensional case, the
two-dimensional ground state energy is not the sum of the ground state energy
of N (N − 1)/2 pairs of particles; it is much larger. In particular, the coupling
parameter |ln a2ρ|−1 depends on the density. The first prediction of (1.1.3) can be
found in [41]. The next order correction to (1.1.3) is expected to be of the form

−4πρ2 ln |ln a2ρ|

|ln a2ρ|2
; (1.1.4)

see, for example, [1, 33].
At positive temperature, the natural analogue of the ground state energy is the

free energy. In three dimensions, the free energy per unit volume of a dilute Bose
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gas in the thermodynamic limit satisfies the asymptotic formula

f 3D(β, ρ) = f 3D
0 (β, ρ)+ 4πaρ2

2−

[
1−

(
β3D

c (ρ)

β

)3/2
]2

+

 (1+ o(1)).

(1.1.5)
Here, f 3D

0 (β, ρ) is the free energy of noninteracting bosons, [ · ]+ = max{0, · }
denotes the positive part, β is the inverse temperature and

β3D
c (ρ) =

ζ(3/2)2/3

4πρ2/3
(1.1.6)

is the inverse critical temperature for Bose–Einstein condensation of the ideal
Bose gas in three dimensions. The form of the interaction term results from
the bosonic nature of the particles. Two bosons in different one-particle wave
functions feel an exchange effect that increases their interaction energy by a factor
of two compared to the case when they are in the same one-particle wave function.
The [·]+-bracket in (1.1.5) equals the condensate fraction of the ideal gas, which
is to leading order also the fraction of those particles that do not feel an exchange
effect. The free energy asymptotics (1.1.5) was proved in [44] (lower bound)
and [48] (upper bound). It is valid in the case βρ2/3 & 1, that is, if β is of the
order of the critical temperature of the ideal gas or larger (as a3ρ → 0).

Corresponding formulas for the ground state energy and the free energy of the
two- and the three-dimensional dilute Fermi gas have been proven in [25] and [43].
We also mention the series of works [13, 34–36], where the ground state energy
and the free energy of the dilute Bose gas in two and three spatial dimensions
were investigated by restricting attention to quasifree states. These articles contain
formulas for the energy and critical temperature that are conjecturally valid in a
combined dilute and weak-coupling limit.

In this work, we consider the free energy per unit volume of the two-
dimensional dilute Bose gas. More precisely, we are going to prove a lower bound
of the form

f 2D(β, ρ) > f 2D
0 (β, ρ)+

4πρ2

|ln a2ρ|

(
2−

[
1−

β2D
c (ρ, a)
β

]2

+

)
(1−o(1)). (1.1.7)

Here, β2D
c (ρ, a) is the inverse Berezinskii–Kosterlitz–Thouless critical

temperature for superfluidity given by

β2D
c (ρ, a) =

ln |ln a2ρ|

4πρ
; (1.1.8)
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see [5, 6, 18, 19]. The term ρ[1 − β2D
c (ρ, a)/β]+ in (1.1.7) has the physical

interpretation of the superfluid density [12]. For a thorough discussion of the
physics of the superfluid phase transition in the two-dimensional Bose gas, we
refer the reader to [38]. We emphasize that the inverse critical temperature
β2D

c (ρ, a) depends on the interaction potential via its scattering length. This
has to be contrasted with the situation in three dimensions, where the critical
temperature for Bose–Einstein condensation of the ideal gas appears in formula
(1.1.5) for the free energy. A comparable behavior cannot be expected in two
space dimensions because the Mermin–Wagner–Hohenberg theorem [17, 32]
excludes Bose–Einstein condensation at positive temperatures in this case. To the
best of our knowledge, formula (1.1.7) does not seem to have appeared explicitly
in the literature before. It ought to be possible, however, to obtain it from the
analysis in [12]. The corresponding upper bound for f 2D(β, ρ) is of the same
form as (1.1.7) and is given in [31]. In combination, (1.1.7) and this upper bound
establish the first two terms in the free energy asymptotics of the two-dimensional
dilute Bose gas.

In the following, we will exclusively deal with the two-dimensional system and
therefore drop the superscript ‘2D’ on the free energies f 2D and f 2D

0 , as well as
on the inverse critical temperature β2D

c (ρ, a).

1.2. The model. We consider the Hamiltonian for N bosons in a two-
dimensional torus Λ, given by

HN = −

N∑
i=1

∆i +

N∑
i< j

v(d(xi , x j)), (1.2.1)

where ∆i is the Laplacian on Λ acting on the i th particle, d(x, y) is the distance
function on the torus and v > 0 is a measurable two-body interaction potential
with finite scattering length a (to be defined properly below). The interaction
potential is allowed to take the value +∞ on a set of nonzero measure, which
in particular permits us to model the interaction between hard disks. This
Hamiltonian acts on the symmetric tensor product of square integrable functions
on the torus

HN =

N⊗
sym

L2(Λ). (1.2.2)

We will describe the torus Λ as a square of side length L embedded in the plane
with opposing sides identified, that is, we have Λ = [0, L]2 ⊂ R2. Then ∆ is the
usual Laplacian on [0, L]2 with periodic boundary conditions, and the distance
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function d(x, y) is explicitly given as

d(x, y) = min
k∈Z2
|x − y − kL|. (1.2.3)

The quantity of interest is the free energy per unit volume of the system as a
function of the inverse temperature β = 1/T and density ρ defined by

f (β, ρ) = −
1
β

lim
N ,L→∞
N/L2

=ρ

1
L2

ln TrHN e−βHN . (1.2.4)

The limit is the usual thermodynamic limit of large particle number N and large
volume L2 (area, really) while keeping the density ρ = N/L2 fixed. (Existence
of this limit, and independence of the boundary conditions used, can be shown
by standard techniques; see, for example, [39, 40].) The free energy asymptotics
we will give applies to the setting of a dilute gas, where the parameter a2ρ is
small while βρ is of order one or larger. In other words, the scattering length is
supposed to be small compared to the average particle distance while the thermal
wave length of the particles is of the same order as the average particle distance
or larger.

1.3. The ideal Bose gas. For noninteracting bosons, the free energy density
can be calculated explicitly. One has to solve the maximization problem

f0(β, ρ) = sup
µ60

{
µρ +

1
4π 2β

∫
R2

ln(1− e−β(p
2
−µ)) dp

}
. (1.3.1)

The chemical potential µ0 that maximizes the free energy satisfies the equation

1
4π 2

∫
R2

dp
eβ(p2−µ0)−1

= ρ (1.3.2)

and therefore reads as

µ0(β, ρ) =
1
β

ln(1− e−4πβρ). (1.3.3)

This corresponds to the following explicit form of the free energy

f0(β, ρ) = ρ
2

[
1
βρ

ln(1− e−4πβρ)−
1

4π(βρ)2
Li2(1− e−4πβρ)

]
, (1.3.4)

where

Li2(z) = −
∫ z

0

ln(1− t)
t

dt (1.3.5)
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is the polylogarithm of order 2 (also called the dilogarithm). From this expression
for the free energy of free bosons, we directly obtain the scaling relation

f0(β, ρ) = ρ
2 f0(βρ, 1). (1.3.6)

In particular, we see that for the free system, the dimensionless parameter βρ
completely determines (up to a factor of ρ2) the free energy. We have the
asymptotic behavior

f0(x, 1) = −
π

24x2
(1+ O(e−4πx)) as x →∞,

f0(x, 1) = −
1
x
(1− ln(4πx))− π + O(x) as x → 0.

(1.3.7)

1.4. Scattering length. The scattering length a is defined by a variational
principle; see [29, Appendix A]. Let us first assume that the potential v : R+ →
R+ has a finite range R0, that is, we have v(r) = 0 for r > R0. Then for R > R0,
we define the scattering length of v by

2π
ln(R/a)

= inf
g

{∫
BR

|∇g|2 +
v

2
|g|2

}
, (1.4.1)

where the infimum is taken over functions g ∈ H 1(BR) with value one on the
boundary, that is, they satisfy g||x |=R = 1. Here, BR ⊂ R2 denotes the disk of
radius R centered at the origin. The unique function g0, for which the infimum on
the right-hand side of (1.4.1) is attained, is nonnegative, radially symmetric and
satisfies the equation

−2∆g0 + vg0 = 0 (1.4.2)

in the sense of quadratic forms, that is, when integrated against any test function
ϕ ∈ H 1

0 (BR) with
∫

BR
|ϕ(x)|2v(x) dx < +∞. Outside the range of the potential,

that is, for R0 < r < R, the minimizer g0 is explicitly given by

g0(r) =
ln(r/a)
ln(R/a)

. (1.4.3)

As noted in the remark after the proof of [29, Lemma A.1], the definition of
the scattering length can be extended to potentials of infinite range by cutting off
the potential at a finite range and then letting the cutoff grow to infinity. From [20,
Lemma 1], we know that finiteness of the scattering length is equivalent to a
certain integrability condition of the potential. More precisely, if a <∞, then∫

|x |>a
v(|x |) ln2(|x |/a) dx <∞ (1.4.4)

https://doi.org/10.1017/fms.2020.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.17


The free energy of the two-dimensional dilute Bose gas. I. Lower bound 7

holds. Conversely, if (1.4.4) holds with a replaced by some b > 0, then the
scattering length of the potential is finite.

We remark that defining the scattering length via this variational principle also
makes sense for potentials that are not necessarily nonnegative. One has to assume
that −∆+ v/2 as an operator on L2(R2) has no negative spectrum, however.

1.5. Main theorem. The main result of this work is an asymptotic lower
bound on the free energy in terms of the free energy of noninteracting bosons and
a correction term coming from the interaction. It is the two-dimensional analogue
of [44, Theorem 1]. The bound becomes useful for small a2ρ and if βρ & 1. We
use the standard notation x . y to indicate that there exists a constant C > 0,
independently of x and y, such that x 6 Cy (and analogously for ‘&’). If x . y
and y . x , we write x ∼ y.

THEOREM 1 (Free energy asymptotics of two-dimensional dilute Bose gas).
Assume that the interaction potential satisfies v > 0 and has a finite scattering
length. As a2ρ → 0 with βρ & 1, we have

f (β, ρ) > f0(β, ρ)+
4πρ2

|ln a2ρ|

(
2−

[
1−

βc(ρ, a)
β

]2

+

)
(1− o(1)), (1.5.1)

with

o(1) .
ln ln |ln a2ρ|

ln |ln a2ρ|
. (1.5.2)

Here, [ · ]+ = max{ · , 0} denotes the positive part, and the inverse critical
temperature βc(ρ, a) is defined in (1.1.8).

Remarks

(1) The proof of a corresponding upper bound of the same form as (1.5.1) is
given in [31]. In combination with our result here, this establishes (1.5.1) as
an equality, that is, the first two terms in the asymptotic expansion of the free
energy of the two-dimensional Bose gas in the dilute limit.

(2) The lower bound on the o(1) error term given here is uniform in βρ as long
as βρ & 1. The proof will show that the actual error rate is much better for βρ
some distance away from βcρ (either above or below); see (2.16.13). For very
low temperatures, we utilize the proof method of [29]; this way, we recover
the ground state energy error rate |ln a2ρ|−1/5 for very low temperatures,
which was proved for T = 0 in [29].
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(3) The statement is uniform in the interaction potential in the following
sense. In the case of finite range potentials, the error term depends on the
interaction potential only through its scattering length a and its range R0.
This dependence could be displayed explicitly. To prove the theorem for
infinite range potentials with a finite scattering length, one has to cut the
potential at some radius R0, which results in an error term (contained in the
o(1) in (1.5.1)) of the form

1
|ln a2ρ|

∫
|x |>R0

v(|x |) ln2(|x |/aR0) dx, (1.5.3)

where aR0 is the scattering length of the potential with cutoff. When R0 is
chosen such that aR0 6= 0, this term is much smaller than the main error
term (1.5.2) but is nonuniform in the potential since aR0 depends on v. Note
that in contrast to the three-dimensional case, one does not need to choose
R0/a � 1. How one obtains (1.5.3) is explained in detail in Lemma 2.

(4) Even though the temperature dependence of the correction term in (1.5.1)
looks very similar to the three-dimensional case (1.1.5), the two-dimensional
case is actually rather different. Although in three dimensions it is possible
to obtain a term of the correct form by naive perturbation theory (with
(8π)−1

∫
v in place of the scattering length), this fails to be the case in

two dimensions for two reasons. First, one would similarly obtain the
integral of the potential as a factor in the correction term, which does not
yield the correct behavior in the density (namely, the inverse logarithmic
factor |ln a2ρ|−1). Second, the temperature dependence in the correction
term would come out wrong, as the critical temperature for Bose–Einstein
condensation in two dimensions is equal to zero; hence a factor 2 (compared
to zero temperature) would appear at any T > 0. In other words, in two
dimensions, a naive perturbation theory would yield

f0(β, ρ)+ ρ
2
∫
v(|x |) dx, (1.5.4)

which differs from the true result in the two instances just described.

(5) The origin of the temperature dependence in the interaction term in (1.5.1)
can be understood from the variational principle

inf
06ρ06ρ

{
f0(β, ρ − ρ0)+

4π
|ln a2ρ|

(2ρ2
− ρ2

0)

}
= f0(β, ρ)+

4π
|ln a2ρ|

(2ρ2
− ρ2

s )(1− o(1)) (1.5.5)
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as a2ρ → 0. To leading order, the optimal choice of ρ0 turns out to be
ρs = ρ[1− βc(ρ, a)/β]+, which coincides with the superfluid density of the
system [12]. One key ingredient of the proof of the lower bound for the free
energy is a c-number substitution for low-momentum modes. These modes
are described by coherent states that do not experience an exchange effect,
which decreases their energy relative to the energy of the high-momentum
modes that have not been substituted. The c-number substituted momentum
modes take the role of ρ0 and one obtains a formula for the energy that is
approximately given by the left-hand side of (1.5.5).

The proof of Theorem 1 is given in Section 2. It suitably adapts the technique
used to prove the related formula in the three-dimensional case [44] and, for
ease of comparison, we shall use the same section numbers and names as in that
reference. For the convenience of the reader, we give a short sketch of the proof
highlighting the main ideas before we start with the detailed analysis.

The proof strategy A key ingredient in the proof of the lower bound for the free
energy of the interacting gas is the observation that the second term on the right-
hand side of (1.5.1) (the interaction energy) is, in the dilute limit, much smaller
than the first term f0(β, ρ). As remarked above, a naive version of first-order
perturbation theory fails, however, for two reasons. First, the interaction potential
is so strong that the interaction energy of the Gibbs state of the ideal gas is
too large (it is even infinite in the case of hard disks). Second, the temperature
dependence of the interaction term comes out wrong, as ρ[1 − βc(ρ, a)/β]+
depends on the scattering length, which clearly cannot be captured by an ideal
gas state.

The first problem is overcome with the aid of a version of the Dyson
Lemma [10]. This lemma allows us to replace the strong interaction potential v
by a softer potential with a longer range that can later be treated using a rigorous
version of first-order perturbation theory. The price one has to pay is a certain
amount of the kinetic energy. It is important that only modes with momenta much
larger than β−1/2 are used in this procedure because the other modes are needed to
build up the free energy f0(β, ρ) of the ideal gas. A version of the Dyson lemma
fulfilling such requirements was for the first time proven in [25] to treat the ground
state energy of the dilute Fermi gas.

After this replacement, we utilize a rigorous version of first-order perturbation
theory at positive temperature, which was developed in [44]. The method is
based on a correlation inequality [42] that applies to fermionic systems at all
temperatures and to bosonic systems at sufficiently large temperatures. The main
ingredient needed for this method to work is that the reference state in the
perturbative analysis (usually the Gibbs state of the corresponding ideal gas)
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shows an approximate tensor product structure with respect to localization in
different regions in space. In the case of a quasifree state, this is true if its one-
particle density matrix shows sufficiently fast decay (in position space). In order
to overcome this restriction, highly occupied low-momentum modes leading to
long-range correlations have to be treated with a c-number substitution. That
is, coherent states on the bosonic Fock space are used to replace creation and
annihilation operators of the low-momentum modes by complex numbers. Since
coherent states show an exact tensor product structure with respect to localization
in different regions in space, they fit seamlessly into the framework. Although
there is no Bose–Einstein condensation in the two-dimensional Bose gas, we are
also faced with highly occupied low-momentum modes at very low temperatures.
As explained in Remark 5 above, the use of coherent states for the low-momentum
modes naturally leads to the correct temperature dependence of the interaction
energy in (1.5.1), whose origin is nonperturbative.

In order to be able to use a Fock space formalism, which is essential for
the formalism of the c-number substitution, it will be necessary to replace the
interaction potential v by an integrable potential ṽ with uniformly bounded
Fourier transform. In contrast to the three-dimensional case, we will need that
the integral of ṽ is suitably small in order to control various error terms. This
replacement will be done in the first step of the proof.

2. Proof of Theorem 1

We will frequently use the Heaviside step function in the proof and use the
convention

θ(x) =

{
1 if x > 0,
0 if x < 0.

(2.0.1)

In particular, θ(0) = 1.

2.1. Reduction to integrable potentials with finite range. The statement of
Theorem 1 is general in the sense that it allows interaction potentials that are
infinitely ranged and possibly have an infinite integral (for example, in the case of
a hard disk potential), while still having a finite scattering length. In the following,
it will be convenient to work with integrable potentials with a finite range. The
first condition is of importance because for the Fock space formalism, we need
to assume that the interaction potential has a bounded Fourier transform. Since
we want to prove a lower bound, we can replace the original potential by a
smaller one. The scattering length of the new potential is smaller, however. The
following two lemmas quantify the change of the scattering length if we do such

https://doi.org/10.1017/fms.2020.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.17


The free energy of the two-dimensional dilute Bose gas. I. Lower bound 11

a replacement. We start with a lemma that quantifies the change of the scattering
length when the potential is replaced by one that is cut off at some finite radius R0.

LEMMA 2. Let v be a nonnegative radial potential with finite scattering length
a. We denote by vR0 the potential with cutoff at R0 > 0 (that is, vR0(r) =
θ(R0 − r)v(r)) and its scattering length by aR0 . Then

1
ln(R/aR0)

>

(
ln(R/a)+

1
4π

∫
|x |>R0

v(|x |) ln2(|x |/aR0) dx
)−1

(2.1.1)

for all R > R0.

Proof. The claim is equivalent to the inequality

ln(aR0/a) > −
1

4π

∫
|x |>R0

v(|x |) ln2(|x |/aR0) dx . (2.1.2)

To show (2.1.2), we use the variational principle for the scattering length of the
potential with cutoff at R1, where R1 is such that R0 < R1 < R. Let φvR0

denote
the minimizer of the energy functional (1.4.1) with potential vR0 . Then we have

2π
ln(R/aR1)

6
∫

BR

(
|∇φvR0

|
2
+
vR1

2
|φvR0
|
2
)

=
2π

ln(R/aR0)
+ π

∫ R1

R0

v(r)|φvR0
(r)|2r dr

=
2π

ln(R/aR0)

(
1+

1
2 ln(R/aR0)

∫ R1

R0

v(r) ln2(r/aR0)r dr
)
. (2.1.3)

This implies

− ln aR1 >
ln(R/aR0)

1+ 1
2 ln(R/aR0 )

∫ R1

R0
v(r) ln2(r/aR0)r dr

− ln R (2.1.4)

and by taking the limit R→∞, we obtain

ln(aR0/aR1) > −
1
2

∫ R1

R0

v(r) ln2(r/aR0)r dr. (2.1.5)

We can now take the limit R1 →∞ and obtain (2.1.2).

When we apply Lemma 2, the cutoff parameter R0 has to be chosen such
that aR0 > 0, which is the case if vR0 6≡ 0. We shall choose R such that

https://doi.org/10.1017/fms.2020.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.17


A. Deuchert, S. Mayer and R. Seiringer 12

ln(R/a) ∼ |ln a2ρ| � 1; hence the second term on the right-hand side of (2.1.1)
is indeed a small correction to the first term. The relative error term we obtain this
way is proportional to

1
|ln a2ρ|

∫
|x |>R0

v(|x |) ln2(|x |/aR0) dx, (2.1.6)

which is much smaller than other error terms that we shall obtain below; see
(2.16.14).

From now on, we can thus assume that the interaction potential v has a fixed
finite range R0. For simplicity of notation, we shall drop the subscript R0 from v

and a.
The next lemma quantifies the change of the scattering length if we replace a

potential v with finite range R0 by a smaller potential ṽ whose integral is bounded
by some number 4πϕ > 0. The error term we obtain is small as long as ϕ is
much greater than 1/ ln(R/a). In particular, ϕ can be chosen as a small parameter,
which is different from the corresponding three-dimensional case.

LEMMA 3. Let v be a nonnegative radial potential with finite range R0 and
scattering length a. For any 0 < δ < 1 and any ϕ > 0, there exists a potential ṽ
with 0 6 ṽ 6 v such that

∫
R2 ṽ(|x |) dx 6 4πϕ and the scattering length ã of ṽ

satisfies

1
ln(R/ã)

>
1

ln(R/a)

(
1−

1
√
ϕ ln(R/a)

+
ln(1− δ)
ln(R/a)

)
(2.1.7)

for all R > R0.

Proof. Let

t = inf
{

s :
∫
∞

s
rv(r) dr <∞

}
, (2.1.8)

and note that t 6 a holds. To see this, let s > a and bound∫
∞

s
rv(r) dr 6

1
ln2(s/a)

∫
∞

s
rv(r) ln2(r/a) dr

6
1

ln2(s/a)

∫
∞

a
rv(r) ln2(r/a) dr 6

2 ln(R0/a)
ln2(s/a)

, (2.1.9)

where the last inequality follows from an easy calculation; compare with [20,
Equations (34)–(36)]. From this calculation, we see that

∫
∞

s rv(r) dr is finite for
all s > a.
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Now we distinguish two cases. Assume first that
∫
∞

t rv(r) dr > 2ϕ (which
includes the possibility that v→∞ in a nonintegrable sense as r → t). Then we
choose s > t such that

∫
∞

s rv(r) dr = 2ϕ and define ṽ(r) = v(r)θ(r − s). Let φv
denote the minimizer of the energy functional (1.4.1) and define the function

φ(r) =
(
φṽ(r)− φṽ(s)

ln(R/r)
ln(R/s)

)
θ(r − s), (2.1.10)

which is nonnegative and continuous. We use φ as the test function in the
variational principle for the scattering length and obtain the upper bound

2π
ln(R/a)

6
∫

BR

(
|∇φ|2 +

v

2
|φ|2

)
=

∫
BR

φ
(
−∆+

v

2

)
φ +

∫
∂BR

φ∇φ · n

= −
φṽ(s)

2 ln(R/s)

∫
BR

φ(|x |)v(|x |) ln(R/|x |)θ(|x | − s) dx +
∫
∂BR

φ∇φ · n,

(2.1.11)

where we integrated by parts and used the zero-energy scattering equation (1.4.2)
for ṽ as well as the fact that the function r 7→ ln(R/r) is harmonic away from
zero. In the boundary integral, we denoted by n the outward facing unit normal
vector of the disk (which is in this case just the unit vector pointing in the radial
direction). We note that the first term on the right-hand side is negative and can be
dropped for an upper bound. Since R > R0, the boundary term can be explicitly
computed as ∫

∂BR

φ∇φ · n =
2π

ln(R/ã)
+

2πφṽ(s)
ln(R/s)

. (2.1.12)

Hence,
1

ln(R/a)
6

1
ln(R/ã)

+
φṽ(s)

ln(R/s)
. (2.1.13)

Using the fact that φṽ(s) is always greater than or equal to the asymptotic solution
given by ln(s/ã)/ ln(R/ã), we obtain

φṽ(s)
ln(R/s)

6
1

ln(R/ã)
·

1
1/φṽ(s)− 1

. (2.1.14)

We get an upper bound on φṽ(s) via the monotonicity of φṽ(r):

1
ln(R/a)

>
1

ln(R/ã)
>

1
2

∫
∞

s
rv(r)φṽ(r)2 dr > φṽ(s)2ϕ. (2.1.15)

Therefore,

φṽ(s) 6
1

√
ϕ ln(R/a)

. (2.1.16)
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In conclusion, we have shown that

1
ln(R/ã)

>
1

ln(R/a)

(
1−

1
√
ϕ ln(R/a)

)
, (2.1.17)

which proves the statement (for δ = 0) in the first case.
It remains to consider the second case. Assume

∫
∞

t rv(r) dr = 2ϕ−T for some
T > 0. We may assume further that t > 0 since if t = 0, we can take ṽ = v and
there is nothing to prove. By the definition of t , we have that for any 0 < δ < 1,∫ t

(1−δ)t
rv(r) dr = ∞. (2.1.18)

Therefore, there exists a τ = τ(T, δ) such that∫ t

(1−δ)t
r min{v(r), τ } dr = T . (2.1.19)

We define

ṽ(r) =


v(r) if r > t,
min{v(r), τ } if (1− δ)t 6 r < t,
0 otherwise.

(2.1.20)

Note that ∫
∞

0
r ṽ(r) dr =

∫
∞

(1−δ)t
r ṽ(r) dr = 2ϕ. (2.1.21)

By the same argument as before (cf. Equation (2.1.13) with s = t) and with this
definition of ṽ, we obtain

1
ln(R/a)

6
1

ln(R/ã)
+

φṽ(t)
ln(R/t)

. (2.1.22)

Similarly to (2.1.15), we have

1
ln(R/a)

>
1

ln(R/ã)
>

1
2

∫
∞

(1−δ)t
r ṽ(r)φṽ(r)2 dr > φṽ((1− δ)t)2ϕ. (2.1.23)

Therefore,

φṽ((1− δ)t) 6
1

√
ϕ ln(R/a)

. (2.1.24)

From (1.4.2), we deduce that∆φṽ defines a positive measure, and using the Gauss
theorem, we have ∫

|x |6r
∆φṽ =

∫
|x |=r
∇φṽ · n = 2πrφ′ṽ(r). (2.1.25)
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Since the left-hand side is increasing in r , we conclude that r 7→ rφ′ṽ(r) is
monotone increasing. This implies for any s 6 r and for r > R0,

sφ′ṽ(s) 6 rφ′ṽ(r) =
1

ln(R/ã)
. (2.1.26)

Thus, using the fundamental theorem of calculus,

φṽ(t)− φṽ((1− δ)t) = δt
∫ 1

0
φ′ṽ((1− δw)t) dw

6
δ

ln(R/ã)

∫ 1

0

dw
1− δw

= −
ln(1− δ)
ln(R/ã)

. (2.1.27)

Putting (2.1.22), (2.1.24) and (2.1.27) together as well as using t 6 a and ã 6 a,
we obtain

1
ln(R/a)

6
1

ln(R/ã)
+

φṽ(t)
ln(R/t)

6
1

ln(R/ã)
+

1
ln(R/t)

(φṽ(t)− φṽ((1− δ)t))+
1

ln(R/t)
1

√
ϕ ln(R/a)

6
1

ln(R/ã)
−

ln(1− δ)
ln(R/a)2

+
1

ln(R/a)
1

√
ϕ ln(R/a)

. (2.1.28)

Rearranging the terms, we obtain (2.1.7).

In the following, we denote by ṽ the interaction potential that is obtained from v

(which is assumed to have finite range R0 as discussed after Lemma 2) by cutting
it, as indicated by Lemma 3, such that its integral is bounded by 4πϕ > 0. As
mentioned already before, we have HN > H̃N , where H̃N denotes the Hamiltonian
with v replaced by ṽ.

2.2. Fock space. In our proof, we relax the restriction on the number of
particles, which is possible for a lower bound and is motivated by the fact that
this allows us to use the formalism of the c-number substitution, as detailed in
the next subsection. We denote by F the bosonic Fock space and define the Fock
space Hamiltonian

H = T+ V+K+ µ0 N (2.2.1)

with

T =
∑

p

(
p2
− µ0

)
a†

pap, V =
1

2|Λ|

∑
p,k,`

v̂(p)a†
k+pa†

`−paka` (2.2.2)
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and
K =

4πC
|Λ|| ln a2ρ|

(N− N )2. (2.2.3)

Here, the chemical potential µ0 is given by (1.3.3) and a†
p and ap are the usual

creation and annihilation operators that create and annihilate a plane wave with
momentum p, respectively. The sums over p, k and ` are taken over 2π

L Z2. By
v̂ we denote the Fourier transform of ṽ (we drop the ˜ in the Fourier transform
for notational clarity), which is given by v̂(p) =

∫
Λ
ṽ(d(x, 0)) e−i px dx =∫

R2 ṽ(|x |) e−i px dx . Here and in the following, we assume that L > 2R0, which is
no restriction since we are interested in the thermodynamic limit L → ∞. Note
that v̂ is uniformly bounded, which is one reason we introduced ṽ. We have

|v̂(p)| 6 v̂(0) 6 4πϕ. (2.2.4)

The number operator is defined by

N =
∑

p

a†
pap, (2.2.5)

and the operator K was introduced to have a control on the number of particles
in the system after the extension to Fock space. Note that K vanishes on all states
with exactly N particles. The parameter C > 0 in the definition of K will be
suitably chosen later.

Recall that we defined the total Hamiltonian for N particles by HN (in
Equation (1.2.1)) and that we denote by H̃N the operator HN where v is replaced
by ṽ. We then have HN > H̃N = HPN , where PN is the projection on the Fock
space sector with N particles. This implies in particular that

TrHN exp(−βHN ) 6 TrHN exp(−β H̃N ) 6 TrF exp(−βH). (2.2.6)

We will proceed deriving an upper bound for the expression on the right-hand
side.

2.3. Coherent states. We use the method of coherent states (see, for
example, [27]) in order to obtain an upper bound for the partition function
TrF exp(−βH). This method is based on the fact that coherent states are
eigenfunctions of the annihilation operators, which can be used to replace the
operators ap and a†

p by complex numbers. This procedure is also called c-number
substitution. Although we have no condensate in our system, this separate
treatment of a certain number of low-momentum modes is necessary for low
temperatures, as pointed out in the proof strategy in Section 1.5. We start by
introducing the necessary notation related to the c-number substitution.
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Pick some pc > 0 and write F = F< ⊗ F>. Here F< and F> denote the Fock
spaces corresponding to the modes |p| < pc and |p| > pc, respectively. We define
M =

∑
|p|<pc

1 = #{p ∈ 2π
L Z2
: |p| < pc} and introduce for z ∈ CM the coherent

state |z〉 ∈ F< by

|z〉 = exp

(∑
|p|<pc

z pa†
p − z̄ pap

)
|0〉 =: U (z)|0〉. (2.3.1)

Here |0〉 is the vacuum vector in F<, and the last equality defines the Weyl
operator U (z). The lower symbol Hs(z) of H is the operator on F> given by
the partial inner product

Hs(z) = 〈z|H|z〉 = Ts(z)+ Vs(z)+Ks(z). (2.3.2)

We can use the fact that ap|z〉 = z p|z〉 and obtain the lower symbol by simply
replacing all ap by z p and a†

p by z̄ p for |p| < pc in the normal-ordered form of
the Hamiltonian. To display it explicitly, let us introduce the notation

Ap = z p1(|p| < pc)+ ap1(|p| > pc) (2.3.3)

with adjoint A†
p. The lower symbols of the operators on the right-hand side of

(2.3.2) are given by

Ts(z) =
∑

p

(p2
− µ0)A†

p Ap, Vs(z) =
1

2|Λ|

∑
p,k,`

v̂(p)A†
k+p A†

`−p Ak A` (2.3.4)

and

Ks(z) =
4πC

|Λ|| ln a2ρ|

(∑
p,q

A†
p A†

q Aq Ap −
∑

p

A†
p Ap(2N − 1)+ N 2

)
. (2.3.5)

The upper symbol of an operator is the operator-valued function that is obtained
by starting from the anti-normal-ordered form of the operator and then replacing
ap by z p and a†

p by z̄ p for |p| < pc. This implies that the upper symbol can be
calculated from the lower symbol by replacing, for example, |z p|

2 by |z p|
2
− 1

and similarly for other polynomials in z p (see [27] for more details). The upper
symbol Hs(z) of H satisfies

H =
∫
CM

Hs(z)|z〉〈z| dz, (2.3.6)

where dz =
∏M

i=1
dzi
π

, dzi = dxi dyi , is the product measure related to the real
and imaginary parts of zi ∈ C. The Berezin–Lieb inequality [3, 4, 24, 27] implies
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TrF exp(−βH) 6
∫
CM

TrF>
exp(−βHs(z)) dz. (2.3.7)

We prefer to work with the lower symbol instead, and therefore will replace the
upper by the lower symbol on the right-hand side of (2.3.7). Let∆H(z) = Hs(z)−
Hs(z) be the difference between the two symbols, which reads as

∆H(z) =
∑
|p|<pc

(p2
− µ0)+

1
2|Λ|

[
v̂(0)(2MNs(z)− M2)

+ 2
∑

|`|<pc,|k|>pc

v̂(`− k)a†
k ak +

∑
|`|,|k|<pc

v̂(`− k)(2|zk |
2
− 1)

]
+

4πC
|Λ|| ln a2ρ|

[2|z|2 + M(2Ns(z)− 2N − M)], (2.3.8)

where |z|2 =
∑
|p|<pc
|z p|

2 and Ns(s) = |z|2 +
∑
|p|>pc

a†
pap. Using the bound

|v̂(p)| 6 v̂(0) 6 4πϕ, we have

∆H(z) 6 M(p2
c − µ0)+

8πϕ
|Λ|

MNs(z)+
8πC

|Λ||ln a2ρ|
[|z|2 + M(Ns(z)− N )].

(2.3.9)
The lower symbol of K reads as

Ks(z) =
4πC

|Λ||ln a2ρ|
((Ns(z)− N )2 + |z|2) >

4πC
|Λ||ln a2ρ|

(Ns(z)− N )2 (2.3.10)

and allows us to estimate
1
2
Ks(z)−∆H(z) > −M(p2

c − µ0)−
8πN
|Λ|

(
ϕM +

C
| ln a2ρ|

)
−

32πC(M + 1)2

|Λ|| ln a2ρ|

(
1+

ϕ| ln a2ρ|

C

)2

=: −Z (1). (2.3.11)

Note that M ∼ p2
c |Λ| in the thermodynamic limit. We will choose the parameters

pc, ϕ and C such that Z (1)
� |Λ|ρ2/| ln a2ρ| for small a2ρ. We also define

Fz(β) = −
1
β

ln TrF>
exp

(
−β

(
Ts(z)+ Vs(z)+

1
2
Ks(z)

))
. (2.3.12)

Equation (2.3.7) and the above estimates imply the bound

−
1
β

ln TrF exp(−βH) > µ0 N −
1
β

ln
∫
CM

exp(−βFz(β)) dz − Z (1). (2.3.13)

In the following subsections, we will derive a lower bound for Fz(β).
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The free energy Fz(β) can also be written in terms of the free energy of a Gibbs
state. In fact, let Γ z be the Gibbs state of Ts(z)+Vs(z)+ 1

2Ks(z) on F>, that is,

Γ z
=

exp
(
−β

[
Ts(z)+ Vs(z)+ 1

2Ks(z)
])

TrF>
exp

(
−β

[
Ts(z)+ Vs(z)+ 1

2Ks(z)
]) , (2.3.14)

and define the state
Υ z
= U (z)Π0U (z)† ⊗ Γ z (2.3.15)

on F , whereΠ0 = |0〉〈0| denotes the vacuum state on F<. With these definitions,
we obtain the identity

Fz(β) = TrF

[(
T+ V+

1
2
K
)
Υ z

]
−

1
β

S(Υ z), (2.3.16)

where S(Υ z) = −TrF [Υ z lnΥ z
] is the von Neumann entropy of the state Υ z

(which equals the one of Γ z).

2.4. Relative entropy and a priori bounds. To prove a lower bound for Fz(β),
we will need some information on the state Υ z defined in (2.3.15). The a priori
information that is being used is a bound on the relative entropy (to be defined
below) of Υ z with respect to a suitable reference state describing noninteracting
bosons and a bound on the expected number of particles in the system. To
obtain this a priori information, we will assume that a certain upper bound for
Fz(β) holds. This does not lead to a loss of generality because there will be
nothing to prove if the assumption is not fulfilled. That is, the statement will hold
independently of the assumption.

Let Γ0 be the Gibbs state on F> for the kinetic energy operator Ts(z) (which
is independent of z) and define the state Ω z

0 on F by Ω z
0 = U (z)Π0U (z)† ⊗ Γ0.

Since V > 0, we have

Fz(β) > −
1
β

ln(TrF>
[e−βTs(z)])+

1
2

TrF [KΥ z
] +

1
β

S(Υ z,Ω z
0), (2.4.1)

where
S(Υ z,Ω z

0) = TrF [Υ z(lnΥ z
− lnΩ z

0)] (2.4.2)

denotes the relative entropy of Υ z with respect to Ω z
0 . Since Υ z and Ω z

0 are equal
on F<, we have S(Υ z,Ω z

0) = S(Γ z, Γ0). We distinguish two cases: either

Fz(β) > −
1
β

ln(TrF>
[e−βTs(z)])+

8π |Λ|ρ2

|ln a2ρ|
(2.4.3)
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holds or it does not hold. In the latter case, we have

S(Υ z,Ω z
0) = S(Γ z, Γ0) 6

8π |Λ|βρ2

|ln a2ρ|
(2.4.4)

as well as

TrF [KΥ z
] 6

16π |Λ|ρ2

|ln a2ρ|
. (2.4.5)

From now on, we will assume to be in the second case. The lower bound we are
going to derive on Fz(β) will actually be worse than (2.4.3), that is, the bound is
true in any case, irrespective of whether assumptions (2.4.4) and (2.4.5) hold.

Equation (2.4.5) implies the following upper bound on |z|2:

|z|2 − N 6 TrF [(N− N )Υ z
] 6 (TrF [(N− N )2Υ z

])1/2

=

(
|Λ|| ln a2ρ|

4πC

)1/2

(TrF [KΥ z
])1/2 6

2
√

C
|Λ|ρ.

(2.4.6)

In other words,

ρz :=
|z|2

|Λ|
6 ρ

(
1+

2
√

C

)
. (2.4.7)

We will choose C � 1 below.

2.5. Replacing vacuum. In this section, we replace the vacuum state Π0 in
the definition of Υ z in (2.3.15) by a more general quasifree state Π on F< and
estimate the effect of this replacement on (2.3.16). The replacement will become
relevant in Section 2.13 when we estimate the relative entropy of the above state
with respect to a certain quasifree state describing noninteracting bosons. For that
purpose, we require the momentum distribution to be sufficiently smooth, and do
not want it to jump to zero for momenta less than pc.

LetΠ be the unique quasifree state on F< whose one-particle density matrix is
given by

π =
∑
|p|<pc

πp|p〉〈p|. (2.5.1)

The coefficients πp will be chosen later. We denote the trace of π by P . Define
the state Υ z

π on F by
Υ z
π = U (z)ΠU (z)† ⊗ Γ z. (2.5.2)
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Using |v̂(p)| 6 4πϕ, we see that

TrF [V(Υ z
π − Υ

z)] =
1

2|Λ|
v̂(0)(P2

+ 2P TrF>
[Ns(z)Γ z

])

+
1

2|Λ|

∑
|k|,|`|<pc

v̂(k − `)[πkπ` + 2|zk |
2π`]

+
1
|Λ|

∑
|k|<pc,|`|>pc

v̂(k − `)πk TrF>
[a†
`a`Γ

z
]

6
4πϕ
|Λ|

(P2
+ 2P TrF>

[Ns(z)Γ z
])

=
4πϕ
|Λ|

(P2
+ 2P TrF [NΥ z

]). (2.5.3)

(We note that in [44, first line of (2.5.4)], there is an erroneous term
−2

∑
|k|<pc

πk |zk |
2. Since it is negative, it was dropped for the following estimate,

which resulted in an analogous upper bound on TrF [V(Υ z
π − Υ

z)].) To obtain the
bound, we used that the term in the second line plus the term in the third line are
bounded from above by the term on the right-hand side in the first line. In (2.4.6),
we have shown that TrF [NΥ z

] 6 N (1 + 2/
√

C), and we therefore obtain from
(2.5.3)

TrF [VΥ z
] > TrF [VΥ z

π ] − Z (2) (2.5.4)

with

Z (2)
:=

4πϕP2

|Λ|
+

8π Pϕ
|Λ|

N
(

1+
2
√

C

)
. (2.5.5)

We will later choose ϕ � |ln a2ρ|−1 and C � 1. Hence, Z (2)
� |Λ|ρ2/| ln a2ρ|

as long as ϕP � N/| ln a2ρ|.
The replacement of Υ z by Υ z

π causes also a change in the kinetic energy given
by

TrF [TΥ z
] = TrF [TΥ z

π ] −

∑
|p|<pc

(p2
− µ0)πp. (2.5.6)

By combining (2.3.16), (2.5.4) and (2.5.6), we therefore obtain the lower bound

Fz(β) > TrF [(T+V)Υ z
π ] +

1
2

TrF [KΥ z
] −

1
β

S(Υ z)−
∑
|p|<pc

(p2
−µ0)πp − Z (2).

(2.5.7)

2.6. Dyson lemma. As already mentioned in the proof strategy in Section 1.5,
in order to be in a perturbative regime, we have to replace the short ranged and
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possibly very strong interaction potential ṽ by a softer interaction potential with a
longer range. To achieve this goal, we have to pay with a certain amount of kinetic
energy. More precisely, we will only use modes with momenta much larger than
β−1/2 for this procedure because the other momentum modes are needed to obtain
the free energy f0(β, ρ) of the ideal gas.

To separate the high-momentum part of the kinetic energy (which is the relevant
part contributing to the interaction energy) from the low-momentum part, we
choose a radial cutoff function χ : R2

→ [0, 1] and define

h(x) =
1
|Λ|

∑
p

(1− χ(p)) e−i px . (2.6.1)

We assume that χ(p) → 1 sufficiently fast as |p| → ∞ so that h ∈ L1(Λ) ∩

L∞(Λ). Define further for R0 < R < L/2

fR(x) = sup
|y|6R
|h(x − y)− h(x)| and wR(x) =

2
π

fR(x)
∫
Λ

fR(y) dy. (2.6.2)

Finally, we introduce the soft potential UR , which is a nonnegative function
supported on the interval [R0, R]. Its integral should satisfy∫ R

R0

UR(t) ln(t/ã)t dt 6 1. (2.6.3)

We then have the following statement.

LEMMA 4. Let y1, . . . , yn be n points in Λ and denote by yNN(x) the nearest
neighbor of x ∈ Λ among the points yi . Then for any ε > 0, we have

−∇χ(p)2∇ +
1
2

n∑
i=1

ṽ(d(x, yi)) > (1− ε)UR(d(x, yNN(x)))

−
1
ε

∫
R+

UR(t)t dt
n∑

i=1

wR(x − yi). (2.6.4)

We remark that yNN(x) is well defined except on a set of zero measure. The
lemma above is a two-dimensional version of [44, Lemma 2]. It is referred to as
the Dyson lemma because Dyson was the first to prove a statement of this kind
in his treatment of the dilute Bose gas at T = 0 in [10]. A version of the Dyson
lemma for two and three space dimensions, where only high-momentum modes
are used to replace the interaction potential by a softer one, appeared for the first
time in [25]. The proof of Lemma 4 can be obtained by combining the ideas of
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the proofs of [44, Lemma 2] and [25, Lemma 7]. The main differences between
Lemma 4 and [25, Lemma 7] are the boundary conditions for the Laplacian and
the fact that we do not assume a minimal distance between the particles here.
Since the proof of [25, Lemma 7] was not spelled out in detail, we include a proof
of Lemma 4 in Appendix A.

We will use Lemma 4 for a lower bound on the operator T + V. In the Fock
space sector with n particles, this operator reads as

H̃n =

n∑
j=1

[
−∆ j +

1
2

∑
i, i 6= j

ṽ(d(xi , x j))

]
. (2.6.5)

We want to keep a small part of the total kinetic energy for later use and therefore
write for 0 < κ < 1

p2
= p2(1− (1− κ)χ(p)2)+ (1− κ)p2χ(p)2. (2.6.6)

The kinetic term in H̃n will be split accordingly, and we apply Lemma 4 to the
last part of the kinetic term plus the potential term. Using also the positivity of ṽ,
we obtain for any set J j ⊆ {1, . . . j − 1, j + 1, . . . , n}

−∆ j +
1
2

∑
i, i 6= j

ṽ(d(xi , x j)) > −∇ j(1− (1− κ)χ(p j)
2)∇ j

+ (1− ε)(1− κ)UR(d(x j , x J j
NN(x j)))−

1
ε

∫
R+

UR(t)t dt
∑
i∈J j

wR(x j − xi).

(2.6.7)

Here x J j
NN(x j) denotes the nearest neighbor of x j among the points xi whose index

i is contained in J j , and interaction terms for particles k 6∈ J j are simply dropped
for a lower bound. The subset J j is defined via the following construction (which
is not unique). Fix x j and consider those xi whose distance to the nearest neighbor
(among all other xk , k 6= i, j) is at least R/5, and add the corresponding index i
to the set. Next, we go in some order through the set {x1, . . . , x j−1, x j+1, . . . , xn}

and add i to the set if d(xi , xk) > R/5 for all k that are already in the set J j . Note
that this last step depends on the ordering of the xi , and therefore J j will depend
on the ordering as well. Hence, the right-hand side of (2.6.7) is not permutation
symmetric, and strictly speaking, it should be replaced by its symmetrization. We
do not need to do this, however, as we are only interested in expectation values of
this potential in bosonic (permutation symmetric) states anyway.

The motivation to introduce the set J j is the following. By definition, all
particles whose index is contained in J j have a minimum distance R/5 to their

https://doi.org/10.1017/fms.2020.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.17


A. Deuchert, S. Mayer and R. Seiringer 24

nearest neighbor, which is needed in order to control the error terms coming from
wR . On the other hand, the set J j is constructed to be maximal in the sense that
if l /∈ J j , then there exists a particle xk with k ∈ J j such that d(xl, xk) < R/5. In
other words, we need the disks of radius R centered at the particle coordinates to
be able to have sufficient overlap in order to obtain the desired lower bound. For
certain values of z, the system could be far from being homogeneous and many
particles could cluster in a relatively small volume; we want to be able to detect
this as an increase in the interaction energy. (Recall that z = (z1, . . . , zM) ∈ CM

is the complex vector introduced in Section 2.3.)

2.7. Filling the holes. After having applied Lemma 4, we want to replace the
resulting interaction potential UR by a potential without a hole of radius R0 at the
origin because it will be advantageous to work with a potential of positive type. To
obtain such a potential, we use Lemma 5. Its proof requires a different technique
than the corresponding lemma in the three-dimensional case [44, Lemma 3] due
to the fact that a sufficiently weak attractive potential in three dimensions has no
bound state, while it always does in two dimensions.

For some unit vector e ∈ R2, we define the function j : R+→ R+ by

j (t) =
32
π

∫
R2
θ

(
1
2
− |y|

)
θ

(
1
2
− |y − te|

)
dy. (2.7.1)

Note that the support of the function j is given by the interval [0, 1] and that we
have

∫ 1
0 j (t)t dt = 1. An explicit computation yields

j (t) =
16
π

[
arccos(t)− t

√
1− t2

]
1[0,1](t), (2.7.2)

where 1[0,1] denotes the characteristic function of the interval [0, 1]. The potential
we intend to work with is given by ŨR(t) = R−2 ln(R/ã)−1 j (t/R). To obtain this
potential, we choose UR(t) = ŨR(t)θ(t − R0) when we apply the Dyson lemma.
This choice indeed satisfies the integral condition (2.6.3) since∫ R

R0

UR(t) ln(t/ã)t dt =
1

R2 ln(R/ã)

∫ R

R0

j (t/R) ln(t/ã)t dt

6
1
R2

∫ R

R0

j (t/R)t dt =
∫ 1

R0/R
j (t)t dt 6

∫ 1

0
j (t)t dt = 1.

(2.7.3)

The following lemma will allow us to quantify the error we make when we replace
UR by ŨR .
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LEMMA 5. Let y1, . . . , yn denote n points in Λ, with d(yi , y j) > R/5 for i 6= j ,
and let R0 < R/10. Then

−∆−
1

R2
0 ln(R/R0)

n∑
i=1

θ(R0−d(x, yi)) > −
C̃
R2

n∑
i=1

θ(R/10−d(x, yi)) (2.7.4)

holds for a universal constant C̃ > 0.

Proof. It is sufficient to prove that∫
|x |6R/10

(
|∇φ(x)|2 −

1
R2

0 ln(R/R0)
θ(R0 − |x |)|φ(x)|2

)
dx

> −
C̃
R2

∫
|x |6R/10

|φ(x)|2 dx (2.7.5)

holds for any function φ ∈ H 1(R2)with C̃ > 0 being independent of that function.
In other words, we need to show that the lowest eigenvalue of the quadratic form
on the left-hand side of Equation (2.7.5) is bounded from below by a constant
times −R−2.

Denote by EN
R this lowest eigenvalue and by φN

R the corresponding normalized
eigenfunction. We will bound EN

R from below in terms of E0, the lowest
eigenvalue of the Schrödinger operator

h = −∆−
1

R2
0 ln(R/R0)

θ(R0 − |x |) (2.7.6)

acting on L2(R2). By rearrangement, φN
R is a radial decreasing function, satisfying

Neumann boundary conditions. Choose λ ∈ C∞([0,∞)) such that λ(0) = 1,
λ′(0) = 0, λ(t) = 0 for t > 1 and |λ′(t)|2 6 2, |λ(t)| 6 1 for all t > 0. We
define

φ̃R(x) =

φ
N
R (x) if |x | 6 R/10,

ηλ

(
|x | − R/10

R

)
if |x | > R/10,

(2.7.7)

where η is chosen such that φ̃R(x) is continuously differentiable, that is, η =
φN

R (eR/10) with e ∈ R2 being a unit vector. We have

E0 6
〈φ̃R, hφ̃R〉

〈φ̃R, φ̃R〉
=

1

〈φ̃R, φ̃R〉

(
EN

R +
η2

R2

∫
|x |>R/10

∣∣∣∣λ′ ( |x | − R/10
R

)∣∣∣∣2 dx

)
.

(2.7.8)
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With |λ′(t)|2 6 2 and λ′(t) = 0 for t > 1, we see that the integral on the right-hand
side of Equation (2.7.8) is bounded from above by 12πR2/5. We therefore have

EN
R > E0‖φ̃R‖

2
−

12π
5
η2. (2.7.9)

With the definition of λ, we conclude

‖φ̃R‖
2 6 1+ 2πη2

∫ R/10+R

R/10
r dr = 1+

6π
5
η2 R2 (2.7.10)

and since E0 < 0, we have

EN
R > E0

(
1+

6π
5
η2 R2

)
−

12π
5
η2. (2.7.11)

It remains to derive upper bounds for η and |E0|.
Since φN

R is symmetrically decreasing and has L2-norm equal to one, its value at
the boundary {x : |x | = R/10} is at most (π(R/10)2)−1/2, that is, η 6 10/(

√
πR).

On the other hand, we know from [45, Theorem 3.4] that

E0 ∼ −
1
R2

0

exp

(
−4π

1
R2

0 ln(R/R0)

∫
R2 θ(R0 − |x |) dx

)
= −

R2
0

R4
. (2.7.12)

Here E0 ∼ − exp(−b/δ) means that for all ε > 0, there exists a δ0 > 0 such that
exp(−(b + ε)/δ) 6 −E0 6 exp(−(b − ε)/δ) for all 0 < δ < δ0. Together with
Equation (2.7.11) and the upper bound on η, this shows that for all ε > 0, there
exists a δ0 > 0 such that

EN
R > −

121
R2

(
R0

R

)2−ε

−
240
R2

(2.7.13)

holds as long as R0/R < δ0.
If this is not the case, we use the simple bound

EN
R > −

1
R2

0 ln(R/R0)
. (2.7.14)

Since R0 < R/10 by assumption we know that ln(R/R0) > ln(10). On the other
hand, R2

0 > R2δ2
0 implies that

EN
R > −

1
R2δ2

0 ln(10)
(2.7.15)

for R0/R > δ0. This proves claim (2.7.4).
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For the simple step function potential in Lemma 5, one can also compute the
lowest eigenvalue explicitly in terms of Bessel functions. The method of proof
given here is more general, however.

Recall that d(xi , xk) > R/5 for i, k ∈ J j . With ŨR(t) 6 j (0)/(R2 ln(R/ã)) =
8/(R2 ln(R/ã)), as well as using ã < R0, we see that Lemma 5 implies

(ŨR −UR)(d(x j , x J j
NN(x j))) 6 θ(R0 − d(x j , x J j

NN(x j)))
8

R2 ln(ã/R)

= 8
(

R0

R

)2 ∑
i∈J j

θ(R0 − d(xi , x j))
1

R2
0 ln(ã/R)

6 8
(

R0

R

)2
−∆ j +

C̃
R2

∑
i∈J j

θ(R/10− d(xi , x j))


= 8

(
R0

R

)2
[
−∆ j +

C̃
R2
θ(R/10− d(x j , x J j

NN(x j)))

]
. (2.7.16)

The constant C̃ > 0 is determined by Lemma 5. On the other hand, we know
that ŨR(t) can be bounded from below as ŨR(t) > j (1/10)/(R2 ln(R/ã)) for
t 6 R/10, and this implies

θ(R/10− d(x j , x J j
NN(x j))) 6

ŨR(d(x j , x J j
NN(x j)))R2 ln(R/ã)
j (1/10)

. (2.7.17)

Equations (2.7.16) and (2.7.17) together show that

(ŨR −UR)(d(x j , x J j
NN(x j)))

6 −8
(

R0

R

)2

∆ j +
8C̃

j (1/10)

(
R0

R

)2

ln(R/ã)ŨR(d(x j , x J j
NN(x j))). (2.7.18)

Define a′ by the equation (assuming that the last factor on the right-hand side is
positive)

1
ln(R/a′)

=
1

ln(R/ã)
(1− ε)(1− κ)

(
1−

8C̃
j (1/10)

(
R0

R

)2

ln(R/ã)

)
(2.7.19)

and let
Ũ ′R(t) =

j (t/R)
R2 ln(R/a′)

. (2.7.20)

We also define

κ ′ = κ − 8
(

R0

R

)2

(2.7.21)
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and write the remaining kinetic energy as (compare with (2.6.7))

−∇ j(1− (1− κ)χ(p)2)∇ j + (1− ε)(1− κ)

(
8
(

R0

R

)2

∆ j

)

> −∇ j(1− (1− κ)χ(p)2)∇ j + 8
(

R0

R

)2

∆ j

= −∆ jκ
′
− (1− κ)∇ j(1− χ(p)2)∇ j . (2.7.22)

In the following, we will choose κ � R2
0/R2, which, in particular, implies κ ′ >

0. Concerning the attractive part of the interaction potential that we obtain after
applying Lemma 4, we use the definition of UR to see that∫

R+
UR(t)t dt 6

1
ln(R/ã)

. (2.7.23)

Equations (2.6.7), (2.7.18), (2.7.22) and (2.7.23) then imply

T+ V > Tc
+W, (2.7.24)

where

Tc
=

∑
p

ε(p)a†
pap and ε(p) = κ ′ p2

+ (1−κ)p2(1−χ(p)2)−µ0. (2.7.25)

In the Fock space sector with particle number n, the operator W is given by the
(symmetrization of the) multiplication operator

n∑
j=1

Ũ ′R(d(x j , x J j
NN(x j)))−

1
ε ln(R/ã)

∑
i∈J j

wR(x j − xi)

 . (2.7.26)

We recall that the set J j depends on all particle coordinates xi , i 6= j .
We conclude this section with the choice of the cutoff function χ . Let ν : R2

→

R+ be a smooth radial function with ν(p) = 0 for |p| 6 1, ν(p) = 1 for p > 2
and 0 6 ν(p) 6 1 in between. For some s > R, we choose

χ(p) = ν(sp). (2.7.27)

We will choose pc 6 1/s below. This implies in particular that ε(p) =
(1− κ + κ ′)p2

−µ0 for |p| < pc. With Υ z and Υ z
π defined in (2.3.15) and (2.5.2),

respectively, we therefore have

TrF [TcΥ z
π ] = TrF [TcΥ z

] +

∑
|p|<pc

((1− κ + κ ′)p2
− µ0)πp. (2.7.28)
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Using Equations (2.5.7), (2.7.24) and (2.7.28) and further

TrF [TcΥ z
] −

1
β

S(Υ z) > −
1
β

ln TrF>
exp(−βTc

s(z)), (2.7.29)

we conclude that

Fz(β) >−
1
β

ln TrF>
exp(−βTc

s(z))+ TrF [WΥ z
π ] +

1
2

TrF [KΥ z
]

− (κ − κ ′)
∑
|p|<pc

p2πp − Z (2). (2.7.30)

The first term on the right-hand side of (2.7.30) can be computed explicitly and
reads as

−
1
β

ln TrF>
exp(−βTc

s(z))

=

∑
|p|<pc

((1− κ + κ ′)p2
− µ0)|z p|

2
+

1
β

∑
|p|>pc

ln(1− exp(−βε(p))).

(2.7.31)

In the following, we will derive a lower bound on TrF [WΥ z
π ].

2.8. Localization of relative entropy. In order to compute TrF [WΥ z
π ], we

will replace the unknown state Γz in the definition of Υ z
π = U (z)ΠU (z)†⊗Γ z by

the quasifree state Γ0, the Gibbs state for the kinetic energy operator Ts(z). The
error resulting from this replacement will be controlled via the a priori bound
on the relative entropy (2.4.4). For that purpose, we need a local version of the
relative entropy bound, which will be derived in this section.

Let us denote by Ωπ the unique quasifree state whose one-particle density
matrix is given by

ωπ =
∑

p

ωπ (p)|p〉〈p| =
∑

p

1
e`(p)−1

|p〉〈p|, (2.8.1)

where

`(p) =

{
ln(1+ 1/πp) if |p| < pc,

β(p2
− µ0) if |p| > pc.

(2.8.2)

In other words,
Ωπ = Π ⊗ Γ0. (2.8.3)

We will choose πp such that `(p) > β(p2
− µ0) holds for all p. Let η : R+ →

[0, 1] be a function with the following properties:
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• η ∈ C∞(R+);

• η(0) = 1, and η(x) = 0 for x > 1;

• η̂(p) =
∫
R2 η(|x |) e−i px dx > 0 for all p ∈ R2.

Such a function can be obtained by choosing a smooth radial and nonnegative
function on R2 with compact support and then convolving it with itself. Given a
function with these properties, we define ηb(x) = η(x/b) for some b 6 L/2. We
also define the one-particle density matrix ωb by its integral kernel

ωb(x, y) = ωπ (x, y)ηb(d(x, y)). (2.8.4)

The unique quasifree state related to ωb will be denoted by Ωb and

Ω z
b = U (z)ΩbU (z)†. (2.8.5)

We also introduce the notation ρω = ωb(x, x) = ωπ (x, x).
To state the inequality we are looking for, we need to define spatial restriction

of states. To that end, we denote for r < L/2 by χr,ξ (x) = θ(r − d(x, ξ)) the
characteristic function of a disk of radius r centered at ξ ∈ Λ. Since χr,ξ defines a
projection on the one-particle Hilbert space H = L2(Λ), the Fock space F over
H is unitarily equivalent to the product of two Fock spaces

F(H) ∼= F(χr,ξH)⊗F((χr,ξH)⊥). (2.8.6)

Any state on F can be restricted to the Fock space over χr,ξH by taking the partial
trace over the second tensor factor in (2.8.6). The restriction of the state Γ will be
denoted by Γχr,ξ .

If d(ξ, ζ ) > 2r , the multiplication operator χr,ξ +χr,ζ defines a projection, and
using the fact that ωb(x, y) = 0 as long as d(x, y) > b, we easily check that

Ωb,χr,ξ+χr,ζ
∼= Ωb,χr,ξ ⊗Ωb,χr,ζ (2.8.7)

holds if d(ξ, ζ ) > 2r + b. More precisely, we use that the one-particle density
matrix of Ωb,χr,ξ+χr,ζ is given by (χξ,r + χζ,r )ωb(χξ,r + χζ,r ) = χξ,rωbχξ,r +

χζ,rωbχζ,r . The right-hand side is nothing but the one-particle density matrix of
Ωb,χr,ξ plus that of Ωb,χr,ζ , which proves the claim. The above identity also holds
for Ω z

b because U (z) has the same product structure.
Concerning spatial localization, the relative entropy is superadditive in the

following sense.
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LEMMA 6. Let X i , 1 6 i 6 k, denote k mutually orthogonal projections on H.
Let Ω be a state on F that factorizes under restrictions as Ω∑

i X i =
⊗

i ΩX i .
Then, for any state Γ , we have

S(Γ,Ω∑
i X i ) >

∑
i

S(ΓX i ,ΩX i ). (2.8.8)

The proof of Lemma 6 can be found in [44, Section 2.8]; see also [42,
Section 5.1]. We emphasize that the factorization property of Ω is crucial; the
relative entropy need not be superadditive, in general. This is the reason for
introducing the cutoff b. Without it, the state Ω z

b would not factorize as in (2.8.7).
We apply Lemma 6 with Ω = Ω z

b and X i multiplication operators by
characteristic functions of balls with radius r that are separated by the distance
2b. When we average over the position of the balls (see [42, Section 5.1] for
details), we obtain for r 6 2b and L/(2b) ∈ N the inequality

S(Γ,Ω z
b) >

1
(2b)2

∫
Λ

S(Γχr,ξ ,Ω
z
b,χr,ξ

) dξ. (2.8.9)

That is, the integral over local relative entropies of Γ with respect to Ω z
b can be

estimated from above by their global relative entropy. The restriction L/(2b) ∈ N
is of no further importance since we take the thermodynamic limit. From (2.8.9)
for Γ = Υ z

π , we infer∫
Λ

∥∥∥Υ z
π,χr,ξ
−Ω z

b,χr,ξ

∥∥∥
1

dξ 6 |Λ|1/2
(∫

Λ

∥∥∥Υ z
π,χr,ξ
−Ω z

b,χr,ξ

∥∥∥2

1
dξ
)1/2

6
√

2|Λ|1/2
(∫

Λ

S(Υ z
π,χr,ξ

,Ω z
b,χr,ξ

) dξ
)1/2

6 23/2b|Λ|1/2S(Υ z
π ,Ω

z
b)

1/2 (2.8.10)

for any b > 2r . This estimate follows from using the Cauchy–Schwarz inequality
for the integral over ξ and the fact that the relative entropy of two states Γ and
Γ ′ is bounded from below by the square of the trace norm distance; by Pinsker’s
inequality (see [37, Theorem 1.15]),

S(Γ, Γ ′) > 1
2‖Γ − Γ

′
‖

2
1. (2.8.11)

In Section 2.13, we will estimate the effect of the cutoff b and obtain a bound on
(2.8.10) in terms of the a priori bound (2.4.4) on the relative entropy. We remark
that Pinsker’s inequality could not be used with benefit for the global relative
entropy. This is because the relative entropy is an extensive quantity while the
trace norm difference of two states is always bounded by 2.
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2.9. Interaction energy, part I. In the following three subsections, we shall
derive a lower bound for TrF [WΥ z

π ]. Estimate (2.8.10) will play an important
role in this analysis. We start by giving a bound on the first term in (2.7.26) in
this subsection, and postpone the analysis of the second term to Section 2.10.
In Section 2.11, we combine these bounds to obtain the final bound. A main
difficulty is related to the fact that the vector z is rather arbitrary, and hence
the density of the particles described by the coherent states can be far from
homogeneous.

Let us give a name to the positive and the negative part of the interaction energy.
We write

W =W1 −W2, (2.9.1)

where

W1 =

∞⊕
n=2

n∑
j=1

Ũ ′R(d(x j , x J j
NN(x j))) (2.9.2)

and

W2 =

∞⊕
n=2

n∑
j=1

∑
i∈J j

1
ε ln(R/ã)

wR(x j − xi). (2.9.3)

We start by giving a lower bound to the expectation of W1 in the state Υ z
π . First of

all, recalling the definition of j from (2.7.1), we note that since L > 2R, we can
write

j (d(x, y)/R) =
32
πR2

∫
Λ

θ(R/2− d(ξ, x))θ(R/2− d(ξ, y)) dξ (2.9.4)

for x, y ∈ Λ. Inserting this into (2.7.20), we have

Ũ ′R(d(x, y)) =
32

π ln(R/a′)R4

∫
Λ

θ(R/2−d(ξ, x))θ(R/2−d(ξ, y)) dξ. (2.9.5)

This gives rise to a similar decomposition of W1, which we write as

W1 =
32

π ln(R/a′)R4

∫
Λ

w(ξ) dξ, (2.9.6)

with

w(ξ) =

∞⊕
n=2

n∑
j=1

θ(R/2− d(ξ, x j))θ(R/2− d(ξ, x J j
NN(x j))). (2.9.7)
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For r > 0, define nr,ξ as the number operator of a disk of radius r centered at
ξ ∈ Λ, which is nothing but the second quantization of the multiplication operator
θ(r − d(ξ, · )) on L2(Λ). We claim that

w(ξ) > nR/10,ξθ(nR/10,ξ − 2). (2.9.8)

This is the second quantized version of

θ(R/2− d(ξ, x j))θ(R/2− d(ξ, x J j
NN(x j)))

> θ(R/10− d(ξ, x j))

(
1−

∏
i, i 6= j

θ(d(ξ, xi)− R/10)

)
, (2.9.9)

which can be shown using the defining property of J j . More precisely, (2.9.9) says
that if x j and some xk with k 6= j are in a disk of radius R/10 centered at ξ (that
is, if the right-hand side is equal to one), then the nearest neighbor of x j in the set
J j is in a disk of radius R/2 with the same center (that is, the left-hand side equals
one). Assume therefore that x j and xk are in a disk of radius R/10 centered at ξ
and k ∈ J j . Then we have

d(x j , x J j
NN(x j)) 6 d(x j , xk) 6

R
5
, (2.9.10)

which implies d(ξ, x J j
NN(x j)) 6 3R/10. Conversely, if k /∈ J j , then by the

definition of J j , there exists l ∈ J j such that d(xl, xk) < R/5. Therefore

d(x j , x J j
NN(x j)) 6 d(x j , xl) <

2R
5
, (2.9.11)

which implies d(ξ, x J j
NN(x j)) < R/2 and proves (2.9.9).

In particular, the above implies

w(ξ)> w(ξ) := w(ξ)θ(2−n3R/2,ξ )+nR/10,ξθ(nR/10,ξ−2)θ(n3R/2,ξ−3). (2.9.12)

We also have

w(ξ)θ(2− n3R/2,ξ ) = nR/2,ξ (nR/2,ξ − 1)θ(2− n3R/2,ξ ), (2.9.13)

which can be seen from the following consideration. Assume two particles xi and
x j are in a disk of radius R/2 and no other particle is in the bigger disk of radius
3R/2 (with the same center). Then these two particles must be nearest neighbors
and by construction i ∈ J j and j ∈ Ji , which implies (2.9.13).
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We note that the operator in (2.9.13) is bounded. Its operator norm equals 2 and
in combination with nR/10,ξ 6 n3R/2,ξ , this implies that

|w(ξ)− nR/10,ξ | 6 2, (2.9.14)

as can be seen using (2.9.12) and an easy counting argument. Equations (2.9.6),
(2.9.12) and (2.9.14) imply that

TrF [W1Υ
z
π ] >

32
π ln(R/a′)R4

∫
Λ

TrF [w(ξ)Υ z
π ] dξ

>
32

π ln(R/a′)R4

∫
Λ

TrF [w(ξ)Ω z
b + nR/10,ξ (Υ

z
π −Ω

z
b)] dξ

−
64

π ln(R/a′)R4

∫
Λ

∥∥∥Υ z
π,χ3R/2,ξ

−Ω z
b,χ3R/2,ξ

∥∥∥
1

dξ. (2.9.15)

The second term on the right-hand side of (2.9.15) can be written as∫
Λ

TrF [nR/10,ξ (Υ
z
π −Ω

z
b)] dξ = π

(
R
10

)2

TrF [N(Υ z
π −Ω

z
b)]. (2.9.16)

On the other hand, Equation (2.8.10) implies that∫
Λ

∥∥∥Υ z
π,χ3R/2,ξ

−Ω z
b,χ3R/2,ξ

∥∥∥
1

dξ 6 23/2b|Λ|1/2S(Υ z
π ,Ω

z
b)

1/2 (2.9.17)

holds as long as 3R 6 b.
In the following, we will derive two different lower bounds to TrF [w(ξ)Ω z

b]

in order to have a good bound for all values of z. To obtain the first bound, we
use (2.9.12) (where we drop the last term for a lower bound) and (2.9.13). This
implies

TrF [w(ξ)Ω z
b] > [TrF [nR/2,ξ (nR/2,ξ − 1)Ω z

b]

− TrF [n3R/2,ξ (n3R/2,ξ − 1)(n3R/2,ξ − 2)Ω z
b]]+, (2.9.18)

where we take the positive part of this bound since the right-hand side can
become negative, in which case we simply estimate the left-hand side by zero.
The advantage of the right-hand side of (2.9.18) is that all terms can be evaluated
explicitly because Ω z

b is a combination of a coherent and a quasifree state. Let
Φz denote the one-particle wave function |Φz〉 =

∑
|p|<pc

z p|p〉. With the aid of
U (z)†axU (z) = ax +Φz(x) and Wick’s theorem, we compute
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TrF [n3R/2,ξ (n3R/2,ξ − 1)(n3R/2,ξ − 2)Ω z
b]

= (TrF [n3R/2,ξΩ
z
b])

3
+ 2 tr(χ3R/2,ξωb)

3
+ 6〈Φz|(χ3R/2,ξωbχ3R/2,ξ )

2
|Φz〉

+ 3 TrF [n3R/2,ξΩ
z
b](2〈Φz|χ3R/2,ξωbχ3R/2,ξ |Φz〉 + tr(χ3R/2,ξωb)

2)

6 6(TrF [n3R/2,ξΩ
z
b])

3, (2.9.19)

with ωb being the one-particle density matrix of Ωb in (2.8.5). Here the symbol tr
denotes the trace over the one-particle Hilbert space L2(Λ). The first lower bound
is thus given by

TrF [w(ξ)Ω z
b] > [TrF [nR/2,ξ (nR/2,ξ − 1)Ω z

b] − 6(TrF [n3R/2,ξΩ
z
b])

3
]+. (2.9.20)

To obtain the second lower bound for TrF [w(ξ)Ω z
b], we use

TrF [w(ξ)Ω z
b] > TrF [nR/10,ξθ(nR/10,ξ − 2)Ω z

b], (2.9.21)

which follows from (2.9.8). Let us denote by ΠF
0 the vacuum state on F . The

state Ωb,χR/10,ξ is a particle number conserving quasifree state, whose vacuum
expectation is given by

TrF(χR/10,ξH)[Ωb,χR/10,ξΠ
F
0,χR/10,ξ

] = exp(− tr ln(1+ χR/10,ξωbχR/10,ξ ))

> exp(− trχR/10,ξωbχR/10,ξ )

= exp(−π(R/10)2ρω), (2.9.22)

where ρω was defined after (2.8.5) to be the density of Ωb. Hence,

Ωb,χR/10,ξ > exp(−π(R/10)2ρω)ΠF
0,χR/10,ξ

, (2.9.23)

as well as

Ω z
b,χR/10,ξ

> exp(−π(R/10)2ρω)(U (z)ΠF
0 U (z)†)χR/10,ξ . (2.9.24)

This in particular implies

TrF [w(ξ)Ω z
b] > e−π(R/10)2ρω TrF [nR/10,ξθ(nR/10,ξ − 2)U (z)ΠF

0 U (z)†]. (2.9.25)

The state U (z)ΠF
0 U (z)† as well as its restriction to the Fock space over χR/10,ξH

are coherent states. In the Fock space sector with n particles, the latter is given by
the projection onto the n-fold tensor product of the wave function χR/10,ξΦz times
a normalization factor. We therefore have
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TrF [nR/10,ξθ(nR/10,ξ − 2)U (z)ΠF
0 U (z)†] = e−〈Φz |χR/10,ξ |Φz 〉

∑
n>2

n
〈Φz|χR/10,ξ |Φz〉

n

n!

= 〈Φz|χR/10,ξ |Φz〉(1− e−〈Φz |χR/10,ξ |Φz 〉) >
〈Φz|χR/10,ξ |Φz〉

2

1+ 〈Φz|χR/10,ξ |Φz〉
. (2.9.26)

To arrive at the last line, we used the estimate x(1− e−x) > x2/(1+ x) for x > 0.
We combine the estimates from Equations (2.9.15), (2.9.17)–(2.9.19), (2.9.25)

and (2.9.26) to see that for any 0 6 λ 6 1, we have

TrF [W1Υ
z
π ] >

8
25 ln(R/a′)R2

TrF [N(Υ z
π −Ω

z
b)] −

128
√

2b|Λ|1/2

π ln(R/a′)R4
S(Υ z

π ,Ω
z
b)

1/2

+
32λ

π ln(R/a′)R4

∫
Λ

[TrF [nR/2,ξ (nR/2,ξ − 1)Ω z
b] − 6(TrF [n3R/2,ξΩ

z
b])

3
]+ dξ

+
32(1− λ) e−π(R/10)2ρω

π ln(R/a′)R4

∫
Λ

〈Φz|χR/10,ξ |Φz〉
2

1+ 〈Φz|χR/10,ξ |Φz〉
dξ. (2.9.27)

The choice of λ will depend on the function |Φz|. If it is approximately a constant,
in a sense to be defined in Section 2.11, we will choose λ = 1; otherwise, we
choose λ = 0.

2.10. Interaction energy, part II. In this section, we give an upper bound
for the expectation value of W2 in (2.9.3). The two-dimensional version of [44,
Lemma 5] is the following statement. (In [44, Lemma 5], the corresponding bound
in three dimensions is incorrectly claimed with Cn = 1.)

LEMMA 7. Let o : R2
→ C be a smooth function, supported in a square of

side length 4, and for s > 0, let u(x) = L−2 ∑
p∈ 2π

L Z2 o(sp) e−i px . Then for any
nonnegative integer n, there exists a constant Cn > 0 such that

|u(x)| 6
(

s
d(x, 0)

)2n

Cn max
|α|=2n
‖∂αo‖∞

(
2
πs
+

2n + 1
L

)2

. (2.10.1)

Here ∂αo denotes the partial derivative of o with respect to the multiindex α.

Proof. For x ∈ R2, we write x = (x1, x2). We have

u(x)
(

2L2

(
2− cos

(
2πx1

L

)
− cos

(
2πx2

L

)))n

=
1
|Λ|

∑
p

e−i px(−∆d)
n
[o(sp)], (2.10.2)
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where (−∆d) f (p) = L2(4 f (p) −
∑
|e|=1 f (p + 2πe/L)) denotes the discrete

Laplacian in momentum space. It is easy to check that the discrete Laplacian can
be estimated by maximizing over the second partial derivatives as

|(−∆d)
n f (p)| 6 Cn max

|α|=2n
‖∂α f ‖∞ (2.10.3)

for an n-dependent constant Cn independent of f . Note also that if f is supported
in a square of side length `, then after n-fold application of −∆d, the support is
contained in a square of side length `+ 4πn/L . An easy counting argument then
allows us to estimate

|(2.10.2)| 6
Cn

|Λ|
max
|α|=2n
‖∂αo(s · )‖∞

∑
p

1supp(−∆d)no(sp)

6
Cns2n

|Λ|
max
|α|=2n
‖∂αo‖∞

(
1+

2L
πs
+ 2n

)2

= Cns2n max
|α|=2n
‖∂αo‖∞

(
2
πs
+

2n + 1
L

)2

. (2.10.4)

We also estimate

1− cos
(

2πxi

L

)
>

8
L2

min
k∈Z
|xi − kL|2 (2.10.5)

and obtain

2L2

(
2− cos

(
2πx1

L

)
− cos

(
2πx2

L

))
> 16d(x, 0)2. (2.10.6)

Absorbing the factor 16 into the constant Cn , we arrive at (2.10.1).

By the definition of fR in (2.6.2), we have

fR(x) 6 R sup
d(x,y)6R

|∇h(y)| 6 R sup
d(x,y)6s

|∇h(y)|, (2.10.7)

where we used R 6 s. By applying Lemma 7 to ∇h, we conclude that for L large
enough, there exists a smooth function g of rapid decay (that is, g decays like
an arbitrary power) that is independent of L such that the function wR defined in
(2.6.2) satisfies

wR(x − y) 6
R2

s4
g(d(x, y)/s). (2.10.8)
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For W2, this implies

W2 6
∞⊕

n=2

n∑
j=1

∑
i∈J j

1
ε ln(R/ã)

R2

s4
g
(

d(x j , xi)

s

)
. (2.10.9)

Next we decompose the function g into an integral over characteristic functions
of disks. For this purpose, we use [16, Theorem 1], which allows us to write

g(t) =
∫
∞

0
m(r) j (t/r) dr (2.10.10)

with

m(r) = −
r
16

∫
∞

r
g′′′(s)s(s2

− r 2)−1/2 ds (2.10.11)

and j defined in (2.7.1). Since the third derivative of g, denoted here by g′′′, is of
rapid decay, the same is true for m. As j is a decreasing function, we have

g(t) 6 j (t)
∫ 1

0
|m(r)| dr +

∫
∞

1
|m(r)| j (t/r) dr, (2.10.12)

which implies

g
(

d(xi , x j)

s

)
6
∫
∞

s

(
δ(r − s)

∫ 1

0
|m(t)| dt + s−1

|m(r/s)|
)

j
(

d(xi , x j)

r

)
dr.

(2.10.13)
The integral over the δ function is understood as evaluation at r = s, that is, the
right-hand side of (2.10.13) is nothing but the right-hand side of (2.10.12) with
t = d(xi , x j)/s. As noted before in (2.9.4), we can write

j (d(xi , x j)/r) =
32
πr 2

∫
Λ

χr/2,ξ (xi)χr/2,ξ (x j) dξ (2.10.14)

as long as L > 2r . Equations (2.10.9) and (2.10.13) together with
Equation (2.10.14) show that

W2 6
32

πε ln(R/ã)
R2

s6

∫ b

s
dr
{
δ(r − s)

∫ 1

0
|m(t)| dt + s−1

|m(r/s)|
}

×

∫
Λ

dξ
∞⊕

n=0

n∑
j=1

∑
i∈J j

χr/2,ξ (x j)χr/2,ξ (xi)

+
1

ε ln(R/ã)
R2

s4

∫
∞

b
s−1
|m(r/s)|

∞⊕
n=0

n∑
j=1

∑
i∈J j

j
(

d(xi , x j)

r

)
dr

(2.10.15)
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holds. Here, we have split the integral over r into two parts, one with s 6 r 6 b
and one with b 6 r . In the second part, we do not have the same representation of
j as in (2.10.14) as eventually 2r > L . The cutoff parameter b is chosen the same
as in the definition of Ω z

b in (2.8.5).
Let vr (ξ) denote the integrand of the integral over ξ in (2.10.15). Because

d(xi , xk) > R/5 for i, k ∈ J j , the number of xi inside a disk of radius r/2 is
bounded from above by (1+ 5r/R)2. Hence,

vr (ξ) 6 nr/2,ξ

(
1+

5r
R

)2

. (2.10.16)

On the other hand, we trivially have

vr (ξ) 6 nr/2,ξ (nr/2,ξ − 1). (2.10.17)

Combining these two bounds gives

vr (ξ) 6 f (nr/2,ξ ) where f (n) = n min

{
(n − 1),

(
1+

5r
R

)2
}
. (2.10.18)

We use the above bounds and | f (n)−n(1+ 5r
R )

2
| 6 (1+ (1+ 5r

R )
2)2/4 to estimate

TrF [vr (ξ)Υ
z
π ] 6 TrF [ f (nr/2,ξ )Υ

z
π ]

6 TrF [ f (nr/2,ξ )Ω
z
b] +

(
1+

5r
R

)2

TrF [nr/2,ξ (Υ
z
π −Ω

z
b)]

+
1
4

(
1+

(
1+

5r
R

)2
)2 ∥∥∥Υ z

π,χr/2,ξ
−Ω z

b,χr/2,ξ

∥∥∥
1
. (2.10.19)

When integrated over ξ , the second and the third term on the right-hand side of
(2.10.19) can be estimated as in (2.9.16) and (2.9.17), respectively. Using Wick’s
rule and a similar estimate as in (2.9.19), we bound the first term from above by

TrF [ f (nr/2,ξ )Ω
z
b] 6 min

{
TrF [nr/2,ξ (nr/2,ξ − 1)Ω z

b],

(
1+

5r
R

)2

TrF [nr/2,ξΩ
z
b]

}

6 min

{
2(TrF [nr/2,ξΩ

z
b])

2,

(
1+

5r
R

)2

TrF [nr/2,ξΩ
z
b]

}

6
4(TrF [nr/2,ξΩ

z
b])

2

1+ 2 TrF [nr/2,ξΩ
z
b]/(1+ 5r/R)2

. (2.10.20)
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Moreover,

TrF [nr/2,ξΩ
z
b] =

πr 2

4
ρω + 〈Φz|χr/2,ξ |Φz〉. (2.10.21)

Using convexity of the function x 7→ x2/(1+ x), we obtain

TrF [ f (nr/2,ξ )Ω
z
b] 6

1
2
(πr 2ρω)

2
+

8〈Φz|χr/2,ξ |Φz〉
2

1+ 4〈Φz|χr/2,ξ |Φz〉/(1+ 5r/R)2
. (2.10.22)

Putting these considerations together, we find (for R 6 s 6 r 6 b)∫
Λ

TrF [vr (ξ)Υ
z
π ] dξ 6

|Λ|

2
(πr 2ρω)

2

+

∫
Λ

8〈Φz|χr/2,ξ |Φz〉
2

1+ 4〈Φz|χr/2,ξ |Φz〉/(1+ 5r/R)2
dξ

+
9πr 4

R2
TrF [N(Υ z

π −Ω
z
b)] +

b|Λ|1/2
√

2
372

( r
R

)4
S(Υ z

π ,Ω
z
b)

1/2. (2.10.23)

In order to be able to compare the second term on the right-hand side of the
above inequality to the last term in (2.9.27), we use the pointwise bound

χr/2,ξ (x) 6
(1+ 5r/R)2

π(r/2+ R/10)2

∫
|a|6r/2+R/10

χR/10,ξ+a(x) da. (2.10.24)

We first use the monotonicity of the map x 7→ x2/(1 + x) to replace χr/2,ξ (x)
by the right-hand side of the above equation in the second term on the right-hand
side of (2.10.23). Afterward, we use the convexity of the same map and Jensen’s
inequality to see that

8〈Φz|χr/2,ξ |Φz〉
2

1+ 4〈Φz|χr/2,ξ |Φz〉/(1+ 5r/R)2

6
(1+ 5r/R)4

π(r/2+ R/10)2

∫
|a|6r/2+R/10

8〈Φz|χR/10,ξ+a|Φz〉
2

1+ 4〈Φz|χR/10,ξ+a|Φz〉
da (2.10.25)

holds. Now we integrate in ξ over Λ and obtain

(1+ 5r/R)4

π(r/2+ R/10)2

∫
Λ

∫
|a|6r/2+R/10

8〈Φz|χR/10,ξ+a|Φz〉
2

1+ 4〈Φz|χR/10,ξ+a|Φz〉
da dξ

= (1+ 5r/R)4
∫
Λ

8〈Φz|χR/10,ξ |Φz〉
2

1+ 4〈Φz|χR/10,ξ |Φz〉
dξ

6 (6r/R)4
∫
Λ

8〈Φz|χR/10,ξ |Φz〉
2

1+ 〈Φz|χR/10,ξ |Φz〉
dξ. (2.10.26)
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The integral in the first term on the right-hand side of (2.10.15) is therefore
bounded from above by∫ b

s

{
δ(r − s)

∫ 1

0
|m(t)| dt + s−1

|m(r/s)|
}∫

Λ

TrF [vr (ξ)Υ
z
π ] dξ dr

6 c
[
π

4
s2

(
6s
R

)2

TrF [N(Υ z
π −Ω

z
b)] +

b|Λ|1/2
√

2
372

( s
R

)4
S(Υ z

π ,Ω
z
b)

1/2

+

(
6s
R

)4 ∫
Λ

8〈Φz|χR/10,ξ |Φz〉
2

1+ 〈Φz|χR/10,ξ |Φz〉
dξ +

|Λ|

2
(πs2ρω)

2

]
, (2.10.27)

where

c =
∫ 1

0
|m(t)| dt +

∫
∞

1
|m(t)|t4 dt. (2.10.28)

It remains to bound the second term on the right-hand side of (2.10.15), where
r > b. We use (2.7.2) and the same argument that led to (2.10.16) to see that

∑
i∈J j

j
(

d(xi , x j)

r

)
6 8

(
1+

5r
R

)2

. (2.10.29)

This implies∫
∞

b
s−1
|m(r/s)|

∞⊕
n=2

n∑
j=1

∑
i∈J j

j
(

d(xi , x j)

r

)
dr 6 N

(
6s
R

)2

8
∫
∞

b/s
|m(r)|r 2 dr.

(2.10.30)
In the following, we denote

J (b/s) =
∫
∞

b/s
|m(r)|r 2 dr. (2.10.31)

Since |m| decays like an arbitrary power, the same holds true for J . The
contribution to TrF [W2Υ

z
π ] from this part (except for the prefactor) is therefore

bounded from above by (
6s
R

)2

8J (b/s)TrF [NΥ z
π ]. (2.10.32)

In combination, (2.10.15), (2.10.27) and (2.10.32) show that
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TrF [W2Υ
z
π ] 6

32R2

επs2 ln(R/ã)

(
9π TrF [N(Υ z

π −Ω
z
b)]

R2
(c + J (b/s))

+
9π TrF [NΩ z

b]

R2
J (b/s)+

372cb
√

2R4
|Λ|1/2S(Υ z

π ,Ω
z
b)

1/2
+
|Λ|cπ 2ρ2

ω

2

+

(
6
R

)4

8c
∫
Λ

〈Φz|χR/10,ξ |Φz〉
2

1+ 〈Φz|χR/10,ξ |Φz〉
dξ
)

(2.10.33)

holds. This is the equivalent of [44, Equation (2.10.27)]. (We note that in [44,
Equation (2.10.27)], the first factor J (b/s) on the right side is missing. This is of
no consequence, however, as J (b/s) is small for s � b.)

2.11. Interaction energy, part III. In this subsection, we will put the bounds
of the previous two subsections together in order to obtain the final lower bound
for TrF [WΥ z

π ]. To do so, we will distinguish two cases depending on the value of
a certain function of Φz .

Assume first that∫
Λ

〈Φz|χR/10,ξ |Φz〉
2

1+ 〈Φz|χR/10,ξ |Φz〉
dξ >

π 2

8
|Λ|(R2ρ)2 (2.11.1)

holds. Essentially, this condition means that Φz is far from being a constant. In
this case, we choose λ = 0 in (2.9.27). Using condition (2.11.1), we check that
the difference of the last term in (2.9.27) and the last term in (2.10.33) is bounded
from below by

4π |Λ|ρ2

ln(R/a′)

(
1− π

(
R
10

)2

ρω − 8c
64 R2 ln(R/a′)
εs2 ln(R/ã)

)
. (2.11.2)

Here we used that for our choice of parameters, the term in parentheses will be
positive (in fact, close to 1).

Next we consider the case when (2.11.1) does not hold, in which case we
choose λ = 1 in (2.9.27). We start by proving some bounds that will turn out to
be helpful below. Using (2.10.24) with the choice r = 3R and the monotonicity
as well as the convexity of the map x 7→ x2/(1+ x), we see that∫

Λ

〈Φz|χ3R/2,ξ |Φz〉
2

1+ 16−2〈Φz|χ3R/2,ξ |Φz〉
dξ 6 164π

2

8
|Λ|(R2ρ)2 (2.11.3)

holds in this case. Pick some D > 0 and let B ⊂ Λ be the set

B = {ξ ∈ Λ | 〈Φz|χ3R/2,ξ |Φz〉 > 162 DR2ρ}. (2.11.4)
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Using (2.11.3) as well as the monotonicity of the map x 7→ x/(1+ x), we obtain∫
B
〈Φz|χ3R/2,ξ |Φz〉 dξ 6 32π 2

|Λ|R2ρ

(
1
D
+ R2ρ

)
. (2.11.5)

We proceed similarly to find an estimate for the volume of B:

|B| 6 π 2
|Λ|

8D2
(1+ DR2ρ). (2.11.6)

We choose λ = 1 in (2.9.27) and estimate the relevant term from below by∫
Λ

[(TrF [nR/2,ξ (nR/2,ξ − 1)Ω z
b])− 6(TrF [n3R/2,ξΩ

z
b])

3
]+ dξ

>
∫
Λ\B
((TrF [nR/2,ξ (nR/2,ξ − 1)Ω z

b])− 6(TrF [n3R/2,ξΩ
z
b])

3) dξ. (2.11.7)

Recall that we definedΩ z
b =U (z)ΩbU (z)†, where U (z) is the Weyl operator from

(2.3.1) and Ωb is the quasifree state with one-particle density matrix ωb defined
in (2.8.4). In order to derive a bound on the second term on the right-hand side,
we note that TrF [n3R/2,ξΩ

z
b] = π(3R/2)2ρω + 〈Φz|χ3R/2,ξ |Φz〉. Together with the

convexity of the map x 7→ x3 and (2.11.4), we conclude that∫
Λ\B
(TrF [n3R/2,ξΩ

z
b])

3 dξ 6 4|Λ|(π(3R/2)2ρω)3 + 4
∫
Λ\B
〈Φz|χ3R/2,ξ |Φz〉

3 dξ

6 4|Λ|(π(3R/2)2ρω)3 + (162 DR2ρ)29πR2
|z|2

(2.11.8)

holds.
Now we investigate the first term on the right-hand side of (2.11.7). Similarly

to (2.9.19), we have

TrF [nR/2,ξ (nR/2,ξ − 1)Ω z
b] = TrF [nR/2,ξ (nR/2,ξ − 1)Ωb]

+ 2〈Φz|χR/2,ξωbχR/2,ξ |Φz〉 +
π

2
R2ρω〈Φz|χR/2,ξ |Φz〉 + 〈Φz|χR/2,ξ |Φz〉

2.

(2.11.9)

Note that we have used the translation invariance of the state Ωb. Since Ωb is
quasifree, the first term on the right-hand side can be expressed in terms of the
one-particle density matrix ωb and its density ρω. It reads as

TrF [nR/2,ξ (nR/2,ξ − 1)Ωb] = (πR2ρω/4)2 + tr[χR/2,ξωbχR/2,ξωb]. (2.11.10)
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In order to quantify how much the integral of the first term on the right-hand side
of (2.11.7) differs from the one with Λ\B replaced by Λ, we estimate∫

B
TrF [nR/2,ξ (nR/2,ξ − 1)Ωb] dξ 6 2|B|(πR2ρω/4)2. (2.11.11)

To arrive at the right-hand side, we used that the second term on the right-hand
side of (2.11.10) is bounded from above by the first term on the right-hand side.
Since 〈Φz|χR/2,ξωbχR/2,ξ |Φz〉 6 trχR/2,ξωb〈Φz|χR/2,ξ |Φz〉, we also have∫

B

(
2〈Φz|χR/2,ξωbχR/2,ξ |Φz〉 +

π

2
R2ρω〈Φz|χR/2,ξ |Φz〉

)
dξ

6 πR2ρω

∫
B
〈Φz|χR/2,ξ |Φz〉 dξ 6 πR2ρω32π 2

|Λ|R2ρ

(
1
D
+ R2ρ

)
.

(2.11.12)

For the last inequality, we used (2.11.5) and the fact that
∫
B〈Φz|χR/2,ξ |Φz〉 dξ is

bounded from above by
∫
B〈Φz|χ3R/2,ξ |Φz〉 dξ . For the last term in (2.11.9), we

use Schwarz’s inequality and (2.11.5) to estimate∫
Λ\B
〈Φz|χR/2,ξ |Φz〉

2 dξ >
1
|Λ|

(∫
Λ\B
〈Φz|χR/2,ξ |Φz〉 dξ

)2

> |Λ|
π 2

16
R4

[
ρ2

z − πρzρ
162

D
(1+ DR2ρ)

]
. (2.11.13)

Here we have again used the notation ρz = |z|2/|Λ|. Putting all these estimates
together, we have the lower bound∫

Λ\B
TrF [nR/2,ξ (nR/2,ξ − 1)Ω z

b] dξ >
|Λ|π 2 R4ρ2

ω

16

(
1−

π 2

4D2
(1+ DR2ρ)

)
+

∫
Λ

tr[χR/2,ξωbχR/2,ξωb] dξ + 2
∫
Λ

〈Φz|χR/2,ξωbχR/2,ξ |Φz〉 dξ

+ |Λ|
π 2

16
R4

[
2ρzρω + ρ

2
z − πρzρ

162

D
(1+ DR2ρ)

]
− 32|Λ|π 3 R4ρωρ

(
1
D
+ R2ρ

)
. (2.11.14)

We denote ωb(x) = ωb(x, 0) = ωπ (x, 0)ηb(d(x, 0)). The first term in the
second line of (2.11.14) can be written as
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Λ3
χR/2,ξ (x)χR/2,ξ (y)|ωb(x, y)|2 d(x, y, ξ)

=

∫
Λ3
χR/2,ξ (x + y)χR/2,ξ (y)|ωb(x)|2 d(x, y, ξ)

=
|Λ|πR2

32

∫
Λ

j (d(x, 0)/R)|ωb(x)|2 dx . (2.11.15)

An application of the Cauchy–Schwarz inequality implies

|Λ|πR2

32

∫
Λ

j (d(x, 0)/R)|ωb(x)|2 dx >
|Λ|π 2 R4

16
γ 2

b , (2.11.16)

where we defined

γb =
1

2πR2

∫
Λ

ωb(x) j (d(x, 0)/R) dx . (2.11.17)

We note that γb ∼ ρω for b� R and β1/2
� R. Below, we will give more precise

estimates (see (2.11.28)). It remains to give a lower bound on the second term in
the second line of (2.11.14). We claim that∫

Λ

〈Φz|χR/2,ξωbχR/2,ξ |Φz〉 dξ > |z|2
π 2 R4

16
(γb − ρω pc R). (2.11.18)

To see this, we write

32
πR2

∫
Λ

〈Φz|χR/2,ξωbχR/2,ξ |Φz〉 dξ − |z|2
∫
Λ

ωb(x) j
(

d(x, 0)
R

)
dx

=

∫
Λ×Λ

(Φ†
z (x + y)−Φ†

z (y))Φz(y)ωb(x) j
(

d(x, 0)
R

)
d(x, y)

> −‖Φz‖

∫
Λ

‖Φz(x + ·)−Φz(·)‖|ωb(x)| j
(

d(x, 0)
R

)
dx . (2.11.19)

We estimate |ωb(x)| 6 ωb(0) = ρω. Moreover, writing the relevant norm
in momentum space, one easily checks that ‖Φz(x + ·) − Φz(·)‖ 6
‖Φz‖pcd(x, 0). Since the support of j (·/R) is the interval [0, R], the integral
over Λ can be estimated as∫

Λ

j (d(x, 0)/R)d(x, 0) dx 6 2πR3. (2.11.20)

This proves (2.11.18). Combining these estimates with (2.11.8) and (2.11.14), we
see that
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32
π ln(R/a′)R4

∫
Λ

[(TrF [nR/2,ξ (nR/2,ξ − 1)Ω z
b])− 6(TrF [n3R/2,ξΩ

z
b])

3
]+ dξ

>
2π |Λ|ρ2

ω

ln(R/a′)

(
1−

π 2

4D2
(1+ DR2ρ)

)
+

2π |Λ|γ 2
b

ln(R/a′)
+

4π |Λ|ρz

ln(R/a′)
(γb − ρω pc R)

+
2π |Λ|

ln(R/a′)

[
2ρzρω + ρ

2
z − πρzρ

162

D
(1+ DR2ρ)

]
−

12 · 36π 2
|Λ|ρ3

ωR2

ln(R/a′)

−
322π 2

|Λ|ρωρ

ln(R/a′)

(
1
D
+ R2ρ

)
−

1728 · 164
|Λ|(DR2ρ)2ρz

ln(R/a′)R2
. (2.11.21)

Now we put the results of this subsection and the two previous ones together.
More precisely, we combine the estimates from Equations (2.9.27), (2.10.33),
(2.11.2) and (2.11.21) to obtain

TrF [WΥ z
π ] > TrF [N(Υ z

π −Ω
z
b)]

(
8

25 ln(R/a′)R2
−

288
ε ln(R/ã)s2

(c + J (b/s))
)

−

√
2

π ln(R/ã)R4
(b2
|Λ|S(Υ z

π ,Ω
z
b))

1/2

(
128+

16 · 372cR2

εs2

)
−

2π |Λ|
ln(R/ã)

(
144(ρω + ρz)

πεs2
J (b/s)+

8cρ2
ωR2

εs2

)
+

2π |Λ|
ln(R/a′)

min{A1,A2}.

(2.11.22)

To arrive at this result, we used that a′ 6 ã and we defined

A1 = 2ρ2

(
1− π

(
R
10

)2

ρω − 8c
64 R2 ln(R/a′)
εs2 ln(R/ã)

)
(2.11.23)

and

A2 = ρ
2
ω + γ

2
b + 2ρz(γb + ρω)+ ρ

2
z

− ρ2
ω

[
π 2

4D2
(1+ DR2ρ)+ 6 · 36πρωR2

]
− 2ρzρω pc R

− 2ρωρ
162π

D
(1+ DR2ρ)

− ρρz

[
864
π
· 164 D2 R2ρ + π

162

D
(1+ DR2ρ)

]
− 16c

64 R2ρ2 ln(R/a′)
εs2 ln(R/ã)

.

(2.11.24)

Later, we will choose the parameters such that ln(R/ã) and ln(R/a′) are equal to
leading order in the dilute limit. We will also choose εs2/R2 large enough such
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that the factor multiplying TrF [N(Υ z
π − Ω

z
b)] in (2.11.22) is positive. Hence, it

will be sufficient to give a lower bound for the difference of the expected particle
numbers of Υ z

π and Ω z
b , which will be done in the next subsection.

To simplify the expressions, we make a choice of the parameters ε and D and
restrict the range of R. We claim that all the terms with a negative sign appearing
in A1 and A2 (together with the prefactor) can be bounded from below by

−const.
|Λ|ρ2

|ln a2ρ|

(
(R2ρ)1/3 +

R
s
+ pc R

)
. (2.11.25)

To see this, we employ the bound on ρz derived in (2.4.7) as well as the following
bound on ρω. Recall that `(p) was defined in (2.8.2) and satisfies `(p) >
β(p2

− µ0) for all p. This implies

ρω =
1
|Λ|

∑
p

1
e`(p)−1

6
1
|Λ|

∑
p

1
eβ(p2−µ0)−1

= ρ + o(1) (2.11.26)

in the thermodynamic limit. In order to minimize the error terms in A2, we choose
D = (R2ρ)−1/3. On the other hand, note that in the definition of 1/ ln(R/a′) in
(2.7.19), there is a factor 1− ε, which means that there is competition between ε
and R2/(εs2) to leading order and thus the optimal choice is ε = R/s. We also
use that a′ 6 ã 6 a and make the assumption

1
ln(R/a)

.
1

|ln a2ρ|
. (2.11.27)

In combination, these considerations prove the claim.
Now we give upper and lower bounds to γb in terms of ρω as promised above.

We claim that

ρω > γb > ρω

(
1−

const. R2

b2

)
−

const. R2

β2
− o(1), (2.11.28)

where the o(1) contribution vanishes in the thermodynamic limit. The upper
bound can be obtained by noting that |ωb(x)| 6 ωb(0) = ρω. For the lower bound,
recall that ωb(x) = ωπ (x, 0)ηb(d(x, 0)). We use cos(x) > 1− 1

2 x2 to estimate

ωπ (x) =
1
|Λ|

∑
p

cos(px)
e`(p)−1

> ρω −
d(x, 0)2

2|Λ|

∑
p

p2

e`(p)−1
. (2.11.29)

We further use that |η| 6 1 and η(t) > 1− const. t2. With the support of j being
contained in a disk of radius one, we can estimate d(x, 0) 6 R inside the integral
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in (2.11.17). Additionally, we use `(p) > βp2. In combination, the above facts
allow us to bound

γb >
ρω

2πR2

∫
Λ

η(d(x, 0)/b) j (d(x, 0)/R) dx

−
1

4π |Λ|R2

∑
p

p2

e`(p)−1

∫
Λ

d(x, 0)2η(d(x, 0)/b) j (d(x, 0)/R) dx

>
ρω

2πR2

(∫
Λ

j (d(x, 0)/R) dx − const.
∫
Λ

d(x, 0)2

b2
j (d(x, 0)/R) dx

)
−

1
8π 2β2

∫
R2

p2

ep2
−1

dp
∫
Λ

j (d(x, 0)/R) dx − o(1)

= ρω

(
1− const.

R2

b2

)
− const.

R2

β2
− o(1). (2.11.30)

This proves (2.11.28).
To estimate the terms in A1 and A2 with a positive sign, we apply the lower

bound from (2.11.28) to γb and find

ρ2
ω+γ

2
b +2ρz(γb+ρω)+ρ

2
z > 2ρ2

ω+4ρzρω+ρ
2
z −const.

(
ρ2 R2

b2
+ ρ

R2

β2

)
−o(1).

(2.11.31)
In combination, our considerations imply

2π |Λ|
ln(R/a′)

min{A1,A2} >
2π |Λ|

ln(R/a′)
min{2ρ2, ρ2

z + 4ρzρω + 2ρ2
ω}

− const.
|Λ|ρ2

|ln a2ρ|

(
(R2ρ)1/3 +

R
s
+ pc R +

R2

b2
+

R2

β2ρ

)
− o(|Λ|).

(2.11.32)

Here, we can drop the terms R2/b2 and R2/(β2ρ) as they are dominated by R/s
and (R2ρ)1/3, respectively. This follows from the assumptions b > s > R, βρ & 1
and R2ρ � 1. Using Lemma 3 with the choice δ =

√
ln(R/a)/ϕ as well as the

definition of a′ in (2.7.19), we estimate

1
ln(R/a′)

>
1

ln(R/a)
−const.

1
ln(R/a)

(
R
s
+ κ +

1
√
ϕ ln(R/a)

−
R2

0

R2
ln(R/a)

)
.

(2.11.33)
We will choose R2ρ � 1 and, in particular, R2ρ 6 1, that is,

1
ln(R/a)

>
2

| ln a2ρ|
. (2.11.34)
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We thus finally arrive at

2π |Λ|
ln(R/a′)

min{A1,A2} >
4π |Λ|
|ln a2ρ|

min{2ρ2, ρ2
z + 4ρzρω + 2ρ2

ω}

− const.
|Λ|ρ2

|ln a2ρ|

(
(R2ρ)1/3 +

R
s
+ pc R + κ +

1√
ϕ|ln a2ρ|

+
R2

0

R2
|ln a2ρ|

)
.

(2.11.35)

2.12. A bound on the number of particles. In this section, we give a lower
bound on the terms involving the number operator and its square. More precisely,
we consider the sum of the first term from (2.11.22) and the term 1

2 TrF [KΥ z
]

from (2.7.30). Recalling that we already chose ε = R/s and that K was defined
in (2.2.3), we seek a lower bound on the expression

N =
(

8
25 ln(R/a′)R2

−
288

ln(R/ã)Rs
(c + J (b/s))

)
TrF [N(Υ z

π −Ω
z
b)]

+
2πC

|Λ||ln a2ρ|
TrF [(N− N )2Υ z

]. (2.12.1)

The fact that we need to give a bound for the first term on the right-hand side is
one of the reasons for introducing the operator K in Section 2.2.

Using the definition ofΩb and Ωπ in (2.8.3)–(2.8.5) and the fact that they have
the same density, we conclude

TrF [N(Υ z
π −Ω

z
b)] = TrF>

[N>(Γ z
− Γ0)], (2.12.2)

where
N>
=

∑
|p|>pc

a†
pap. (2.12.3)

For the quadratic term, we use the inequality

(N− N )2 > (|z|2 + TrF>
[N>Γ0] − N )2

+ 2(|z|2 + TrF>
[N>Γ0] − N )(N− |z|2 − TrF>

[N>Γ0]). (2.12.4)

This implies

TrF [(N− N )2Υ z
] > (|z|2 + TrF>

[N>Γ0] − N )2

+ 2(|z|2 + TrF>
[N>Γ0] − N )TrF>

[N>(Γ z
− Γ0)].

(2.12.5)
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Hence, we obtain the following expression as a lower bound

N >
2πC

|Λ||ln a2ρ|
(|z|2 + TrF>

[N>Γ0] − N )2

+ TrF>
[N>(Γ z

− Γ0)]

[(
8

25 ln(R/a′)R2
−

288
ln(R/ã)Rs

(c + J (b/s))
)

+
4πC

|Λ||ln a2ρ|
(|z|2 + TrF>

[N>Γ0] − N )
]
. (2.12.6)

We will choose the parameters R, s and C satisfying the conditions C � 1/(R2ρ)

and R � s such that the term in square brackets on the right-hand side of (2.12.6)
is always positive (for any value of |z|), and therefore we need a lower bound on
the expression TrF>

[N>(Γ z
− Γ0)].

Let

f̃ (µ) =
1
β

∑
|p|>pc

ln(1− e−β(p
2
−µ0−µ)). (2.12.7)

Using the definition of the relative entropy in (2.4.2) and the Gibbs variational
principle for the ideal gas, we see that for any µ 6 0

S(Γ z, Γ0)− βµTrF>
[N>Γ z

] > β( f̃ (µ)− f̃ (0)). (2.12.8)

From the absolute monotonicity of f̃ (that is, all derivatives being negative), we
obtain

f̃ (µ) > f̃ (0)+ µ f̃ ′(0)+ 1
2µ

2 f̃ ′′(0). (2.12.9)

This implies

TrF>
[N>(Γ z

− Γ0)] > −
1
β|µ|

S(Γ z, Γ0)−
β|µ|

4

∑
|p|>pc

1
cosh(β(p2 − µ0))− 1

(2.12.10)
as well as

TrF>
[N>(Γ z

− Γ0)] > −

S(Γ z, Γ0)
∑
|p|>pc

1
cosh(β(p2 − µ0))− 1

1/2

(2.12.11)
when we optimize the right-hand side of (2.12.10) over µ.
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We can use the a priori bound from (2.4.4) to bound the relative entropy, while
for the sum over p, we use the bound cosh x − 1 > x2/2. Thus,∑

|p|>pc

1
cosh(β(p2 − µ0))

6
2
β2

∑
|p|>pc

1
(p2 − µ0)2

=
|Λ|

2β2π 2

∫
|p|>pc

dp
(p2 − µ0)2

+ o(|Λ|). (2.12.12)

The integral equals ∫
|p|>pc

dp
(p2 − µ0)2

=
π

p2
c − µ0

. (2.12.13)

In conclusion, we have shown that

TrF>
[N>(Γ z

− Γ0)] > −

(
4|Λ|2ρ2

|ln a2ρ|(βp2
c − βµ0)

)1/2

− o(|Λ|) (2.12.14)

holds. We now insert this into (2.12.6) and obtain

N >
2πC

|Λ||ln a2ρ|
(|z|2 + TrF>

[N>Γ0] − N )2 − Z (3)
− o(|Λ|), (2.12.15)

where

Z (3)
:=

const. |Λ|ρ2

|ln a2ρ|3/2(βp2
c − βµ0)1/2

×

[
|ln a2ρ|

(
8

25 ln(R/a′)R2ρ

)
+ C

(
2
√

C
+
ρω

ρ

)]
. (2.12.16)

Note that we used (2.4.7) to bound ρz as well as |Λ|−1 TrF>
[N>Γ0] 6 ρω. Using

also (2.11.26), assumption (2.11.27) on R and choosing C � 1/(R2ρ), this
simplifies to

Z (3) .
|Λ|ρ2

|ln a2ρ|

1
(|ln a2ρ|(βp2

c − βµ0))1/2 R2ρ
. (2.12.17)

2.13. Relative entropy, effect of cutoff. In this section we quantify the effect
of the cutoff parameter b on the relative entropy S(Υ z

π ,Ω
z
b) appearing in (2.11.22).

The goal is to estimate S(Υ z
π ,Ω

z
b) in terms of S(Π⊗Γ z,Ωπ )= S(Γ z, Γ0). For the

latter expression, we have the a priori bound (2.4.4). To obtain such an estimate, it
will be important that the vacuum stateΠ0 has been replaced by the more general
quasifree state Π in Section 2.5.
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For any quasifree state Ωω with one-particle density matrix ω and any state Γ ,
it is easy to check that the relative entropy S(Γ,Ωω) is convex in ω. The one-
particle density matrix of Ωb is given by the convex combination

ωb =
1
|Λ|

∑
q

η̂b(q)
1
2

∑
p

(ωπ (p + q)+ ωπ (p − q))|p〉〈p|. (2.13.1)

Convexity of the map ω 7→ S(Γ,Ωω) therefore implies

S(Π ⊗ Γ z,Ωb) 6
1
|Λ|

∑
q

η̂b(q)S(Π ⊗ Γ z,Ωq), (2.13.2)

where Ωq is the quasifree state corresponding to the one-particle density matrix
with eigenvalues 1

2 (ωπ (p + q)+ ωπ (p − q)). Further arguments based on
convexity (see [42, Equations (5.15) and (5.16)]) yield

S(Π ⊗ Γ z,Ωq) 6
(
1+ t−1) S(Γ z, Γ0)

+

∑
p

(hq(p)− h0(p))
(

1
eh0(p)+t (h0(p)−hq (p))−1

−
1

ehq (p)−1

)
(2.13.3)

for any t > 0. Here we defined

hq(p) = ln
(

2+ ωπ (p + q)+ ωπ (p − q)
ωπ (p + q)+ ωπ (p − q)

)
. (2.13.4)

To estimate (2.13.3) from above, we require the following lemma. Since the proof
of the analogous [44, Lemma 6] does not explicitly depend on the dimension of
the configuration space, it translates to the two-dimensional case without changes.
We therefore omit the proof of Lemma 8.

LEMMA 8. Let ` : R2
→ R+, and let L± = ± supp sup

|q|=1±(q · ∇)
2`(p) denote

the supremum (infimum) of the largest (smallest) eigenvalue of the Hessian of `.
Let ωπ (p) = [e`(p)−1]−1, and let hq(p) be given as in (2.13.4). Then,

hq(p)− h0(p) 6 L+q2 (2.13.5)

and

hq(p)− h0(p) > q2 L− + q2 min{L−, 0}

− 4q2 sup
p
[|∇`(p)|2ωπ (p)] − 2q2(|q| + |p|)2 sup

p
[|∇`(p)|2/p2

]. (2.13.6)
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Recall that the `(p) in question was defined in (2.8.2). Now we choose the
parameters πp, which determine `(p) for |p| < pc. For that purpose, let g : R2

→

[0, 1] be a smooth radial function that is supported in a disk of radius one and
assume that g(p) > 1

2 for |p| 6 1
2 . Then we set

`(p) = β(p2
− µ0)+ βp2

c g(p/pc). (2.13.7)

This corresponds to the choice

πp =
1

eβ(p2−µ0)+βp2
c g(p/pc)−1

. (2.13.8)

Note that this choice indeed satisfies our earlier assumption on `(p), which was
`(p) > β(p2

− µ0). Furthermore, we can estimate πp . 1/(β(p2
c − µ0)). This

can be seen by considering |p| > pc/2 and |p| < pc/2 separately and using
`(p) > β(p2

−µ0) in the first case and g(p/pc) > 1/2 in the second case. Using
this and M . p2

c |Λ|, we can bound P from Section 2.5 as

P =
∑
|p|6pc

πp .
M

β(p2
c − µ0)

.
|Λ|p2

c

β(p2
c − µ0)

. (2.13.9)

The bound on P is needed for estimating Z (2) in (2.5.5).
For our choice of `, it is easy to see that both L+/β and L−/β are bounded

independently of all parameters. We further have the bounds |∇`(p)| . β|p| and
ωπ (p) 6 `(p)−1 6 (βp2)−1, and together with Lemma 8, this implies

−Bβq2(1+ β(|p| + |q|)2) 6 hq(p)− h0(p) 6 Bβq2 (2.13.10)

for some B > 0. Using sinh(x)/x 6 cosh(x) for x ∈ R, we estimate

(hq(p)− h0(p))
(

1
eh0(p)+t (h0(p)−hq (p))−1

−
1

ehq (p)−1

)
6

1
2
(1+ t)(hq(p)− h0(p))2

e−hq (p)+ e−h0(p)+t (hq (p)−h0(p))

(1− e−h0(p)+t (hq (p)−h0(p)))(1− e−hq (p))
.

(2.13.11)

We use

(hq(p)− h0(p))2 6 B2(βq2)2(1+ β(|p| + |q|)2)2 (2.13.12)

as well as the fact that the last fraction on the right-hand side of (2.13.11) is
bounded from above by
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e−hq (p)+ e−h0(p)+tβBq2

(1− e−h0(p)+tβBq2
)(1− e−hq (p))

= ωt(p)+
1
2
(ωπ (p + q)+ ωπ (p − q))(1+ 2ωt(p)), (2.13.13)

where ωt(p) = [eh0(p)−Bβtq2
−1]−1. To obtain this result, we assumed that t is

small enough such that h0(p) − Bβtq2 > 0 for all p. Since sums converge to
integrals in the thermodynamic limit, we need to bound∫
R2
(1+β(|p|+|q|)2)2

(
ωt(p)+

1
2
(ωπ (p + q)+ ωπ (p − q)) (1+ 2ωt(p))

)
dp.

(2.13.14)
We replace ωπ (p − q) by ωπ (p + q) without changing the value of the integral.
Then we use ωπ (p) 6 ωt(p), change variables p → p − q and use Schwarz’s
inequality to see that (2.13.14) is bounded from above by

(2.13.14) 6
∫
R2
(1+ β(|p| + |q|)2)2(ωt(p)+ ωt(p + q)(1+ 2ωt(p))) dp

6 2
∫
R2
(1+ β(|p| + 2|q|)2)2ωt(p) dp

+

(∫
R2

(
1+ β(|p| + |q|)2

)2
(ωt(p + q))2 dp

)1/2

×

(
4
∫
R2
(1+ β(|p| + |q|)2)2(ωt(p))2 dp

)1/2

6 2
∫
R2
(1+ β(|p| + 2|q|)2)2ωt(p)(1+ ωt(p)) dp. (2.13.15)

We choose t = min{1, (b2q2)−1
}, which implies tq2 6 b−2. We also have

`(p)− Bβtq2 > β

[
p2

2
− µ0 + p2

c

(
1
8
−

B
b2 p2

c

)]
> β

[
p2

2
− µ0 +

p2
c

16

]
,

(2.13.16)
which can be seen by considering, similarly to before when estimating P in
(2.13.9), |p| > pc/2 and |p| < pc/2 separately. For the last inequality, we already
assumed that b and pc will be chosen in such a way that b2 p2

c � 1 and, in
particular, B/(b2 p2

c ) 6 1/16 holds. Denoting

τ = −βµ0 +
βp2

c

16
, (2.13.17)

we thus have the bound

ωt 6 (eτ+βp2/2
−1)−1 6 e−τ−βp2/2

[
1+

1
τ + βp2/2

]
. (2.13.18)
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Inserting (2.13.18) into (2.13.15), we find

(2.13.15) 6 2
∫
R2
(1+ β(|p| + 2|q|)2)2 e−τ−βp2/2

[
1+

1
τ + βp2/2

]
×

(
1+ e−τ−βp2/2

[
1+

1
τ + βp2/2

])
dp

.
e−τ

β
(1+ β2q4)

∫
R2
(1+ p4) e−p2/2

[
1+

1
(τ + p2/2)2

]
dp

.
e−τ

β
(1+ β2q4)(1+ τ−1). (2.13.19)

We combine the above equations and use t−1 6 1+ b2q2 to see that

S(Π⊗Γ z,Ωq) . (2+b2q2)S(Γ z, Γ0)+
|Λ|

τ
βq4(1+β2q4)+o(|Λ|) (2.13.20)

holds. Using (2.13.2) and ηb(0) = 1, we therefore have

S(Π ⊗ Γ z,Ωb) . S(Γ z, Γ0)+
β

τ

∑
q

η̂b(q)q4(1+ β2q4)+ o(|Λ|). (2.13.21)

We will choose b such that b2
� β and this implies, in particular, that βb−2 . 1.

We therefore have

S(Π ⊗ Γ z,Ωb) . S(Γ z, Γ0)+
β|Λ|

τb4
+ o(|Λ|). (2.13.22)

The above inequality quantifies the effect of the cutoff. From (2.11.22), we
know that we still have to multiply the relative entropy term by b2. Using also the
a priori bound from (2.4.4), we obtain

b2S(Υ z
π ,Ω

z
b) . b2

(
S(Γ z, Γ0)+

β|Λ|

τb4
+ o(|Λ|)

)
. β|Λ|

(
b2ρ2

|ln a2ρ|
+

1
τb2
+ o(1)

)
. (2.13.23)

From this expression, it is easy to read off the optimal choice of b, which is given
by

b =
(
|ln a2ρ|

τρ2

)1/4

. (2.13.24)

The result of this subsection is therefore the following bound on the relative
entropy

b2S(Υ z
π ,Ω

z
b) . |Λ|

(
βρ

(τ |ln a2ρ|)1/2
+ o(1)

)
. (2.13.25)
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2.14. Final lower bound. In this section, we collect the above estimates to
give a lower bound on Fz(β), which in turn will give a lower bound on the free
energy. Recall from Sections 2.2 and 2.3 that

−β−1 ln TrHN e−βHN > µ0 N −
1
β

ln
∫
CM

e−βFz(β) dz − Z (1) (2.14.1)

with Z (1) defined in (2.3.11). We combine the estimates from (2.7.30), (2.11.22),
(2.11.35) as well as (2.12.15) and (2.13.25) to obtain the final lower bound to
Fz(β), which reads as

Fz(β) > −
1
β

ln TrF>
[e−βT

c
s (z)] − Z (2)

− Z (3)
− Z (4)

− o(|Λ|)

+
2πC

|Λ|| ln a2ρ|
(|z|2 + TrF>

[N>Γ0] − N )2

+
4π |Λ|
|ln a2ρ|

min{ρ2
z + 4ρzρω + 2ρ2

ω, 2ρ2
}. (2.14.2)

Here, the error terms Z (2) and Z (3) are defined in (2.5.5) and (2.12.16),
respectively. The error term Z (4) contains the remaining errors and is defined by

Z (4)
:= const.

|Λ|ρ2

|ln a2ρ|

(
1

R4ρ2

(βρ)1/2

τ 1/4|ln a2ρ|1/4
+

1
Rsρ

J
(
|ln a2ρ|1/4

τ 1/4ρ1/2s

)
+

R
s

+ (R2ρ)1/3 + pc R + κ +
1√

ϕ|ln a2ρ|
+

R2
0

R2
|ln a2ρ|

)
+ const.

|Λ|p2
c

β

R2
0

R2
.

(2.14.3)

To obtain this form of the error term, we also used (2.11.27) to replace the
logarithmic factors ln(R/a) by the desired factor |ln a2ρ| and inserted the choices
ε = R/s and b = (|ln a2ρ|/(τρ2))1/4 made earlier. The last term in Z (4) originates
from the term (κ − κ ′)

∑
p p2πp in (2.7.30) using (2.7.21) and (2.13.9).

Let us have a closer look at the last two terms in (2.14.2). We define

ρ0
=

1
|Λ|

TrF>
[N>Γ0] = ρω −

P
|Λ|

, (2.14.4)

where P = trπ =
∑
|p|<pc

πp was defined in Section 2.5. Using ρ0 6 ρω, we
replace ρω in the last term in (2.14.2) by ρ0 for a lower bound. When we minimize
over ρz , we find
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C
2
(ρz − (ρ − ρ

0))2 + ρ2
z + 4ρzρ

0
+ 2(ρ0)2

>
1

1+ 2/C

(
2ρ2
− (ρ − ρ0)2 −

4
C
(ρ0)2

)
. (2.14.5)

Note that the right-hand side of (2.14.5) is bounded from above by 2ρ2. This
implies in particular that the minimum in (2.14.2) will be attained by the first
term when we minimize over ρz . Therefore, we have the lower bound

Fz(β) > −
1
β

ln TrF>
e−βT

c
s (z)+

4π |Λ|
|ln a2ρ|

(
2ρ2
− (ρ − ρ0)2 −

4
C
ρ2

)
−

4∑
i=2

Z (i)
− o(|Λ|), (2.14.6)

where we used

ρ0
=

1
4π 2

∫
|p|>pc

dp
eβ(p2−µ0)−1

+ o(1) 6 ρ(1+ o(1)) (2.14.7)

in the 1/C correction term. The only remaining z dependence is then in the first
term

−
1
β

ln TrF>
e−βT

c
s (z) =

∑
|p|<pc

ε(p)|z p|
2
+

1
β

∑
|p|>pc

ln(1− e−βε(p)), (2.14.8)

where ε(p) was defined in (2.7.25) as ε(p) = κ ′ p2
+ (1− κ)p2(1−χ(p)2)−µ0,

with χ being a cutoff function at the scale s > R. We evaluate the integral over
CM in (2.14.1) to give∫

CM
e−β

∑
|p|<pc ε(p)|z p |

2
dz =

∏
|p|<pc

1
βε(p)

. (2.14.9)

Now we estimate the term that contributes to the free part of the free energy. Using
the fact that x > 1− e−x for x > 0, we find

1
β|Λ|

∑
|p|<pc

ln(βε(p))+
1

β|Λ|

∑
|p|>pc

ln(1− e−βε(p))

>
1

β|Λ|

∑
p

ln(1− e−βε(p)) >
1

4βπ 2

∫
R2

ln(1− e−βε(p)) dp − o(1).

(2.14.10)
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We split the integral into two parts, |p| 6 s−1 and |p| > s−1. In the first part, we
have ε(p) = (1 − κ + κ ′)p2

− µ0, while in the second part, we have the bound
ε(p) > κ ′ p2. Hence,∫

R2
ln(1− e−βε(p)) dp

>
1

1− κ + κ ′

∫
R2

ln(1− e−β(p
2
−µ0)) dp +

1
κ ′β

∫
|p|2>κ ′β/s2

ln(1− e−p2
) dp.

(2.14.11)

The parameter s will be chosen such that s2
� κ ′β; the second integral is then

exponentially small in the parameter s2/(κ ′β).
Define

ρs := ρ

[
1−

ln |ln a2ρ|

4πβρ

]
+

. (2.14.12)

Our goal is to bound ρ − ρ0 by ρs plus an error term. This will be achieved by
introducing a new parameter p̃c that satisfies

1
4π 2

∫
|p|6 p̃c

dp
eβ(p2−µ0)−1

= ρs. (2.14.13)

By an explicit computation, we find

β p̃2
c =

1
e4πβρ −1

[
e4πβρ

|ln a2ρ|
− 1

]
+

. (2.14.14)

We remark that pc will be chosen such that pc > p̃c holds, and we use (2.14.7) to
write

ρ − ρ0
= ρs +

1
4π 2

∫
p̃c6|p|6pc

dp
eβ(p2−µ0)−1

+ o(1). (2.14.15)

The remaining correction term can be estimated as

1
4π 2

∫
p̃c6|p|6pc

dp
eβ(p2−µ0)−1

6
1

4π 2β

∫
p̃c6|p|6pc

dp
p2 − µ0

=
1

4πβ
ln
(

p2
c − µ0

p̃2
c − µ0

)
.

(2.14.16)
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In combination, the above estimates show that

−
1

β|Λ|
ln TrHN e−βHN > µ0ρ +

1
4βπ 2

∫
R2

ln
(

1− e−β(p
2
−µ0)

)
dp

−
1
|Λ|

5∑
i=1

Z (i)
− o(1)+

4π
|ln a2ρ|

(2ρ2
− ρ2

s ),

(2.14.17)

where

Z (5)
:= const. (κ − κ ′)

|Λ|

β

∫
R2

ln(1− e−β(p
2
−µ0)) dp

−
|Λ|

κ ′β2

∫
|p|2>κ ′β/s2

ln(1− e−p2
) dp

+
const. |Λ|ρ2

|ln a2ρ|

[
1
C
+

1
βρ

ln
(

p2
c − µ0

p̃2
c − µ0

)
+

1
(βρ)2

ln2
(

p2
c − µ0

p̃2
c − µ0

)]
.

(2.14.18)

Note that the right-hand side of (2.14.17) has the desired form. The sum of the first
two terms on the right-hand side equals f0(β, ρ), the free energy of noninteracting
bosons, since µ0 is given by (1.3.3). The last term in (2.14.17) is the desired
interaction energy. It remains to choose the parameters in the error terms and
show that they are of lower order than this interaction energy.

2.15. Minimizing the error terms. In this section, we show how to choose
the parameters in order to optimize the error terms of the lower bound.

To simplify the notation, we replace the factor 1/16 in the definition of τ from
(2.13.17) by one, that is, we redefine

τ = −βµ0 + βp2
c and denote τ̃ = −βµ0 + β p̃2

c . (2.15.1)

For brevity, let us also introduce the notation

σ := |ln a2ρ|. (2.15.2)

Similarly as in the three-dimensional case, the following terms are relevant for the
minimization: p4

c from Z (1), ρ2σ−1(κ + R/s) and ρ2σ−1(βρ)1/2(R2ρ)−2(τσ )−1/4

from Z (4) as well as

−
1
κ ′β2

∫
|p|2>κ ′β/s2

ln(1− e−p2
) dp (2.15.3)
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from Z (5). It turns out, however, that in the two-dimensional case, the additional
error terms ρ2σ−1(R2ρ)1/3 from Z (4) and ρ2σ−1 ln(τ/τ̃ )/(βρ) from Z (5) are also
relevant for choosing the parameters. The constraints on the parameters, that is,
pc 6 1/s, s � R, s2

� κβ, R2
0/R2

� κ , b� 1/pc, b� R and b� β1/2, will be
automatically satisfied with the choice of the parameters below. The same is true
for (2.11.27) and (2.11.34), which have to be obeyed by the parameter R. Since
R appears in these expression only in the argument of a logarithm, we still have
quite some freedom in its choice.

In order for (2.15.3) to be small, we require that s2
� κ ′β, with κ ′ defined in

(2.7.21). This is equivalent to s2
� κβ since we will choose R2

0/R2
� κ . If we

take κ ′ = (1+ δ)s2β−1 ln σ for some δ > 0, (2.15.3) is bounded by (s2β)−1σ−1−δ,
which will be negligible compared to the other terms. We can now optimize the
term |Λ|ρ2σ−1(κ + R/s) over s, resulting in the choice

s =
(
βR
ln σ

)1/3

. (2.15.4)

With this choice of s, the error term becomes

|Λ|ρ2

σ

(
(1+ δ)

s2 ln σ
β
+

R
s

)
∼
|Λ|ρ2

σ

(
R2 ln σ
β

)1/3

. (2.15.5)

Among the main terms, there are now only three terms left that depend on
R, namely (2.15.5), |Λ|ρ2σ−1(R2ρ)1/3 and |Λ|ρ2σ−1(βρ)1/2(R2ρ)−2(τσ )−1/4.
Denoting

d = 1+
(

ln σ
βρ

)1/3

∼ 1+
(
βc

β

)1/3

, (2.15.6)

we write the sum of the first two terms as |Λ|ρ2σ−1(R2ρ)1/3d . Hence, the optimal
choice of R is

(R2ρ)1/3 =
(βρ)1/14

d1/7(τσ )1/28
, (2.15.7)

and the resulting error term reads as

ρ2

σ
(R2ρ)1/3d =

ρ2

σ
d6/7

(
(βρ)2

τσ

)1/28

. (2.15.8)

We are thus left with the following three error terms:

A1 =
|Λ|ρ2

σ

1
βρ

ln
(τ
τ̃

)
=
|Λ|ρ2

σ

1
βρ

ln
(
βp2

c − ln(1− e−4πβρ)

β p̃2
c − ln(1− e−4πβρ)

)
,

A2 = |Λ|p4
c ,
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A3 =
|Λ|ρ2

σ
d6/7

(
(βρ)2

τσ

)1/28

=
|Λ|ρ2

σ

(
1+

(
βc

β

)1/3
)6/7 (

(βρ)2

(βp2
c − ln(1− e−4πβρ))σ

)1/28

. (2.15.9)

They depend solely on pc, βρ and σ , as p̃c is given explicitly in (2.14.14). By
minimizing over pc, we therefore obtain the final error rate minpc{A1+ A2+ A3},
which depends only on βρ and σ . Optimization turns out to lead to the choice

βp2
c =



0 if 1 . 4πβρ 6 ln
(

σ

(ln σ)30

)
,

(βρ)30

σ ln28((βρ)30/(σ τ̃ ))
if ln

(
σ

(ln σ)30

)
6 4πβρ . σ 1/59,(

(βρ)2

σ

)29/57

if σ 1/59 . βρ . σ 1/2.

(2.15.10)

The upper limit βρ . σ 1/2 is a natural restriction since the interaction term is
comparable to the noninteracting free energy if βρ ∼ σ 1/2 (compare with (1.3.7)),
and hence the perturbative argument, on which the proof of the lower bound is
based, cannot be expected to work anymore in this regime. For βρ of the order
σ 1/2 or larger, an additional argument using the result at T = 0 [29] as a crucial
ingredient will be given in Section 2.16 to complete the proof of the lower bound.

The parameters ϕ and C in the remaining error terms (which we did not need
to consider for the choice of pc) may be chosen according to

1
σ
� ϕ �

βρ

σ
, 1� C � σ (2.15.11)

if βρ is such that pc 6= 0. In case βρ is so small that pc = 0, we find that the
upper restrictions to ϕ and C do not apply anymore and their choice only needs
to satisfy the lower ones.

We now explain how to arrive at the choice (2.15.10) of pc. We start by
discussing what can be expected. For βρ far below βcρ, in a sense to be made
precise below, we have that the (absolute value of the) chemical potential −βµ0

is large enough compared to σ−1 to control the term A3 and even allows for the
choice pc = 0, which means that A1 and A2 both vanish. This changes when βρ
comes close to βcρ, where we need that βp2

c is larger than σ−1. Here, only A1 and
A3 have to be considered for the optimization, while A2 is subleading. For βρ far
above βcρ, the optimal error rate changes as the term A1 becomes irrelevant and
we optimize using the terms A2 and A3.
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Consider first the case pc = 0, which means p̃c = 0 by the assumption pc > p̃c,
which also means e4πβρ 6 σ or β 6 βc. This implies A1 = A2 = 0 as well as
τ = −βµ0 = − ln(1− e−4πβρ). The remaining error term is given by

A3 .
|Λ|ρ2

σ

(
βc

β

)2/7 (
(βρ)2

σ e−4πβρ

)1/28

. (2.15.12)

It can be read off that e4πβρ . σ/(ln σ)2 is the upper limit for this error to be
smaller than the interaction scale, which is much smaller than the value of that
function at the inverse critical temperature, e4πβcρ = σ . Hence, we need to choose
a nonzero pc already well above the critical temperature.

Next, we consider the case pc 6= 0. This will be the case only in the regime
β & βc; hence d in (2.15.6) satisfies d ∼ 1. Since we have three main error terms
to consider, there are three different possibilities of how to obtain the optimal pc,
out of which only two will be relevant. The first way of choosing pc is obtained
by optimizing A1 and A3. This leads to the equation

1
βρ

ln
(τ
τ̃

)
=

(
(βρ)2

στ

)1/28

, (2.15.13)

which, to leading order, is solved by

τ = βp2
c − βµ0 =

(βρ)30

σ ln28
(
(βρ)30

σ τ̃

) . (2.15.14)

As mentioned before, the reason for switching to pc 6= 0 is that −βµ0 becomes
too small in order to control the term A3 (that is, to ensure that A3 is smaller
than the interaction scale |Λ|ρ2/σ ). Therefore, we can take the right-hand side of
(2.15.14) as the defining equation for βp2

c and neglect the term −βµ0. The error
terms with this choice of pc become

A1 ∼ A3 .
|Λ|ρ2

σ

1
βρ

ln
(

(βρ)30

σ τ̃ ln28((βρ)30/(σ τ̃ ))

)
,

A2 .
|Λ|ρ2

σ

(βρ)58

σ ln56((βρ)30/(σ τ̃ ))
. (2.15.15)

Note that A3 = A1 to leading order by our choice of pc and that A2 is indeed of
lower order than A1 or A3 for βρ ∼ βcρ.

Now we can compare the term A1 from (2.15.15) to the term A3 we obtained
by choosing pc = 0 (from (2.15.12)) to determine the point at which we switch
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to pc 6= 0 as given in (2.15.14). This gives(
(βρ)2

σ e−4πβρ

)1/28

=
1
βρ

ln
(

(βρ)30

σ τ̃ ln28((βρ)30/(σ τ̃ ))

)
, (2.15.16)

which we solve to leading order by

4πβρ = ln
(

σ

(ln σ)30

)
. (2.15.17)

For this value of βρ, we switch to pc as given in (2.15.14).
It is clear, however, that for larger βρ, the term A2 from (2.15.15) will become

larger than A1 or A3 as it is increasing in βρ. The point at which this happens is
given by the solution of the equation

1
βρ

ln
(

(βρ)30

ln28(βρ)30

)
=

(βρ)58

σ ln56(βρ)30
. (2.15.18)

To leading order, we solve it by βρ = σ 1/59. From here on, we use the second way
of optimizing pc by considering the terms A2 and A3 with the result

βp2
c =

(
(βρ)2

σ

)29/57

. (2.15.19)

The error terms then become

A1 .
|Λ|ρ2

σ

1
βρ

ln((βρ)58/57σ 28/57),

A2 .
|Λ|ρ2

σ

(
(βρ)2

σ

)1/57

. (2.15.20)

Note that from this form of A2, we can also read off the natural upper limit βρ �
σ 1/2 for the error terms to be small.

2.16. Uniformity in the temperature. For βρ of the order σ 1/2 or larger, we
apply a technique that uses in an essential way the result for the ground state
energy [29]. This will allow us to obtain the desired uniformity in βρ, as already
mentioned in the previous subsection.

Starting from the original Hamiltonian with potential v (which we denoted by
HN ), we use Lemma 4 to obtain
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HN >
N∑

j=1

[
−∇ j(1− (1− κ)χ(p j)

2)∇ j + (1− ε)(1− κ)UR(d(x j , x J j
NN(x j)))

−
1
ε

∫
R+

UR(t)t dt
∑
i∈J j

wR(x j − xi)

]
. (2.16.1)

Strictly speaking, we should work with a symmetrization of the right-hand side
of (2.16.1) since the potential that we obtained from Lemma 4 is not permutation
symmetric. As already mentioned before, this does not need to concern us since
we only consider expectation values in bosonic states. The last term in (2.16.1)
can be estimated using the integral condition on UR (from (2.6.3)), the decay
property of g (which was introduced in (2.10.8)) as well as the definition of J j :

N∑
j=1

1
ε

∫
R+

UR(t)t dt
∑
i∈J j

wR(x j − xi)

6
1

ε ln(R/a)

N∑
j=1

∑
i∈J j

R2

s4
g(d(xi , x j)/s) .

N
ε ln(R/a)s2

. (2.16.2)

To find a lower bound for the remaining terms, we use the main result from [29]
(for the choice κ = σ−1/5, Rρ1/2

= σ−1/10) and find
N∑

j=1

(
−
κ

2
∆ j + (1− ε)(1− κ)UR(d(x j , x J j

NN(x j)))
)
>

4πNρ
σ

(
1− ε −

const
σ 1/5

)
.

(2.16.3)
Even though the result in [29] was for Neumann boundary conditions and the
full nearest-neighbor interaction, it is straightforward to check that it also holds
in our case. The ground state of the noninteracting system for periodic boundary
conditions is also a constant, and the difference between the nearest-neighbor
interaction in that paper and our interaction can be bounded by a constant times
N 2(R2/L2)2‖UR‖∞. A term like this is already contained in the original estimate
in [29, Equations (3.18) and (3.19)]. In [29], the potential UR(d(x j , xNN(x j))) is
used, where the nearest neighbor was determined among all other particles while
here we only look for the nearest neighbor in the set J j . The related error can be
controlled with an estimate for the probability of finding a particle coordinate that
is not contained in the set J j . It is straightforward to check that this probability is
bounded by a constant times N 2(R2/L2)2 times the L∞-norm of the potential UR .

The above considerations allow us to show that

HN >
N∑

j=1

`
(√
−∆ j

)
+

4πNρ
σ

(
1− ε −

const.
σ 1/5

−
const.
εs2ρ

)
, (2.16.4)
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where `(p) = p2(1−σ−1/5/2−(1−σ−1/5)χ(p)2). We already inserted the choice
κ = σ−1/5 from above. Next, we consider the free energy related to HN , introduce
the chemical potential µ0 and drop the restriction on the particle number. When
we also take the thermodynamic limit, we find

f (β, ρ) > f0(β, ρ)+ const.
1

βσ 1/5

∫
R2

ln(1− e−β(p
2
−µ0)) dp

+
1

β2σ 1/5

∫
p2>β/(s2σ 1/5)

ln(1− e−p2/2) dp

+
4πρ2

σ

(
1− ε −

const.
σ 1/5

−
const.
εs2ρ

)
. (2.16.5)

As before, we require s2σ 1/5/β � 1 for the correction term to the noninteracting
free energy to be small. If we choose

s2

β
=

1
2δσ 1/5 ln σ

(2.16.6)

for some δ > 0, this error term is bounded from above by a constant times
β−2σ−1/5−δ and will be negligible compared to other terms. Optimization over
ε yields

ε =

√
1

s2ρ
. (2.16.7)

Therefore, we have

f (β, ρ) > f0(β, ρ)+
4πρ2

σ

(
1− const.

[
σ 4/5

(βρ)2
+

1
σ 1/5
+
σ 1/10(ln σ)1/2

(βρ)1/2

])
.

(2.16.8)

It remains to estimate the term depending on the critical temperature as

4πρ2

σ

(
1−

[
1−

βc

β

]2

+

)
.
ρ2

σ

βc

β
. (2.16.9)

Hence the total error to consider is bounded from above by a constant times

ρ2

σ

(
σ 4/5

(βρ)2
+

1
σ 1/5
+

ln σ
βρ
+
σ 1/10(ln σ)1/2

(βρ)1/2

)
. (2.16.10)

The optimal point at which we switch from the error given in (2.15.20) to this
error is determined by comparing the term A2 with the first term in (2.16.10).
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This leads to the equation

σ 4/5

(βρ)2
=

(
(βρ)2

σ

)1/57

, (2.16.11)

which is solved by βρ = σ 233/580. If βρ is larger than or equal to this value, we
use the result derived in this section.

In conclusion, by combining the results from the previous estimates in
(2.15.12), (2.15.15), (2.15.20) and (2.16.10), we have shown that the bound

f (β, ρ) > f0(β, ρ)+
4πρ2

σ

(
2−

[
1−

βc

β

]2

+

)
(1− o(1)) (2.16.12)

holds uniformly in βρ & 1, where

o(1).



(
ln σ
βρ

)2/7
(

(βρ)2

−σ ln(1− e−4πβρ)

)1/28

if 1 . 4πβρ 6 ln
(

σ

(ln σ)30

)
,

1
βρ

ln

 (βρ)30

σ τ̃ ln28
(
(βρ)30

σ τ̃

)
+ (βρ)58

σ ln56
(
(βρ)30

σ τ̃

) if ln
(

σ

(ln σ)30

)
6 4πβρ . σ 1/59,

1
βρ

ln((βρ)58/57σ 28/57)+

(
(βρ)2

σ

)1/57

if σ 1/59 . βρ . σ 233/580,

σ 4/5

(βρ)2
+

1
σ 1/5 +

σ 1/10(ln σ)1/2

(βρ)1/2
if σ 233/580 . βρ.

(2.16.13)
The largest error occurs in the second regime if βρ ∼ βcρ, and is given by

1
ln σ

ln
(

(ln σ)30

ln28((ln σ)30)

)
+

(ln σ)58

σ ln56((ln σ)30)
.

ln ln σ
ln σ

(2.16.14)

for σ large. We note that τ̃ ∼ σ−1 in this case, which follows from (1.3.3),
(2.14.14) and (2.15.1). This concludes the proof of Theorem 1.
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Appendix A. Proof of Dyson lemma in two dimensions

The proof of Lemma 4 can be obtained by combining the ideas of the proofs
of [25, Lemma 7] and [44, Lemma 2]. Since the proof of the two-dimensional
version of the relevant lemma in [25] is not spelled out explicitly, we give the
proof of Lemma 4 here. For simplicity of notation, we shall drop the ˜ for v and
a.

Given the points yi , we partition the torus Λ into Voronoi cells

Bi = {x ∈ Λ : d(x, yi) 6 d(x, yk) for all k 6= i}. (A.1)

For any periodic ψ ∈ H 1(Λ), denote by ξ the function with Fourier coefficients
ξ̂ (p) = χ(p)ψ̂(p). To obtain (2.6.4), it is enough to show that∫

Bi

|∇ξ(x)|2 +
1
2
v(d(x, yi))|ψ(x)|2 dx

> (1− ε)
∫
Bi

UR(d(x, yi))|ψ(x)|2 dx

−
1
ε

∫
R+

UR(t)t dt
∫
Λ

wR(x − yi)|ψ(x)|2 dx . (A.2)

Using the positivity of v and summing over i , as well as realizing that for x ∈ Bi

we have yi = yNN(x), we obtain (2.6.4):∫
Λ

|∇ξ(x)|2 +
1
2

∑
i

v(d(x, yi))|ψ(x)|2 dx

=

∑
i

∫
Bi

(
|∇ξ(x)|2 +

1
2
v(d(x, yi))|ψ(x)|2

)
dx

>
∑

i

(1− ε)
∫
Bi

UR(d(x, yi))|ψ(x)|2 dx

−
1
ε

∫
R+

UR(t)t dt
∑

i

∫
Λ

wR(x − yi)|ψ(x)|2 dx

= (1− ε)
∫
Λ

UR(d(x, yNN(x)))|ψ(x)|2 dx

−
1
ε

∫
R+

UR(t)t dt
∫
Λ

∑
i

wR(x − yi)|ψ(x)|2 dx . (A.3)
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Figure A.1. An example of a partition of a subset of Λ into Voronoi cells given
by the yi for n = 8. For one of the yi the region BR is shaded. Note that this
image does not show the whole of Λ but merely a cutout (that does not respect
the periodic boundary conditions).

We shall show that (A.2) actually holds with Bi replaced by the smaller set
BR = Bi ∩ {x ∈ Λ : d(x, yi) 6 R} on the left-hand side of the inequality. Since
the support of UR is contained in the interval [R0, R], the integral over Bi on the
right-hand side is also over BR . See Figure A.1 for an illustration of the case n = 8.
We shall in fact prove that∫

BR

|∇ξ(x)|2 +
1
2
v(d(x, yi))|ψ(x)|2 dx

>
1

ln(R/a)

[
1− ε

R

∫
∂B̃R

|ψ(x)|2 dωR −
1
ε

∫
Λ

|ψ(x)|2wR(x − yi) dx
]
,

(A.4)

where ∂B̃R denotes the part of ∂BR that is at a distance R from yi ; in Figure A.1,
this set corresponds to the dashed arc. This proves the statement for the special
case of UR being a radial δ function supported on the circle of radius R, that is,
UR(r) = (R ln(R/a))−1δ(r − R). By replacing R in the above inequality by r ,
multiplying by UR(r)r ln(r/a) and then finally integrating in r from R0 to R, we
obtain
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BR

|∇ξ(x)|2 +
1
2
v(d(x, yi))|ψ(x)|2 dx

>
∫ R

R0

UR(r)r ln(r/a)
[∫

Br

|∇ξ(x)|2 +
1
2
v(d(x, yi))|ψ(x)|2 dx

]
dr

>
∫ R

R0

UR(r)r
[

1− ε
r

∫
∂B̃r

|ψ(x)|2 dωr −
1
ε

∫
Λ

|ψ(x)|2wr (x − yi) dx
]

dr

> (1− ε)
∫ R

R0

UR(r)
∫
∂B̃r

|ψ(x)|2 dωr dr

−
1
ε

∫
R+

UR(t)t dt
∫
Λ

|ψ(x)|2wR(x − yi) dx

= (1− ε)
∫
BR

UR(d(x, yi))|ψ(x)|2 dx

−
1
ε

∫
R+

UR(t)t dt
∫
Λ

|ψ(x)|2wR(x − yi) dx, (A.5)

where we used (2.6.3) in the first inequality and the fact that wr is monotone
increasing in r in the last inequality. This proves (A.2).

In order to prove (A.4), we can without loss of generality assume that ∂B̃R

is nonempty, and set yi = 0. We may also assume that ψ ∈ H 1(BR) and∫
BR
|ψ(x)|2v(|x |) dx <∞. For ω ∈ S1, let

η(ω) =


√

R
(∫

∂B̃R

|ψ(x)|2 dωR

)−1/2

ψ(Rω) if Rω ∈ ∂B̃R,

0 otherwise,
(A.6)

which satisfies
∫
S1 |η(ω)|

2 dω = 1. In other words, we choose η to attain the value
of ψ at those boundary points that are at a distance of R from the origin and
zero elsewhere, while maintaining an L2-normalization. By abuse of notation, we
shall use the same letter for the function on R2 taking values η(x/|x |). Recall the
notation φv for the minimizer of (1.4.1) with boundary condition φv||x |=R = 1.

Consider the expression

A =
∫
BR

η(x)
(
∇ ξ̄ (x) · ∇φv(x − yi)+

1
2
v(|x |)ψ̄(x)φv(x)

)
dx . (A.7)

An application of the Cauchy–Schwarz inequality gives
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|A|2 6
∫
BR

(
|∇ξ(x)|2 +

1
2
v(|x |))|ψ(x)|2

)
dx

×

∫
BR

(
|∇φv(x)|2 +

1
2
v(|x |)|φv(x)|2

)
|η(x)|2 dx . (A.8)

Since φv is radial, the angular integration over η in the second integral contributes
a factor of one. Using the definition of the scattering length, the remaining radial
integration gives a factor 1/ ln(R/a). Thus,

|A|2 ln(R/a) 6
∫
BR

(
|∇ξ(x)|2 +

1
2
v(|x |)|ψ(x)|2

)
dx . (A.9)

For a lower bound, we note first that by integrating by parts we obtain∫
BR

η(x)∇ ξ̄ (x) · ∇φv(x) dx = −
∫
BR

ξ̄ (x)η(x)∆φv(x) dx

+

∫
∂BR

ξ̄ (x)η(x)n · ∇φv(x) dωR, (A.10)

where dωR is the surface measure of the boundary of BR , n is the outward unit
normal, and we have used that all relevant derivatives are radial ones since φv
is a radial function, and η depends only on the angles x/|x |. Note that ξ(x) =
ψ(x) − (2π)−1h ∗ ψ(x), where h ∗ ψ(x) =

∫
Λ

h(x − y)ψ(y) dy, as an easy
calculation using the definition of h shows. If we insert this as well as (A.10) into
the definition of A and use the zero-energy scattering equation (1.4.2) for φv, we
obtain

A =
∫
∂BR

[
ψ̄(x)− (2π)−1(h ∗ ψ)(x)

]
η(x)n · ∇φv(x) dωR

+
1

2π

∫
BR

(h ∗ ψ)(x)η(x)∆φv(x) dx

=

∫
∂BR

ψ̄(x)η(x)n · ∇φv(x) dωR +
1

2π

∫
Λ

ψ̄(x)
∫
BR

h(y − x) dµ(y) dx,

(A.11)

where
dµ(x) = η(x)∆φv(x) dx − n · ∇φv(x)η(x) dωR (A.12)

is a measure supported on BR . It satisfies∫
BR

dµ(x) =
∫
BR

η(x)∆φv(x) dx −
∫
∂BR

n · ∇φv(x)η(x) dωR = 0, (A.13)
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as can be seen using again integration by parts. Moreover, since∆φv > 0 and also
n · ∇φv > 0 on the boundary of BR ,∫

BR

d|µ| = 2
∫
BR

|η(x)|∆φv(x) dx 6 2
(∫

S1
|η|

)∫ R

0
∆φv(r)r dr 6

2
√

2π
ln(R/a)

,

(A.14)
where we used the Cauchy–Schwarz inequality in the last step. Therefore, by
invoking the definition of fR from (2.6.2), we obtain∣∣∣∣∫

BR

h(y − x) dµ(y)
∣∣∣∣ = ∣∣∣∣∫

BR

(h(y − x)− h(x)) dµ(y)
∣∣∣∣ 6 2

√
2π

ln(R/a)
fR(x).

(A.15)
This enables us to estimate the second term in (A.11) from below as

−
1

2π

∣∣∣∣∫
Λ

ψ̄(x)
∫
BR

h(y − x) dµ(y) dx
∣∣∣∣ > − 1

2π
2
√

2π
ln(R/a)

∫
Λ

|ψ(x)| fR(x) dx

> −
1

ln(R/a)

(∫
Λ

|ψ(x)|2wR(x) dx
)1/2

,

(A.16)

where we used again the Cauchy–Schwarz inequality as well as the definition of
wR from (2.6.2). Using (A.6) as well as the explicit form of φv outside the support
of v, we see that the first term in (A.11) equals∫

∂BR

ψ̄(x)η(x)n · ∇φv(x) dωR =
1

√
R ln(R/a)

(∫
∂B̃R

|ψ(x)|2 dωR

)1/2

. (A.17)

Therefore,

|A| >
1

ln(R/a)

[
1
√

R

(∫
∂B̃R

|ψ(x)|2 dωR

)1/2

−

(∫
Λ

|ψ(x)|2wR(x) dx
)1/2

]
.

(A.18)
Another application of the Cauchy–Schwarz inequality gives for any ε > 0

|A|2 ln(R/a) >
1

ln(R/a)

×

[
1− ε

R

∫
∂B̃R

|ψ(x)|2 dωR −
1
ε

∫
Λ

|ψ(x)|2wR(x − yi) dx
]
.

(A.19)

Hence, combining (A.9) and (A.19), we obtain (A.4). This completes the proof.
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[34] M. Napiórkowski, R. Reuvers and J. P. Solovej, ‘The Bogoliubov free energy functional II:

the dilute limit’, Comm. Math. Phys. 360 (2017), 347–403.
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