
7
The Standard Model
The data and facts about elementary particles introduced so far almost completely define the so-
called Standard Model of elementary particles; the few missing pieces are:

1. a detailed description of the weak interactions as a gauge theory with the SU(2)L symmetry
group, the gauge bosons of which interact only with fermions of left chirality,

2. a mechanism of providing mass to gauge bosons as well as other particles, and
3. a unification of the weak and the electromagnetic interaction.

Straightforwardly adding an m2‖Aμ‖2 := m2 Tr[Aμη
μνAν] term to the Lagrangian density

would certainly provide the 4-vector potential Aμ with the mass m. However, that term is not
invariant under the gauge transformation, and explicitly breaks precisely that symmetry because
of which Aμ was introduced. On the other hand, particles that mediate the weak interaction must
have a mass [☞ discussion in the passage on the weak processes (2.56)]. Thus, finding a hopefully
more skillful, and certainly gauge-invariant mechanism for providing gauge bosons with a mass is
absolutely indispensable for consistency, and we first attend to that matter.

7.1 Boundary conditions and solutions of symmetric equations
Simply inserting an explicit mass term, m2‖Aμ‖2, into the Lagrangian density would destroy pre-
cisely that symmetry which is gauged by the 4-vector gauge potential Aμ and would thus be
self-contradicting. The equations of motion, and so also the Lagrangian density and the Hamil-
ton action, therefore, must remain gauge invariant. Recall, however, that concrete solutions of a
given system of equations need not have all the symmetries of the system that they solve [☞ Ap-
pendix A.1.3 and Comment A.2 on p. 458]. However, if a symmetry X of a system of equations is
not a symmetry of a concrete solution f so X( f ) �= f , then X( f ) is nevertheless a (different) solu-
tion of the system, and X is the transformation that maps one solution into the other. Finally, recall
that the solutions of a model are not determined only by the system of equations, but also by the
boundary (initial, analyticity, etc.) conditions, so it must be that at least some of those conditions
distinguish f from X( f ).

It is then – in principle – possible to find a solution of gauge-invariant equations of motion that
represent massive gauge bosons, i.e., concrete solutions that break precisely the gauge symmetry
of the system. This desired solution wherein gauge bosons have a mass breaks the gauge symmetry,
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252 The Standard Model

and this “boundary” condition must be in the abstract space of gauge phases [☞ Comment 5.3 on
p. 170], and this cannot be imposed “by hand” without destroying precisely the symmetry that we
are trying to describe.

The mechanism in which a choice of such a condition in the space of gauge phases can be
imposed does exist, and it is based on a concatenation of ideas:

1. In 1950, L. D. Landau and V. L. Ginzburg analyzed phenomenologically ferromagnet
magnetization, following Landau’s early work in 1937 [330, 207].1

2. P. Anderson’s comment and Y. Nambu’s research (1960), where the BCS (J. Bardeen,
L. N. Cooper and J. R. Shiffer, 1957) model of superconductance is adapted to the
description of vacuum in quantum field theory.

3. J. Goldstone’s theorem (1961–2) about the Nambu–Goldstone modes (1961), the final
proof of which within special relativistic theoretical systems was provided by J. Goldstone,
A. Salam and S. Weinberg [214].

4. P. Anderson’s work (1963 [15]) about non-relativistic plasmons, gauge symmetry and the
emergence of effective mass.

5. Independent proposals (1964) by:
(a) R. Brout and F. Englert,
(b) P. Higgs,
(c) G. Guralnik, C. R. Hagen and T. Kibble.

6. In 1971, G. ’t Hooft (PhD work advised by M. J. G. Veltman) showed the renormalizability
of models where a non-abelian gauge symmetry is broken via the Higgs mechanism.

7. 1973: S. Coleman and E. Weinberg analyzed the effect of quantum corrections.

Owing to this complex genesis of this group of ideas, I will not delve into the historical details,
but will focus on the description of the effect and its technical details, leaving out the discussion of
the individual contributions. Also, I will use the simple expressions such as the “Goldstone mode,”
the “Higgs mechanism” and the “Higgs particle,” with no intention to downplay the relevance of
others’ contributions. Ever since the LHC at CERN started the experiment of which one of the
aims is the detection of the Higgs particle, historical reminders have been (re-)emerging; see, for
example, Ref. [252]. For more information, beyond the scope of this book, see Refs. [311, 499,
359, 368].

7.1.1 The Landau–Ginzburg phenomenological description of magnetization
To describe the magnetization of a magnet, introduce the vector function �M(�r, t), the direction
and magnitude of which describe the state of magnetization in the object in an infinitesimally
small volume (and which we regard as a tiny domain) at the point�r at the time t. As the direction
and magnitude of magnetization in nearby domains affects the magnetization in a given domain,
one expects that the change in the magnetization spreads, at least in the first approximation, as a
wave. One therefore expects that the magnetization satisfies an equation of the form[

�∇2 − 1
v2
∂2

∂t2

]
�M = · · · (7.1)

where v is the propagation speed of the magnetization wave and where one must supply the
missing terms on the right-hand side. If we temporarily define x := (vt,�r), akin to the rela-
tivistic practice, this equation would follow from a Lagrangian density with the “kinetic” term

1 With the benefit of hindsight, this analysis may today be viewed disparagingly as “fitting” the potential to describe the
observed effect. However, this analysis is valuable as it indicates the essential result – precisely the effective potential –
that every fundamental, so-called microscopic model must reproduce. This then presents an extraordinarily effective
criterion to filter the possible, more fundamental models.
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A
2 η

μν(∂μ �M)·(∂ν �M), where A is a constant with appropriate physical units. Adding a potential
V( �M), one obtains the classical equations of motion

δij

[
�∇2 − 1

v2
∂2

∂t2

]
Mj = − 1

A
∂V
∂Mi , (7.2)

where Mi are the components of the magnetization vector in some arbitrary Cartesian coordinate
system. In quantum theory, one must of course switch to operators and define an adequate Hamil-
tonian by integrating (in space) the Hamiltonian density obtained from the Lagrangian density.
However, the essence of this procedure is that the ground state of the quantum model is defined by
the global minimum of the potential V( �M). This phenomenological approach (based on Landau’s
theory of phase transitions [☞ for example, Ref. [340]]) then reduces to choosing an appropriate
potential function V( �M).

In the familiar example of the harmonic oscillator, the potential V(x) = 1
2 mω2x2 has a unique

minimum, x = 0. Correspondingly, the model has a unique ground state for all physically accept-
able values of the parameters ω, m > 0. Landau’s essential insight, which provides the basis for
the Landau–Ginzburg description of magnetization, is that a more complicated potential may well
have several distinct minima, depending on the choice of its parameters. Thus, e.g., the anharmonic
generalization of the linear harmonic potential, V(x) = 1

2μx2 + 1
4λx4, has two phases:

1. when μ > 0: the minimum of the potential V(x) is at x̆0 = 0;
2. when μ < 0: the minima of the potential V(x) are at x̆± = ±√−μ/λ,

where x̆ := min
(
V(x)

)
. The quantum-mechanical expectation value of the observable x (the posi-

tion of the oscillator) is the average value, 〈x〉 = 0, but in the second case may be “localized” at x̆±.
For the Hilbert space to consist of normalizable bound states and so that the above local minima
would in fact be global minima, one requires λ > 0. [ ✎Why?] (The λ < 0 choice implies that
limx→∞ V(x) → −∞, which is unphysical as it prevents the existence of a stable ground state.)

The application of this idea in the Landau–Ginzburg phenomenological model also uses the
fact that the potential is a scalar function of the vector �M(�r, t), and so can depend only on the mag-
nitude | �M| =

√
δij Mi(�r, t)Mj(�r, t). If one also requires that the potential is an analytic function, it

must be that
V( �M) = 1

2μ| �M|2 + 1
4λ

(| �M|2)2 + · · · (7.3)

It then follows that the ground state of the quantum-mechanical description of magnetization is
determined by minimizing the potential:

1. if μ > 0: the minimum of the potential V( �M) is at 〈 �M〉0 = 0;
2. if μ < 0: the minima of the potential V( �M) are at 〈 �M〉> =

√−μ/λ M̂,

where M̂ is one of a continuum of arbitrary unit vectors in the 3-dimensional space in which the
magnetization �M(�r, t) is a 3-vector – and which coincides with the “actual,” real space.

Before we return to the question: “Which arbitrary direction M̂ ?,” let us finish the parametri-
zation of the Landau–Ginzburg model by noting that one of course knows that the magnet loses
its magnetization when heated to a sufficiently high temperature. It then follows that μ must be a
function of temperature, and so that μ < 0 for T < Tc, whereas μ > 0 for T > Tc. The concrete
choice of the μ = μ(T) dependence, as well as the presence of an additional (| �M|2)3 term in the
expansion of the potential (7.3) in the original Landau–Ginzburg potential stems from additional
requirements to also describe successfully physical characteristics such as the susceptibility – which
may be ignored for the present purposes. We then simply adopt

V( �M) = 1
2μ0(T2−T2

c )| �M|2 + 1
4λ

(| �M|2)2 + · · · , μ0,λ > 0. (7.4)
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254 The Standard Model

It then follows that the ground state of the quantum-mechanical description of the magnetization
is determined by the minimum of the potential:

min
[
V( �M)

]
=

⎧⎨⎩〈 �M〉> =
√
μ0(T2

c −T2)/λ M̂ when T < Tc;

〈 �M〉0 = 0 when T � Tc.
(7.5)

Notice that min[V( �M)] is a continuous (but not smooth) function of the temperature.
Thus, at a sufficiently high temperature, the object has no magnetization, 〈 �M〉0 = 0, whereas

lowering of the temperature below Tc causes the object to spontaneously magnetize. That is, we
have that 〈 �M〉> =

√
μ0(T2

c −T2)/λ M̂, in the direction M̂ – which remains undetermined by the
dynamics of the model.

In an actual, real situation, there always exists some small external magnetic field, which
“chooses” a preferred direction: The interactions of the tiny domains with this external magnetic
field then direct them opposite to this external magnetic field, which removes the arbitrariness of
the choice of M̂.

Comment 7.1 In the Landau–Ginzburg description of magnetization, the 3-dimensional
space in which the magnetization vector �M(�r, t) has magnitude and direction is in fact
the “actual,” real space in which we ourselves live and move. In the other applications of
this idea, this need not be so.

Classical analysis straightforwardly shows the following properties:

1. As temperature decreases through the critical value Tc, the character of the potential V( �M)
changes suddenly. However, the gradient of the potential (the generalized “force” that moves
the magnetization of the object) in fact always vanishes at the point �M = 0; that is a con-
sequence of the fact that an analytic potential function must depend on | �M|2 and not on
| �M|. This necessitates an influence to “move” the system from �M = 0, and this external in-
fluence then also fixes the ultimate direction of the magnetization M̂. This may literally be
an external influence (a small external magnetic field), or also a simply random (quantum)
fluctuation within the object/system itself.

2. Immediately after the transition, when T � Tc, the potential has a very mild “slope”
near �M = 0, the “inclination” of which grows with the distance from the �M = 0
point. The global minimum of the potential function moves from �M = 0 to a circle of
“radius” | �M(T)| =

√
μ0(T2

c −T2)/λ, which grows as the temperature decreases: T < Tc
and T → 0.

3. Even if moved by an external influence, the actual value 〈 �M〉 will lag behind the growing
value of the “radius” M(T). The change in the magnetization from 〈 �M〉0 towards 〈 �M〉> will
be accelerated, just as with rolling down a steepening slope.

4. When the system reaches 〈 �M〉>, the motion regime turns oscillatory around 〈 �M〉>, where
the loss of energy through interaction with the environment leads to a stabilization of the
value 〈 �M〉 → 〈 �M〉>.

5. In this entire process, the system has (through interaction with the environment) lost the
energy

�V := V
(
| �M|=0

)
− V

(
| �M|=

√
μ0(T2

c −T2)/λ
)

, (7.6)

which somewhat akin to the latent heat of a first-order (discontinuous) phase transition such
as freezing of water. To be precise, magnetization is however a second-order (continuous)
transition, where 〈 �M〉 continuously changes between its values.
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7.1.2 The Goldstone theorem

Boundary condition

Straight rod

Two modes of motion,
both require energy

Changed boundary condition

Bent rod

Two modes of motion,
only one requires energy

Axial symmetry
is broken

Axial symmetry

Figure 7.1 The example of a straight and a bent rod. Notice that the mode of motion of the bent rod
that (ignoring friction) requires no energy is identical with the symmetry that is broken by bending.
The difference is induced by changing the boundary conditions.

Before we apply the ideas from the previous section to a scalar field in a relativistic theory, con-
sider a simple model, shown in Figure 7.1. This model illustrates several of the characteristics
of symmetry breaking, with a faithful analogy in the case of spontaneous magnetization as the
temperature drops.

The straight rod has a manifest axial symmetry. Analogously, at temperatures above Tc, a
magnetic material has 〈 �M〉 = 0, i.e., the magnetic domain orientation distribution is spherically
symmetric. The bent rod does not have the axial symmetry, but its horizontal rotation requires no
energy if we neglect friction. Analogously, at temperatures below Tc, the magnetic material has
〈 �M〉 �= 0, i.e., the magnetic domain orientation distribution is no longer spherically symmetric.
However, fluctuations in the magnetization orientation form a wave (dubbed a magnon), the prop-
agation of which in the magnet requires very little energy, which fails to vanish only because of
imperfections and finiteness of a real, physical magnet.

Similarly, the molecular velocity distribution in any fluid is spherically symmetric. When the
temperature of the fluid drops below the freezing point, the material can form a crystal, in which
molecules move only in modes permitted by the crystalline geometry; this breaks the continuous
spherical symmetry into the discrete crystalline symmetry. Correspondingly, there appear phonons
in the crystal, the propagation of which in the crystal requires very little energy, which fails to
vanish because of the imperfection and finiteness of the real, physical crystal.

These examples exhibit the essence of the Goldstone theorem, a technically simplified form
of which is:

Theorem 7.1 For every continuous (and local) symmetry of a system (and for which there
then exists a current that satisfies the continuity equation and a conserved charge) that is not
a symmetry of the vacuum (ground state), there exists an excitation (a motion/fluctuation
mode) of the system that requires no energy.

The idea of the proof is very simple: the ground state that breaks the continuous symmetry is
only one of continuously many possible such states. In the example of a bent rod, the direction of
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256 The Standard Model

bending is one of continuously many arbitrary directions; similarly, the ultimate direction of mag-
netization 〈 �M〉 and of the crystalline lattice represent arbitrary choices from among continuously
many possibilities. Thus, a system with a broken symmetry has a continuum of possible ground
states – which are of course degenerate and which the broken symmetry transforms one into an-
other. The motion/change of the system from one of these continuously many possible choices into
another then requires no energy.

As the analysis in Appendix A.1.3 shows, the symmetry of a system of equations is always a
symmetry of the complete space of solutions. If some particular – e.g., ground – state of the system
is not itself symmetric, then this symmetry transforms this particular (ground) state into another
(also ground) state. As the symmetry of a system is by definition a transformation that commutes
with the Hamiltonian, then the mode of motion/change of the system from one state into another
cannot require any energy. Symbolically (see Section A.1.3):

X (= (X†)−1) is a symmetry of M. ↔ [H, X] = 0. (7.7a)
X is a symmetry of the

complete solution space, X (M ). ↔ X|Ψ〉 ∈ X (M ) ⇔ |Ψ〉 ∈ X (M ). (7.7b)

|Ψ〉 ∈ X (M ) breaks X. ↔ (
X|Ψ〉 = |Ψ′〉) �= |Ψ〉. (7.7c)

⇒ The “motion” |Ψ〉 → |Ψ′〉
in X (M ) requires no energy. ↔ 〈Ψ|H|Ψ〉 − 〈Ψ′|H|Ψ′〉 = 0. (7.7d)

The final result follows since

〈Ψ′|H|Ψ′〉 = 〈Ψ|X†HX|Ψ〉 (7.7a)=
〈
Ψ
∣∣X−1XH

∣∣Ψ〉
= 〈Ψ|H|Ψ〉. (7.8)

Since 〈Ψ′|H|Ψ′〉 = 〈Ψ|H|Ψ〉, the transformation/motion |Ψ〉 → |Ψ′〉 cannot possibly require any
energy. 
�

The careful Reader must have noticed the minor differences in the implied definitions and
concepts in the above several paragraphs, and a technically complete treatment of the Goldstone
theorem requires a consistent and technically precise connection between these ideas. Besides, one
must keep in mind the finiteness of the resolution of any concrete measurement, which then implies
limitations in the definition of physical quantities. For example, the “bare” electric charge is not
distinguishable from a system consisting of that same electric charge but together with the electro-
magnetic field created by that charge, the intensity of which is below the threshold of observability.
That is, the “bare” electric charge is indistinguishable from the electric charge surrounded by a sea
of photons that are either sufficiently “soft” (of small frequency) or are reabsorbed too fast to
permit detection.

7.1.3 The Higgs effect for gauge symmetry
As we begin analyzing the gradual development of a model based on the ideas from the previous
Sections 7.1.1–7.1.2, note that in field theory the quadratic term provides a field with a mass, as
was mentioned in the beginning of this section.

Field shift
A simple relativistic Lagrangian density (constructed in the spirit of the discussion in Section 7.1.1)
for one, real, scalar field, φ(x) is

L0 = 1
2η

μν(∂μφ)(∂νφ) − κ
2

(mc
h̄

)2
φ2 − 1

4λφ
4, (7.9)

so that the classical, Euler–Lagrange equation of motion is

0 = ∂μ
∂L0

∂(∂μφ)
− ∂L0

∂φ
= ∂μ

(
ημν∂νφ

)
+κ

(mc
h̄

)2
φ+ λφ3, (7.10)
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that is,2[ 1
c2 ∂

2
t − �∇2 +κ

(mc
h̄

)2]
φ = −λφ3 ⇔ [− E2 + �p2c2 +κm2c4]φ = (h̄2c2λ)φ3, (7.11)

identifying
√
κm as the mass of the φ field, so we fix κ → 1 for now.

Comment 7.2 Since [
∫

d4x L0] = [h̄] = ML2/T, then [L0] = M/L2T. As the metric tensor
ημν and its inverse ημν are dimensionless and [∂μ] = L−1, it follows that the units of the so-
defined scalar field [φ] =

√
M/T and the units of λ are [λ] = T/ML2. In turn, comparing

the φ2-terms in the Lagrangian density (7.9), [∂μ] = [ mc
h̄ ] and m is really a mass, [m] = M.

The potential energy density in the Lagrangian density (7.9) is V0 = κ
2

(mc
h̄

)2
φ2 + 1

4λφ
4, and

the Hamiltonian density is

H0 := (
.
φ)
∂L0

∂(
.
φ)

−L0 = 1
2

[ 1
c2

.
φ

2 + (�∇φ)·(�∇φ)
]
+ κ

2

(mc
h̄

)2
φ2 + 1

4λφ
4. (7.12)

The expressions (7.11) and (7.12) indicate that changing κ= 1 → −1, aiming to describe a sym-
metry breaking as in Section 7.1.1, implies that the mass of the φ field has become imaginary
(
√
κm = m → im) – which is nonsensical in classical physics.

However, recall that the parameters in the classical Lagrangian are only auxiliary, helping
parameters, and that the true, physically measurable values are obtained only after an adequate
redefinition of those parameters, i.e., after renormalization [☞ Sections 5.3.3 and 6.2.4]. With
that idea, in 1973 Sydney Coleman and Erick Weinberg analyzed the effect of the electromagnetic
field on the mass of an electrically charged scalar particle [112] and found that there exists a
regime (phase) of the parameter m,λ choices where the effective mass of the field (owing to
renormalization effects) really does become imaginary and so induces the breaking of a symmetry,
i.e., indicates an instability of the state with the unbroken symmetry. With this in mind, we now
simply change m2 → −m2 without delving into the detailed reasons and dynamics of this change.

With the potential energy density Ṽ0 = − 1
2

(mc
h̄

)2
φ2 + 1

4λφ
4, the system is unstable at φ0 = 0,

and the global minima appear at the values φ→ ± mc
h̄
√
λ

. One thus expects that, after enough time,
the system settles at either 〈φ〉 = + mc

h̄
√
λ

or 〈φ〉 = − mc
h̄
√
λ

. Feynman’s perturbative computation

would then have to be adapted so that all fields vanish at the chosen classical minimum, i.e., that
the fields represent fluctuations around that minimum. It is thus convenient to introduce one of
the two substitutions:

either ϕ+ := φ− mc

h̄
√
λ

, when 〈φ〉= +
mc

h̄
√
λ

, so 〈ϕ+〉 = 0, (7.13a)

or ϕ− := φ+
mc

h̄
√
λ

, when 〈φ〉= − mc

h̄
√
λ

, so 〈ϕ−〉 = 0, (7.13b)

whereby the Lagrangian density (7.9), with the sign in the mass-term changed by hand,

L̃0 = 1
2η

μν(∂μφ)(∂νφ) + 1
2

(mc
h̄

)2
φ2 − 1

4λφ
4, (7.14)

becomes – corresponding to the choice (7.13) – one of the two Lagrangian densities:

either L+ = 1
2η

μν(∂μϕ+)(∂νϕ+) − (mc
h̄

)2
ϕ2

+ − mc
√
λ

h̄ ϕ3
+ − 1

4λϕ
4
+ + m4c4

4λh̄4 , (7.15a)

2 Identification of the operator ∂μ with the components of the 4-momentum is obtained fastest by using the quantum-
mechanical relations in the coordinate representation, H = ih̄∂t = i h̄

c ∂0 and �p = −ih̄�∇, so that substituting the
eigenvalues, h̄2∂2

t �→ −E2 and h̄2�∇2 �→ −�p2 [☞ Digression 3.6 on p. 93, and the relation (3.37) that holds when
λ→ 0].
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or L− = 1
2η

μν(∂μϕ−)(∂νϕ−) − (mc
h̄

)2
ϕ2− + mc

√
λ

h̄ ϕ3− − 1
4λϕ

4− + m4c4

4λh̄4 . (7.15b)

For these “shifted” fields (7.13), the mass is real, m± =
√

2m, as the sign of the quadratic term
turned negative, and other than the anharmonic term ϕ4±, now there is also a cubic term, ϕ3±.
Finally, the total value of the Lagrangian density shifted by the constant + m4c4

4λh̄4 , which means that

the value of the total energy density (Hamiltonian density) of the system decreased by −m4c4

4λh̄4 ;
recall, H = pi

.
qi − L . This contribution to the energy of the system is the excess energy density

of the phase transition from the phase where the effective mass is real and 〈φ〉 = 0 into the phase
where the effective mass is imaginary and 〈φ〉 = ± mc

h̄
√
λ

.3

As the minimum of the total energy in the phase with 〈φ〉 = ± mc
h̄
√
λ

is lower than that in the
phase with 〈φ〉 = 0, it follows that the ground state of the system after the sign change of the
quadratic term must have one of the two possible values: 〈φ〉 = ± mc

h̄
√
λ

, and the choice between
these two values is arbitrary.

Conclusion 7.1 The Lagrangian density (7.9) describes two phases of the system:

1. the symmetric phase, where κ > 0 and 〈φ〉 = 0,
2. the broken symmetry phase, where κ < 0 and 〈φ〉 = ± mc

h̄
√
λ
�= 0.

Typically, the parameter κ is a function of temperature and turns negative when the
temperature drops below some critical value. The change κ > 0 ↔ κ < 0 is, of
course, a phase transition, for which the excess energy density equals m4c4

4λh̄4 , as seen in
the expressions (7.15).

The Lagrangian density (7.9), and then also the equations of motion (7.11), have the sym-
metry : φ → −φ. However, when the parameter m2 turns into −m2 and the mass becomes
unphysically imaginary, as in the Lagrangian density (7.14), the state where 〈φ〉 = 0 becomes
unstable. Instead, one chooses one of the two states where 〈φ〉 = ± mc

h̄
√
λ

and, corresponding
to the change in the notation (7.13), one uses one of the two Lagrangian densities (7.15). The
transformation is still a symmetry of the system:

: φ→ −φ ⇒ ϕ± → −ϕ± ∓ 2 mc
h̄
√
λ

⇒ L± → L±. (7.16)

As this is a discrete transformation, the Goldstone theorem does not apply. However, there evidently
exists a mapping ϕ± → −ϕ∓ that turns L±(ϕ±) → L∓(ϕ∓); i.e., that connects the two existing
and degenerate vacua.4 By breaking discrete symmetries, the existence of such a discrete mapping
is a property that is closest to the existence of a Goldstone mode. Although this “goldstonesque”
transformation ϕ± → −ϕ∓ is not identically equal to the initial symmetry (7.16), the two
transformations are isomorphic: both are reflections, albeit across different points in the field space.

Basic building blocks of Feynman diagrams correspond to the terms in the Lagrangian den-
sity (7.15). Terms that are quadratic in ϕ define the “propagator,” i.e., the Green function. Its
physical meaning is that the change in the ϕ field in one spacetime point correlates with a change
in a neighboring point. For a scalar field, this function is represented in Feynman diagrams by a

3 The contribution to the total energy is, of course, − ∫
d3�r m4 c4

4λh̄4 , which diverges because of the integral over the infinitely
large space. However, this is but one example of the need to renormalize the reference energy level of the “empty
spacetime.”

4 When the number of degenerate states is finite, as here, it makes sense to construct (anti)symmetrized linear combina-
tions L+ and L−. However, we will be interested in the breaking of continuous symmetries, where this is not possible –
or at least does not have the same physical meaning.
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dashed line. Cubic and quartic terms, respectively, represent correlated changes in three and four
spacetime points, and are represented by vertices where, respectively, three and four dashed lines
meet:

−i

q2 − 2m2c2

h̄2 c3
mc

√
λ

h̄

c4λ (7.17)

where the concrete choice of (combinatorial and normalizing) constants c3, c4 is not relevant here.
Note, however, that the triple vertex may be obtained from the quadruple one by formally “ending”
one of its four edges – as if the field φ here sinks into the vacuum:

c4λ c4λ

〈φ 〉 = mc
h̄
√

λ

c4λ · mc

h̄
√

λ
= c3

mc
√

λ
h̄

c4 = c3 (7.18)

or wells up from it [☞ discussion about the diagram (3.82)]. The nonzero value 〈φ〉 indicates
that the number of φ-quanta is not conserved in the vacuum with the broken symmetry. In contrast,
the number of ϕ±-quanta is conserved as 〈ϕ±〉 = 0, and this is the normal mode for describing
the system in vacuum with the broken symmetry. After the substitution φ → ϕ±, the system has
only elementary diagrams of the type (7.17), from which one can, of course, construct much more
complex Feynman diagrams, and so also much more complex processes. However, in the ϕ+- or
ϕ−-description (depending on the choice of the vacuum), there are no diagrams with “sinks” or
“sources” such as in the φ-description (7.18).

Finally, the Feynman diagrams represent corresponding perturbative contributions, under-
standing that the fields fluctuate about their classical solutions. Thereby, the choice of the
Lagrangian density L± implies that the φ field fluctuates about the expectation value 〈φ〉 = ± mc

h̄
√
λ

,
so 〈ϕ∓〉 = 0. Similarly, just as the ground state of the linear harmonic oscillator is centered at
x = 0, so is the ground state of the model with the Lagrangian density L+ centered at ϕ+ = 0,
and for L− at ϕ− = 0. These then are two distinct models of the system, which the “goldstonesque”
transformation ϕ± → −ϕ∓ maps one into the other, and proves them to be physically equivalent
descriptions of the same system.

Conclusion 7.2 In the symmetric phase, one uses the Lagrangian density (7.9) with κ > 0
and the φ field, so that the Feynman diagrams (7.17) – without the triple vertex – correspond
to the so-described processes. When κ < 0, for the description of this non-symmetric phase
one picks either the Lagrangian density (7.15a) or (7.15b) and, correspondingly, either ϕ+
or ϕ−; correspondingly, the Feynman diagrams (7.17) change their meaning although the
mechanics of the computations remains the same.

Breaking of continuous symmetry
One of the simplest generalizations of the above results to the case where a continuous symmetry
is broken by the choice of the ground state uses two real scalar fields in place of one: φ(x) →
(φ1(x), φ2(x)). The Lagrangian density is chosen akin to (7.9)
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L2d = 1
2η

μνδij(∂μφi)(∂νφj) − 1
2

(mc
h̄

)2(δijφiφj) − 1
4λ(δijφiφj)2. (7.19)

Owing to the specific choice of the potential function, the Lagrangian density (7.19) is invariant
under the action of an arbitrary rotation

ϑ :
[
φ1
φ2

]
→

[
φ′1
φ′2

]
:=

[
cos ϑ − sin ϑ
sin ϑ cos ϑ

] [
φ1
φ2

]
(7.20)

in the abstract (φ1, φ2)-plane. Flipping the sign of the quadratic term, we obtain

L̃2d = 1
2η

μνδij(∂μφi)(∂νφj) + 1
2

(mc
h̄

)2(δijφiφj) − 1
4λ(δijφiφj)2, (7.21)

where the potential energy density is easily found to have continuously many minima, forming the
circle

(φ 2
1 + φ 2

2 )
∣∣
min = m2c2

h̄2λ
, i.e., (φ1, φ2)min =

(
mc

h̄
√
λ

cos θ, mc
h̄
√
λ

sin θ
)

, (7.22)

where the angle θ is arbitrary. Clearly, the transformation (7.20) maps the arbitrary choice of
minima at the angle θ into the choice with the angle θ + ϑ.

Consider, e.g., the minimum (φ1, φ2) → ( mc
h̄
√
λ

, 0) and the correspondingly shifted fields:

ϕ1 = φ1 − mc
h̄
√
λ

, ϕ2 = φ2. (7.23)

With these, the Lagrangian density (7.19) becomes

L̃2d = 1
2η

μνδij(∂μϕi)(∂νϕj) −
(mc

h̄

)2
ϕ 2

1

− mc
√
λ

h̄ ϕ1(ϕ 2
1 + ϕ 2

2 ) − 1
4λ(ϕ 2

1 + ϕ 2
2 )2 + m4c4

4λh̄4 (7.24a)

= 1
2η

μν(∂μϕ1)(∂νϕ1) −
(mc

h̄

)2
ϕ 2

1 − mc
√
λ

h̄ ϕ 3
1 − 1

4λϕ
4
1

+ 1
2η

μν(∂μϕ2)(∂νϕ2) − 1
4λϕ

4
2

− mc
√
λ

h̄ ϕ1ϕ
2

2 − 1
2λϕ

2
1 ϕ

2
2 + m4c4

4λh̄4 , (7.24b)

where we separated the terms that produce the dynamics of the ϕ1 and the ϕ2 fields into two
separate rows, and left the coupling terms and the excess energy density for the last row.

Just as in the one-dimensional example (7.9)–(7.16), the ϕ1 field has acquired a real mass
m1 =

√
2|m|, as well as an additional cubic term, besides the ϕ4

1 term. However, the ϕ2 = φ2
field has lost its mass, and only has a ϕ 4

2 term in the potential! Finally, the ϕ1 and the ϕ2 fields
are coupled via the ϕ1ϕ

2
2 and the ϕ 2

1 ϕ
2

2 terms, in the sense that the Euler–Lagrange equations of
motion form a coupled system. The transformation

ϑ :
[
ϕ1

ϕ2

]
→

[
ϕ′1
φ′2

]
:=

[
cos ϑ − sin ϑ

sin ϑ cos ϑ

] [
ϕ1

ϕ2

]
+

[ mc
h̄
√
λ
(cos ϑ−1)

mc
h̄
√
λ

sin ϑ

]
(7.25)

is still a symmetry of the system – and is merely rewritten into the new coordinates, making it
evident that this is not a rotation about the coordinate origin in the (ϕ1, ϕ2)-plane. Since the
rotations in the (ϕ1, ϕ2)-plane about the point (0, 0) are not symmetries, the fact that the ϕ2 field
has lost its mass indicates that (in this choice of the parametrization of the system) ϕ2 represents
the Goldstone boson.
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Conclusion 7.3 Following Conclusion 7.2 on p. 259, one may use the Lagrangian den-
sities (7.19) and (7.24), respectively, to describe the symmetric (κ> 0) and the non-
symmetric (κ< 0) phases of the system. Unlike in the situation in Conclusion 7.2, the
non-symmetric phase now contains a continuous degeneracy: any one of continuously
many scalar fields that satisfy the relations (7.22) represents a minimum of the potential
in the non-symmetric phase. Any one concrete choice, such as (7.23), then represents one
concrete spontaneous breaking of the original symmetry, from among continuously many
such choices.

Digression 7.1 Note that after ad hoc changing the sign from the Lagrangian den-
sity (7.19) into the Lagrangian density (7.21), varying the φ field produces the change in
the equation of motion:[


 +
(mc

h̄

)2]
φj = −λφj‖φ‖2 → [


− (mc
h̄

)2]
φj = −λφj‖φ‖2, (7.26a)

where 
 = 1
c2
∂2

∂t2 − �∇2 is the wave operator, a.k.a., the d’Alembertian. In the absence
of interactions (λ → 0), the Klein–Gordon operator [
 + ( mc

h̄ )2] thus changes into [
−
( mc

h̄ )2]. Since the standard Klein–Gordon operator corresponds to the relation (3.36), we
have[


+
(mc

h̄

)2]
φj = 0 ⇔ E2 = �p2c2+m2c4 ⇔ �p2

E2/c4 = v2 = c2
(

1−m2c4

E2

)
< c2.

(7.26b)
However, flipping the sign of the m2φ2 term, by hand, would produce[


−(mc
h̄

)2]
φj = 0 ⇔ E2 = �p2c2−m2c4 ⇔ �p2

E2/c4 = v2 = c2
(

1+
m2c4

E2

)
> c2.

(7.26c)
Thus, simply flipping the sign of the m2φ2 term in the Lagrangian density would have
two correlated consequences:

1. The vacuum where 〈φ〉 = 0 would become unstable, as a local maximum of
the potential energy density, which indicates the tendency of the system to
transition into a state where 〈φ〉 = mc

h̄
√
λ
�= 0.

2. The φ field would become tachyonic (superluminal): it would propagate faster
than the speed of light in the “false” vacuum where 〈φ〉 = 0; by transitioning
into the “true” vacuum where 〈φ〉 = mc

h̄
√
λ
�= 0, φ (i.e., now ϕ) becomes again

a physical, tardionic (subluminal) field.

However, the sign of the (quadratic) mass term is in reality a continuously variable
parameter, and the evolution of the system is considerably more involved than could
be shown here; see for example [81, 20]. Nevertheless, the appearance of a tachyonic
particle/state in a simple analysis as shown here does signal vacuum instability.

The correspondence between the broken symmetry and the Goldstone boson is not per-
fectly evident in this parametrization, since ϕ2 does not represent rotations. This correspondence
becomes clearer by using, instead of (7.23), the nonlinear transformation

φ1 = ρ cos θ, φ2 = ρ sin θ, (7.27)
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with which the Lagrangian density with the flipped sign of the quadratic term becomes

L̃2d = 1
2η

μν
[
(∂μρ)(∂νρ) + ρ2(∂μθ)(∂νθ)

]
+ 1

2

(mc
h̄

)2
ρ2 − 1

4λρ
4. (7.28a)

Finding the minimum on the circle of radius ρ = mc
h̄
√
λ

and after the substitution

� := ρ− mc
h̄
√
λ

, (7.28b)

we obtain

L̃2d = 1
2η

μν(∂μ�)(∂ν�) −
(mc

h̄

)2
�2 − mc

√
λ

h̄ �3 − 1
4λ�

4 + m4c4

4λh̄4

+ 1
2

(
�+ mc

h̄
√
λ

)2
ημν(∂μθ)(∂νθ), ϑ : θ (7.20)−−−→ θ + ϑ. (7.28c)

This makes it evident that the rotations (7.20) map the system from a parametrization where the
Feynman calculus is defined about the ground state with (�, θ) = (0, 0) into a parametrization
centered at (�, θ) = (0, θ∗), and where the θ field has no mass – nor in fact any potential – and so
represents the Goldstone mode.

In turn, by shifting the fields in a ϑ-dependent fashion:

ϕ1 = φ1 − mc
h̄
√
λ

cos(ϑ), ϕ2 = φ2 − mc
h̄
√
λ

sin(ϑ), (7.29)

we obtain

˜̃L 2d = 1
2η

μνδij(∂μφi)(∂νφj) −
(mc

h̄

)2
(

cos(ϑ) φ1 + sin(ϑ) φ2

)2
+ m4c4

4λh̄4

+
√
λ
(mc

h̄

)(
cos(ϑ) φ1 + sin(ϑ) φ2

)
(φ2

1 + φ2
2) − 1

4λ(φ2
1 + φ2

2)
2, (7.30)

which evidently interpolates between (7.23)–(7.24) and a continuum of equivalently shifted
Lagrangian densities.

Notice the extraordinary similarity between the descriptions (7.27)–(7.30) and the illustra-
tion in Figure 7.1 on p. 255, whereby it is possible to identify the pair of fields (φ1, φ2) with the
motion denoted by the dark/light arrows on the left-hand side, and � with the radial motion (dark
arrows) on the left-hand side, and where the ϑ rotation evidently perfectly corresponds to the
rotational motion denoted by the light and outlined arrow. Unfortunately, the nonlinear coupling
in the kinetic term, between (∂μθ) and �, is the “price” of making this relationship between the
Goldstone mode and the broken symmetry evident. This “polar” parametrization of the model is
therefore rather cumbersome for defining Feynman diagrams and the perturbative computations,
and is not used except to identify symmetries.

The Higgs effect for gauge U(1) symmetry
The 2-dimensional model from the previous section may be combined with gauge symmetry.
One only needs to reinterpret the pair of real scalar fields, φ1, φ2, as one complex scalar field,
φ = φ1 + iφ2. This complex field then has a phase, and the description from Sections 5.1 and 5.3
may be adapted. Start therefore with the Lagrangian density

LCW = 1
2η

μν(Dμφ)∗(Dνφ) − 1
2

(mc
h̄

)2|φ|2 − 1
4λ

(|φ|2)2 − 4πε0
4 FμνFμν, (7.31)

where
Dμφ = ∂μφ +

iqφ
h̄ c Aμ φ, (7.32)
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is the (electromagnetically) U(1)-covariant derivative, and qφ is the electric charge of the complex
field φ. Varying by φ and φ∗, we obtain the Euler–Lagrange equations of motion, varying by

.
φ

and
.

φ∗ produces the canonical momenta, etc. However, we are here concerned with the breaking
of the gauge symmetry

φ(x) → exp
{ i

h̄ qφ χ(x)
}

φ(x), Aμ(x) → Aμ(x) − c ∂μ χ(x), (7.33)

and will, as before, consider the Lagrangian density (7.31), the one with the “wrong” sign of the
quadratic term:

L̃CW = 1
2η

μν(Dμφ)∗(Dνφ) + 1
2

(mc
h̄

)2|φ|2 − 1
4λ

(|φ|2)2 − 4πε0
4 FμνFμν. (7.34)

It is not hard to show, e.g., by parametrizing φ = R eiΘ, [ ✎do it] that the potential energy density

ṼCW = − 1
2

(mc
h̄

)2|φ|2 + 1
4λ

(|φ|2)2 = − 1
2

(mc
h̄

)2R2 + 1
4λR4 (7.35)

has a minimum when R := |φ| = mc
h̄
√
λ

and the “angle” Θ ∈ [0, 2π] is arbitrary, which parametrizes
a circle of radius mc

h̄
√
λ

– in the complex field plane of φ = φ1 + iφ2. The classical solutions, i.e., the
quantum-expectation values |〈φ〉| = mc

h̄
√
λ

, are equally probable for every choice of the “angle” Θ,
and the ultimate value 〈Θ〉 is determined by the initial conditions and external influences. (As per
Conclusion 1.1, perfect initial conditions do not exist.)

Choosing, e.g., Θ = 0 for the ground state and in the Feynman diagrammatic calculus,5 we
must redefine the fields so that they describe fluctuations about the chosen classical solution. We
thus define ϕ = φ − mc

h̄
√
λ

, but are free to return to the Cartesian basis, with ϕ1 := &e(φ) − mc
h̄
√
λ

and ϕ2 := #m(φ). This substitution yields

L̃CW = 1
2η

μν
[
Dμ

(
(ϕ1 + mc

h̄
√
λ
) + iϕ2

)]∗[
Dν

(
(ϕ1 + mc

h̄
√
λ
) + iϕ2

)]− 4πε0
4 FμνFμν

+ 1
2

(mc
h̄

)2∣∣(ϕ1 + mc
h̄
√
λ
) + iϕ2

∣∣2 − 1
4λ

(∣∣(ϕ1 + mc
h̄
√
λ
) + iϕ2

∣∣2)2

=
[

1
2 (∂μϕ1)(∂μϕ1) − m2c2

h̄2 ϕ 2
1

]
+

[
1
2 (∂μϕ2)(∂μϕ2)

]
−

[
4πε0

4 FμνFμν − 1
2

q2
ϕm2

h̄4λ
AμAμ

]
+

qϕ m

h̄2√λAμ(∂μϕ2) +
qϕ
c h̄ Aμ[ϕ1(∂μϕ2) − (∂μϕ1)ϕ2]

+
q2
ϕm

ch̄3√λ ϕ1 AμAμ − mc
√
λ

h̄ ϕ1(ϕ 2
1 + ϕ 2

2 )

+ 1
2

q2
ϕ

c2 h̄2 AμAμ(ϕ 2
1 + ϕ 2

2 ) − 1
4λ(ϕ 2

1 + ϕ 2
2 )2 + m4c4

4λh̄4 . (7.36)

The appearance of the underlined “mixed” quadratic term
qϕ m

h̄2√λAμ(∂μϕ2) indicates that the
functions ϕ1, ϕ2, A0, A1, A2 and A3 are not the normal modes of this system. [ ✎Why?] However,
instead of pursuing the diagonalization procedure, we may use the gauge transformation

φ →eiϑφ = (cos ϑ+ i sin ϑ)(φ1 + iφ2)
= (φ1 cos ϑ− φ2 sin ϑ) + i(φ1 sin ϑ+ φ2 cos ϑ) (7.37)

where we select [☞ definition (5.104a)]

ϑ = −ATan(φ1, φ2) = −ATan
(
ϕ1+

mc

h̄
√
λ

, ϕ2

)
, (7.38)

5 In classical physics, where φ1 = &e(φ) and φ2 = #m(φ) would be functions of (only) time, a similar choice would
be convenient for describing small oscillations. Feynman’s diagrammatic calculus is indeed a generalization of small
oscillations in field theory, in a quite general sense.
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so that ϕ′2 := #m(eiϑφ) = 0. Also, ϕ′1 := &e
(
eiϑ(φ − mc

h̄
√
λ
)
)

and, of course, A′
μ := Aμ + (h̄ c∂μϑ).

The Lagrangian density (7.36) being invariant with respect to gauge transformations, it follows
that the same Lagrangian density may also be expressed in terms of these new, gauge-transformed
fields:

L̃CW =
[

1
2 (∂μϕ′1)(∂

μϕ′1) − m2c2

h̄2 ϕ′ 2
1

]
−

[
4πε0

4 F′
μνF′ μν − 1

2
q2
ϕm2

h̄4λ
A′
μA′ μ

]
+

q2
ϕm

ch̄3√λ ϕ
′
1 A′

μA′ μ − mc
√
λ

h̄ ϕ′ 3
1 + 1

2
q2
ϕ

c2 h̄2 A′
μA′ μϕ′ 2

1 − 1
4λϕ

′ 4
1 + m4c4

4λh̄4 , (7.39)

where we note that ϕ′2 no longer appears. The same result could, of course, have been obtained by
the standard diagonalization procedure.

It must be kept in mind that the three Lagrangian densities (7.34), (7.36) and (7.39) all
describe the same system, only in slightly different parametrization, and where the ultimate ver-
sion (7.39) achieves the most concise description. Varying the Lagrangian density (7.39) by Aμ

produces the Euler–Lagrange equations of motion:


A′ ν − ∂ν(∂μA′ μ) +
q 2
ϕm2

4πε0 h̄4λ
A′ ν = − q 2

ϕ

4πε0c2 h̄2

(
ϕ′1 + mc

2h̄
√
λ

)
ϕ′1 A′ ν. (7.40)

This proves that the gauge field A′
μ acquired the mass

mA =
qϕ m√

4πε0 h̄ c
√
λ

=
qϕ√
4πε0

1
c2 〈φ1〉, 〈φ1〉 = mc

h̄
√
λ

, (7.41)

since by using the Lorenz gauge, ∂μA′ μ = 0, the equation of motion (7.40) becomes[

 +

( qϕ m√
4πε0 h̄2√λ

)2
]

A′ ν = − q2
ϕ

4πε0c2 h̄2

(
ϕ′1 + mc

2h̄
√
λ

)
ϕ′1 A′ ν, (7.42)

where the operator in the square brackets is the same as in the Klein–Gordon equation (5.26).
The algebraic substitutions and operations that turn the Lagrangian densities (7.34)–(7.36)

into (7.39) may also be represented graphically, since the various homogeneous terms6 unam-
biguously correspond to the Feynman diagrams. So, e.g., the gauge boson mass stems from the
interaction of these bosons with the Higgs field, where both “scalar” legs of this 2+2-leg vertex
sink into the vacuum, or well from it:

A ′
μ

φ1 φ1

A ′
μ

A ′
μ

〈φ1〉

A ′
μ

〈φ1〉
A ′

μ

〈φ1〉2

A ′
μ

(7.43)

The incessant sinking into the vacuum and welling from it of the φ1-field acts as an effective “vis-
cosity” for all the fields interacting with φ1. This is what impedes the propagation of gauge fields
A′
μ, so the quanta of this field acquire an (increased) inertia, i.e., mass. It is not hard to show

that, in the (φ1, φ2)-picture, the Feynman diagrams of all “additional” terms in the Lagrangian den-
sity (7.39) have dashed lines that sink into the vacuum or well from it, as shown in diagrams (7.18)
and (7.43). After the substitution φ1 → ϕ1 + mc

h̄
√
λ

, all diagrams that contain sinks/sources 〈φ1〉 are
simply drawn as new, independent diagrams.

6 By “homogeneous terms” one understands all the terms that have the same power of the various fields of the model. For
example, (∂μφ1)(∂μφ1) and m2 c2

h̄2 φ2
1 are homogeneous and together contribute to the propagator, i.e., the first Feynman

diagram (7.17). Similarly, the Lagrangian density (7.39) has only one cubic term, −mc
√
λ

h̄ ϕ′1
3, and this is the only term

that contributes to the triple vertex Feynman diagram, shown as the middle diagram (7.17).
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Conclusion 7.4 In a diagram such as (7.18) or (7.43), the crucial role is played by the
property of Higgs bosons that they have a non-vanishing vacuum expectation value. The
direct interpretation of these diagrams is that the Higgs bosons mediate the interaction of
other particles with the true vacuum, so that the Higgs bosons in fact also mediate a type
of interaction.

Supporting the claim that these are but different descriptions of the same system, let us count
the degrees of freedom in the Lagrangian density:

Equation (7.34) The complex scalar field φ has two real functions, φ1(x) and φ2(x). The U(1)-
gauge potential Aμ(x) has four real components, but only two are physical, as the gauge
symmetry permits the imposition of the Lorenz and the Coulomb gauge, which leave only
the two components (those orthogonal to the photon’s direction of motion) having a physical
meaning. Jointly, these count as four real functions.

Equation (7.39) The real scalar (Higgs) field ϕ′1(x) is of course just one real function. The vector
potential Aμ(x) here has a mass, and so also has, besides the two components that are or-
thogonal to the direction of motion, the longitudinal component.7 Jointly, these again count
as four real functions.

By rewriting the Lagrangian density from its form (7.34) into the form (7.39), the imaginary part of
the scalar field φ became the physical, longitudinal component of the 4-vector gauge potential Aμ,
whereby that gauge boson acquired the mass (7.41), proportional to the charge and the vacuum
expectation value of the Higgs field φ. One says that the gauge boson “ate” the imaginary part of
the Higgs field, ϕ2, which had no mass in the Lagrangian density (7.36) and so represented the
Goldstone boson. Suffice it here then to state, without a detailed proof [257, 307, 159, 422, 423,
538, 250, 389, 243]:

Conclusion 7.5 In the general case of non-abelian (non-commutative) gauge symmetry
breaking via the Higgs effect, there exists a symmetric (κ> 0) phase, where the complete
gauge symmetry is exact, and all Higgs fields are “accounted for” and have the same, real
mass.

There also exists a non-symmetric (κ< 0), i.e., Higgs phase, where the gauge sym-
metry is broken so that from the original group of symmetries G only a subgroup H of
symmetries is exact. For each generator of the so-called coset G/H [☞ the lexicon entry, in
Appendix B.1] and corresponding to each broken symmetry:

1. one Higgs scalar field turns into
2. the longitudinal component of one gauge 4-vector potential,
3. and the particle represented by that 4-vector potential becomes massive.

The choice between the symmetric or non-symmetric phase is made by the sign κ, which is
a function of the order parameter (typically, the temperature T), so that

κ(T) =
{ κ > 0 for T > Tc symmetric phase,

κ < 0 for T < Tc non-symmetric phase.
(7.44)

Comment 7.3 All the Lagrangian densities involving a Higgs field such as (7.39) exhibit an
excess energy density, m4c4

4λh̄4 . This quantity must contribute to the vacuum energy density of
our universe (there is no external reservoir to siphon it away), the 8πGN/c4-multiple of

7 See the discussion on p. 186, as well as the explanation in Footnote 29 on p. 67.
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which is the cosmological constant, and which is known to be some 55 orders of magnitude
smaller than m4c4

4λh̄4 ; whence the term “excess energy density.” This discrepancy only becomes
worse with the grand-unifying attempts that we will explore in the next chapter. Ultimately,
a theory also including gravity would – based on dimensional arguments alone – predict a
vacuum energy density that is some 122 orders of magnitude larger than what is observed.
This is often cited as the “vacuum catastrophe” and the “worst theoretical prediction in the
history of physics” [272]. However, this is not the first time dimensional analysis alone
presented a manifestly wrong answer; see Section 1.2.5.

Comment 7.4 In processes where the energies of the involved particles are bigger (smaller)
than kBTc, one expects the system to be in the symmetric (non-symmetric) phase. In practice
therefore, the energy available to the particles in observed processes is identified with the
order parameter, i.e., temperature. Finally, the critical energy then must be proportional to
the value 〈φφφφ〉, and dimensional analysis dictates that

Ec = h̄ c
√
λ〈φφφφ〉 = kBTc. (7.45)

7.1.4 Exercises for Section 7.1

✎ 7.1.1 Confirm the results (7.15) by explicit computation.

✎ 7.1.2 Confirm the results (7.22) by explicit computation.

✎ 7.1.3 Expanding the Lagrangian density (7.21) about (ϕ1, ϕ2) = (φ1, φ2 − mc
h̄
√
λ
), verify that

now ϕ1 plays the role of the Goldstone boson.

✎ 7.1.4 Confirm the results (7.24) by explicit computation.

✎ 7.1.5 Confirm the results (7.36) by explicit computation.

7.2 The weak nuclear interaction and its consequences
Interactions of gauge 4-vector potentials and spin- 1

2 fermions studied in Chapter 5 faithfully de-
scribe the interactions of electromagnetic and strong interactions, the gauge bosons of which are
massless. The Higgs effect, described in the previous section, provides a correct description of
massive W±- and Z0-bosons. However, for the description of the interaction of these bosons with
spin- 1

2 fermions, we need one additional detail, to which we now turn.

7.2.1 The asymmetry in weak interactions
Chapter 5 describes interactions of gauge bosons with 4-component Dirac fermions, which were
shown in Section 5.2.1 on p. 172 to decompose in a Lorentz-invariant way into the eigenstates of
γγγγ± [☞ Conclusion 5.2 on p. 179], the so-called Weyl spinors:

Ψ = Ψ+ + Ψ−, Ψ± :=
(
γγγγ±Ψ

)
, γγγγ± = 1

2 [1 ± γ̂γγγ]. (7.46)

Using the relations (A.121a)–(A.121b) and (A.130), we obtain that

Ψ
[
ih̄ cγγγγμDμ − mc

h̄ 1
]
Ψ

= Ψ+
[
ih̄ cγγγγμDμ

]
Ψ+ + Ψ−

[
ih̄ cγγγγμDμ

]
Ψ− − mc

h̄

[
Ψ−Ψ+ + Ψ+Ψ−

]
.

(7.47)
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That is, the interaction of a spin- 1
2 fermion with the gauge field as described in Chapter 5 includes

both “left-handed” (Ψ− ≡ ΨL) and “right-handed” (Ψ+ ≡ ΨR) fermions.8

Note that the Lagrangian term that defines the mass, −mc
h̄ Ψ−Ψ+, couples Ψ+ and Ψ−. This

is the so-called Dirac mass. By contrast, the previous two terms in the expression (7.47) “link”
fermions of the same chirality. This property permits massless spin- 1

2 particles to satisfy the simpler,
Weyl equation (5.62) instead of the more complicated Dirac equation (5.34).

As was discussed in Section 4.2.1, the weak interactions maximally break the parity symmetry
as the interaction of the W± boson with a charged lepton and a neutrino exclusively couples the
“left-handed” fermions. Thus, e.g., the interaction e− → W− + νe in the Lagrangian density must
correspond to the term

Ψ(ν,e)
−

[
ih̄ cγγγγμ

(
1∂μ + i gw

h̄ c Wμ

)]
Ψ(ν,e)
− , Wμ := 1

2σσσσaWa
μ,

= Ψ(ν,e)γγγγ−
[
ih̄ cγγγγμ

(
1∂μ + i gw

h̄ c Wμ

)]
(γγγγ−Ψ(ν,e))

(A.130)= Ψ(ν,e)γγγγ+
[
ih̄ cγγγγμ

(
1∂μ+

i gw
h̄ c Wμ

)]
γγγγ−Ψ(ν,e)

= Ψ(ν,e)
[
ih̄ cγγγγ+γγγγ

μγγγγ−
(
1∂μ+

i gw
h̄ c Wμ

)]
Ψ(ν,e)

= Ψ(ν,e)
[
ih̄ cγγγγμγγγγ 2

−
(
1∂μ + i gw

h̄ c Wμ

)]
Ψ(ν,e)

(A.121b)= Ψ(ν,e)
[
ih̄ cγγγγμγγγγ−

(
1∂μ + i gw

h̄ c Wμ

)]
Ψ(ν,e). (7.48)

That is, the first term in the left–right symmetric expression (7.47) must not appear in the La-
grangian density for weak interactions. As the key terms in the Lagrangian density must include
factors of the type

Ψ(ν,e)
− γγγγμWμΨ(ν,e)

− = Ψ(ν,e)γγγγμγγγγ−WμΨ(ν,e) = 1
2 Ψ(ν,e)γγγγμ[1 − γ̂γγγ]WμΨ(ν,e)

= 1
2

[
Ψ(ν,e)γγγγμ 1

2σσσσaΨ(ν,e)︸ ︷︷ ︸
vector

−Ψ(ν,e)γγγγμγ̂γγγ 1
2σσσσaΨ(ν,e)︸ ︷︷ ︸

axial vector

]
Wa
μ, (7.49)

one says that weak interactions are of the “V−A” type – contrary to the electrodynamics and
chromodynamics interactions that are of purely “V” (vector) type.

Thus, the Lagrangian density describing the interactions of gauge bosons W± may be written
with the projectors γγγγ− consistently inserted for all fermions; interactions with the Z0-boson are
still more complicated [☞ Sections 7.2.4 and 7.2.5].

7.2.2 The GIM mechanism
Section 2.3.14 showed that the quark states that interact by weak interaction are not the eigen-
states of the “free” Hamiltonian that defines the mass: The quark states that are detected as d-, s-
and b-quarks primarily differ in mass [☞ Figure 2.1 on p. 76, and Table 4.1 on p. 152]. However,
the eigenstates of the Hamiltonian term describing the interaction with the W±- and Z0-bosons
are nontrivial linear combinations (2.53) of these mass-identified states.

The first-order effect
When Nicola Cabibbo suggested the first variation of this phenomenon in 1963, only the u-, d- and
s-quarks were known. Proposing that the states that interact with the W±- and Z0-bosons are in fact

|u〉, |dw〉 := cos θc|d〉 + sin θc|s〉, |sw〉 := cos θc|s〉 − sin θc|d〉, (7.50)

so |d〉 = cos θc|dw〉 − sin θc|sw〉, |s〉 = cos θc|sw〉 + sin θc|dw〉, (7.51)

8 It is standard to use the adjectives “left/right-handed” regarding both the chirality eigenstates and the helicity eigen-
states of spin- 1

2 fermions – although these coincide only for massless particles. The context usually makes it clear which
of these two characteristics is meant; herein, we have in mind only chirality.
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Cabibbo explained the existence of processes of the type

d → W− + u and s → W− + u. (7.52)

Since the s-quark carries strangeness, and u- and d-quarks do not, the first process is assigned
�S = 0 and the second one �S = 1. In these processes the W−-boson is said to interact
with the quark “current” d → u (which preserves strangeness), and respectively s → u (where
strangeness is broken). Using the principle of detailed balance [☞ Section 2.14], we also have the
processes W− ↔ dw + u, and akin to the expression (7.49), we define the quark 4-current density
that interacts with the weak gauge bosons:

Wμ
+ : J

μ
+ = dw Lγγγγ

μuL → cos θc du + sin θc su, (7.53a)

Wμ
− : J

μ
− = uLγγγγ

μdw L → cos θc ud + sin θc us, (7.53b)

whereby it follows that

Z0 : J
μ
0 = uLγγγγ

μuL − dw Lγγγγ
μdw L → uu − cos2θc dd − 1

2 sin 2θc(ds + sd) − sin2θc ss. (7.53c)

This implies the existence and relative strength of the following processes:

(a)

W −

u

d

cos θc

(b)

W +

d

u

cos θc

(c)

W −

u

s

sin θc

(d)

W +

s

u

sin θc (7.54)

(a)

Z 0

d

d

cos2θc

(b)

Z 0

s

s

sin 2θc

(c)

Z 0

s

d

1
2 sin (2θc)

(d)

Z 0

d

s

1
2 sin (2θc) (7.55)

as well as their variations obtained through the principle of detailed balance, and where the relative
θc-dependent factors for the amplitudes of these processes are written next to the vertices. The
processes (7.54a,b) and (7.55a,b) have �S = 0, and the processes (7.54c,d) and (7.55c,d) have
�S = ±1.

Combining the processes (7.54d) and (7.55d) with similar processes where the W±- and
Z0-bosons create a lepton–antilepton pair, we obtain the Feynman diagrams

u s

sin θc

W +

μ + νμ

︷︷
K+

(a)

d s

1
2 sin (2θc)

Z 0

μ − μ +

︸ ︷︷
K 0

(b)

(7.56)

Except for the θc-dependent factor and the dependence on the particle masses, the amplitude of
these processes would have to be approximately the same since
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2 sin(2θc)
sin(θc)

∣∣∣2 = cos2(θc) ∼ O( 1
2 )–O(1). (7.57)

However, experiments confirm that the first of these two processes really happens and with the
expected probability, but the second of these two processes practically does not occur [293]:9

Γ(K+ → μ+ + νμ)
Γ(K+ → all)

≈ 64%,
Γ(K0 → μ−+μ+)

Γ(K0 → all)
< 9×10−9. (7.58)

In the general case, it is experimentally verified that the processes with �S = ±1 mediated
by the Z0-boson occur many orders of magnitude less frequently than other weak processes
that can be described using the diagrams (7.54)–(7.55) and their equivalents with leptons
instead of quarks. Cabibbo’s original parametrization (7.50) thus implies the result (7.53c),
which – besides the experimentally confirmed processes of the type (7.56a) – also predicts
the flavor-changing neutral current processes, such as (7.56b), which do not occur. Accord-
ing to the discussion that led to Conclusion 1.1 on p. 6, Cabibbo’s then model must be
corrected.

To explain the tremendous difference (7.58), Glashow, Iliopoulos and Maiani (GIM) proposed
in 1970 that there exists a fourth quark, c, so that the quark current densities that interact with the
W±- and Z0 bosons are

W+
μ : J

μ
+ = dw Lγγγγ

μuL + sw Lγγγγ
μcL → cos θc du + sin θc su − sin θc dc + cos θc sc, (7.59a)

W−
μ : J

μ
− = uLγγγγ

μdw L + cLγγγγ
μsw L → cos θc ud + sin θc us − sin θc cd + cos θc cs, (7.59b)

Z0 : J
μ
0 = uLγγγγ

μuL − dw Lγγγγ
μdw L + cLγγγγ

μcL − sw Lγγγγ
μds L

→ uu + cc − dd − ss. (7.59c)

This proposal corrects Cabibbo’s model in that it does not alter the results for the processes of
the type (7.56a), but – in agreement with the experimental non-observation – prohibits processes
of the type (7.56b). That is, in contrast to the quark current density (7.53c) that contains mix-
ing terms ds and sd, the quark current density (7.59c) contains no mixing term. The “price”
for so diagonalizing the Z0-boson interaction in the flavor space was the postulate of the exis-
tence of the fourth quark, and that proposal and its consequences are usually called the GIM
mechanism.

Comment 7.5 The Reader should notice the conceptual parallel between Glashow, Iliopoulos
and Maiani’s postulation of a new quark so as to preserve the logical consistency of the
model and Pauli’s postulation of the neutrino so as to preserve the energy conservation
law [☞ Section 2.3.9].

The second-order effect
Now, even if the decay K0 → μ+ + μ− by way of a simple O(g 2

w ) process (7.56b) is forbidden, it
does not follow that this physical process cannot happen by way of a more complex interaction,
i.e., by way of a more complex Feynman diagram. Indeed, one straightforwardly constructs the
O(g 4

w ) diagrams:

9 Processes mediated by Z0-bosons are usually labeled by the FCNC acronym, standing for flavor-changing neutral current.
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(a)
d su

W − q W +

νμ
μ− μ +

K 0

(b)
d sc

W − q W +

νμ
μ − μ +

K0

(7.60)

The sub-processes described by these two diagrams are identical, except that the u-quark in
the left-hand diagram is replaced by a c-quark in the right-hand one. As these quarks are vir-
tual in these diagrams, according to Conclusion 2.3 on p. 56, both sub-processes contribute to
the decay K0 → μ+μ−. However, the diagram (7.54) implies that the amplitude of the dia-
gram (7.60a) is proportional to (cos θc)(− sin θc), while the amplitude for the diagram (7.60b)
is proportional to (sin θc)(cos θc). Since the amplitudes of these sub-processes are being added,
these two contributions would exactly cancel if the u- and c-quark masses were equal.

That is, the application of the 4-momentum conservation in all vertices straightforwardly
implies that one of the (internal) 4-momenta remains undetermined, and its integration remains
unrestricted. We may always choose this to be the 4-momentum shown as circulating in the central
loop/box and which was denoted “q.” The

∫
d4q-integral is dominated by contributions that stem

from the |q| � (mW c) = 80.403 GeV/c regime, which is far in excess of mu, mc. The u- and c-quark
mass dependence of the amplitudes must therefore be fairly soft, causes a very small ultimate dif-
ference between the two amplitudes, and guarantees their approximate cancellation. One expects
the amplitude M to be a function of mc−mu, and M ∝ (mW)−2, owing to the two W-propagators.
Thus, this estimate |M|2 ∝ | (mc−mu)2

m2
w

|2 ∼ 10−8 is already amazingly close to the experimental
result (7.58) [293].

It may further be shown that the GIM mechanism actually guarantees the approximate can-
cellation of all possible contributions to the Z0-mediated weak processes where �S = ±1, and so
guarantees good agreement between the Cabibbo–GIM model with four quarks and the experimen-
tal data. Nevertheless, the postulation of a new particle so as to preserve the logical consistency of
the model was still regarded an extravagant “solution” of a problem of the otherwise (in the early
1970s) experimentally insufficiently justified quark model [243].

7.2.3 U(1)A anomaly

The existence of the fourth, c-quark was experimentally confirmed in 1974, but even before that,
an extraordinarily strong but “purely theoretical” argument for its existence was known – separate
from the GIM mechanism, but just as often ignored as “idle theory.”

In the classical (non-quantum) version of the quark model, the functions used to represent
the various particles satisfy their equations of motion:

ih̄∂μ[Ψ1γγγγ
μΨ2] = (ih̄∂μΨ1γγγγ

μ)Ψ2 + Ψ1γγγγ
μ(ih̄∂μΨ2) = −(ih̄ /∂Ψ1)Ψ2 + Ψ1(ih̄ /∂Ψ2)

= −(m1cΨ1)Ψ2 + Ψ1(m2cΨ2) = (m2−m1)cΨ1Ψ2, (7.61)

since the quark functions Ψ satisfy the Dirac equation (5.34). Analogously,

ih̄∂μ[Ψ1γ̂γγγγγγγ
μΨ2] =

(
ih̄∂μΨ1(−γγγγμγ̂γγγ)

)
Ψ2 + Ψ1γ̂γγγγγγγ

μ(ih̄∂μΨ2) = (ih̄ /∂Ψ1)γ̂γγγΨ2 + Ψ1γ̂γγγ(ih̄ /∂Ψ2)

= (m1cΨ1)γ̂γγγΨ2 + Ψ1γ̂γγγ(m2cΨ2) = (m1+m2)cΨ1γ̂γγγΨ2. (7.62)
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We then have:

Theorem 7.2 For spinors Ψi that satisfy the Dirac equation [ih̄ /∂− mic]Ψi = 0:

1. the 4-vector current J
μ
ij := [Ψiγγγγ

μΨj] satisfies the continuity equation

∂μ J
μ
ij = 0 precisely when mi = mj. (7.63)

2. The pseudo (axial) 4-vector current Ĵ
μ
ij := [Ψiγ̂γγγγγγγ

μΨj] satisfies the continuity equation

∂μ Ĵ
μ
ij = 0 precisely when mi = mj = 0. (7.64)

The continuity equations (7.63) and (7.64) guarantee that the “charges”

Qij :=
∫

d3�r J0
ij and Q̂ij :=

∫
d3�r Ĵ0

ij (7.65)

are conserved in all classical processes. For example, if we select i, j to count all quarks, then
let j = i and sum, ∑i Qii represents the quark number, and the expression (3 ∑i Qii) equals the
baryon number [☞ Section 2.4.2, especially p. 76]. Conversely to Noether’s theorem A.1 on p. 461,
each current density that satisfies the equation of continuity defines a symmetry, and the “charges”
Qij and Q̂ij are the formal generators of these corresponding symmetries. These are the classical
symmetries of the system.

However, quantum effects in principle need not preserve classical symmetries, which then
causes the appearance of quantum contributions that “spoil” the continuity equations

∂μ J
μ
ij = Aij and ∂μ Ĵ

μ
ij = Âij, (7.66)

where Aij and Âij are (quantum) anomalies of the current 4-vector densities J
μ
ij and Ĵ

μ
ij, respectively,

i.e., of the symmetries corresponding to these currents, whereby the anomalies Aij and Âij measure
the quantum breaking of these symmetries.

It is paramount to realize the general nature of this phenomenon! We distinguish the
following cases:

Approximate symmetries, as is the case with the “axial” currents (7.64), which are approximately
conserved only in the specific regime of energies, 3-momenta and precision where we may
neglect the differences between the masses of the particles amongst which the considered
approximate symmetries operate. Even classically, such a current satisfies the continuity
equation only approximately; its breaking produces a so-called pseudo-Goldstone mode, the
mass of which is of the order of the resolution of the assumed approximation.

Global symmetries, such as the baryon number, for which the formal charge (7.65) is given
by (3 ∑i Qii) and where the sum extends over all quark flavors. For that case, quantum
chromodynamics yields A ∝ ϑεμνρσ Tr[FμνFρσ], where ϑ is a free parameter for which
experiments indicate ϑ < 3×10−10, the tininess of which has no complete theoretical
explanation [☞ Section 6.3.1]☞ .

Gauge symmetries, for which the appearance of anomaly indicates an essential contradiction. That
is, models with anomalous gauge symmetry simply make no sense – unless they can be
extended so as to cancel all gauge anomalies.

The analysis of precisely this last type of anomaly (S. Adler, and independently J. S. Bell and
R. Jackiw) in 1969 pointed to the appearance of an anomalous quantum contribution in the con-
tinuity equation to the familiar electromagnetic current, owing to the coupling with the axial cur-
rent [425, 586]. All amplitude contributions for any concrete process that leads to the appearance
of an anomaly are products of a single, characteristic and incurably divergent type of integral and
an indicative numerical factor. The algebraic sum of these contributions, the amplitude is thus a
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product of this characteristic and divergent integral and the sum of these indicative numeric fac-
tors. Such a result makes sense only if the sum of the indicative numeric factors identically cancels,
as is the case, e.g., with the sum of electric charges within the family {u, d; νe, e−} of fermions10

∑
i

Qi = 3
[(

+ 2
3

)
+

(− 1
3

)]
+ (0) + (−1) = 0, (7.67)

where the explicit pre-factor “3” stems from summing over the three colors of the u- and d-quarks.
The identical cancellation of this sum – and the corresponding absence of the quantum anomaly
in electric charge conservation – has the following implications:

1. Every lepton pair {ν�, �−} requires a corresponding quark pair with (color-averaged) charges
+ 2

3 and − 1
3 .

2. Quarks with electric charges + 2
3 and − 1

3 must occur in triples. Alternatively, the integrally
charged quarks of the Han–Nambu model (5.212a) also occur in triples.

The latter of these two consequences confirms the necessity of the existence of quark colors.
However, more importantly, the first of these two consequences implies that the existence of

the muon necessarily predicts the existence not only of the s-quark (with − 1
3 charge) but also of

the c-quark (with + 2
3 charge). Since the neutrino has no electric charge, the unavoidable need

for a consistent and complete cancellation of the quantum anomaly of the electric current had by
1969 predicted the existence of the fourth quark. However, it was not clear at the time that this
conclusion was absolutely inevitable, and even the theoretical motivations for predicting the fourth
quark, such as the GIM mechanism, originally did not include the anomaly analysis.

Digression 7.2 The lesson from Pauli’s prediction of the neutrino [☞ Section 2.3.9] so as
to save the 4-momentum conservation law seems not to have been learned well enough.
Between 1969 and 1974, several separate theoretical considerations indicated that incon-
sistency and contradiction within the theoretical models of particle physics could only be
avoided by introducing a new particle, the c-quark. Nevertheless, few particle physicists
took these arguments seriously, since the discovery of the J/ψ particle, the lowest-energy
cc-bound state, came as a surprise to most.

It behooves us to finally learn that logical consistency and absence of self-
contradiction is a terrific tool of theoretical physics.

The benefit of hindsight today of course permits complete certainty in limiting to quark
models that include only complete quark–lepton fours (so-called “families”):[

u
d

]
,
[
νe
e−

]
︸ ︷︷ ︸;

[
c
s

]
,
[
νμ
μ−

]
︸ ︷︷ ︸;

[
t
b

]
,
[
ντ
τ−

]
︸ ︷︷ ︸

. (7.68)

Including the s-quark without the c-quark or the b-quark without the t-quark is simply inconsistent,
as it causes the quantum effects to ruin the U(1) symmetry of quantum electrodynamics and the
corresponding electric charge conservation – contradicting experiments, as well as contradicting
the gauge symmetry of electromagnetism and the corresponding interactions with gauge bosons.
10 The fundamental Standard Model fermions are typically divided into three copies of the first four: {u, d; νe, e−},

{c, s; νμ, μ−} and {t, b; ντ , τ−}. These copies are called – figuratively – either generations or families. Without any impli-
cation or judgement about the former of these – or indeed any filial/paternal, sororal or fraternal relations, I will herein
use the latter name.

https://doi.org/10.1017/9781009291507.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.010


7.2 The weak nuclear interaction and its consequences 273

Example 7.1 The anomaly analysis from Section 7.2.3 may be applied to the pair of
Feynman diagrams where fL ∈ {uL, dL; νeL, e−L ; uL = uR, dL=dR; e+

L = e−R ; · · · }:

time

W 3

γ

γ

fL

time

W 3

γ

γ

fL (7.69)

the amplitudes of which contain terms proportional to the sum ∑ fL
Iw( fL)

(
Q( fL)

)2.
Summing over the fermions of only the first family [☞ Table 7.1 on p. 275, as well as
Refs. [425, 586, Chapter 19] for details],

∑
fL

Iw( fL)
(
Q( fL)

)2 = 3
[(

+ 1
2

)(
+ 2

3

)2 +
(− 1

2

)(− 1
3

)2
]

+
(
+ 1

2

)
(0)2 +

(− 1
2

)(−1
)2

= 3
[
+ 2

9 − 1
18

]
− 1

2 = 3
(
+ 3

18

)
− 1

2 = 0. (7.70)

The complete computation shows that the contributions of the Feynman diagrams (7.69)
in fact diverge. Thus, the contributions of the Feynman diagrams (7.69) to the amplitudes
that contain the W3 → 2γ factor are finite (and in fact vanish) if and only if the virtual
fermions forming the triangle loops include complete families {u, d; νe, e−}, {c, s; νμ, μ−},
etc. Without the cancellation (7.70), models that include these Feynman diagrams simply
make no sense. Notice that the same computation for the Han–Nambu model (5.212a)
of integrally charged quarks,

∑
fL

Iw( fL)
(
Q( fL)

)2

=
[(

+ 1
2

)(
(+1)2+(+1)2+(0)2) +

(− 1
2

)(
(−1)2+(0)2+(0)2)]

+
(
+ 1

2

)
(0)2 +

(− 1
2

)(−1
)2

=
[(

+ 1
2

)
2 +

(− 1
2

)
1
]

+
(− 1

2

)(−1
)2 =

[
+1 − 1

2

]− 1
2 = 0, (7.71)

implies that it too is free of this gauge anomaly.

Example 7.2 Akin to Example 7.1, we may analyze the pair of Feynman diagrams where
the unobserved fermion in the loop is again fL ∈ {uL, dL; νeL, e−L ; uR=uL, dL; e+

L ; . . .}:

time

B

γ

γ

fL

time

B

γ

γ

fL (7.72)

the amplitudes of which contain terms proportional to the sum ∑ fL
Yw( fL)

(
Q( fL)

)2.
Summing over the fermions of only the first family [☞ Table 7.1 on p. 275, as well as
Refs. [425, 586, Chapter 19] for details],
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∑
fL

Yw( fL)
(
Q( fL)

)2 = 3
[(

+ 1
3

)((
+ 2

3

)2 +
(− 1

3

)2
)]

+
(−1

)
(0)2 +

(−1
)(−1

)2

+ 3
[(− 4

3

)(− 2
3

)2 +
(
+ 2

3

)(
+ 1

3

)2
]
+

(
+2

)(
+1

)2 + (0)(0)2

= 3
(

1
3 · 4+1

9 − 4
3 · 4

9 + 2
3 · 1

9

)
− 1 + 2 = 5−16+2

9 + 1 = 0. (7.73)

As in the previous example, the complete computation shows that the contributions of
the Feynman diagrams (7.72) to the amplitude of the B → 2γ process in fact diverge.
Again, this result makes sense only if the virtual fermions depicted by the triangular loops
include complete families {u, d; νe, e−}, {c, s; νμ, μ−}, etc. Without a cancellation such as
in (7.73), models that include these Feynman diagrams simply make no sense. Notice
that the same computation for the Han–Nambu model (5.212a) of integrally charged
quarks,

∑
fL

Yw( fL)
(
Q( fL)

)2

=
[(

+ 1
3

)(
(+1)2+(+1)2+(0)2 + (−1)2+(0)2+(0)2)] + (+1)(0)2 + (−1)(−1)2

+
[(− 4

3

)(
(+1)2+(+1)2+(0)2) +

(
+ 2

3

)(
(−1)2+(0)2+(0)2)]

+ (+2)(+1)2 + (0)(0)2

=
[ 1

3 ·3 − 4
3 ·2 + 2

3 ·1
]− 1 + 2 = 3−8+2

3 + 1 = 0, (7.74)

implies that it is also free of this gauge anomaly.

Conclusion 7.6 Since the joint contributions of the Feynman diagram pairs (7.69) vanish,
as they also do for the diagram pair (7.72), the joint contributions then also vanish for the
linear combination Z0 = cos(θw)W3 − sin(θw)B.11 The same holds if in these diagrams
the W3- and B-particle, respectively (which are the normal modes in the SU(2)w × U(1)y
symmetric phase) are replaced with the Z0-particle, one of the two normal modes after the
SU(2)w × U(1)y → U(1)Q symmetry breaking.

In the general case, the anomaly of any symmetry must remain conserved through any
phase transition, and so also through the SU(2)w × U(1)y → U(1)Q electroweak symmetry
breaking. Anomalies of gauge symmetries of course must vanish (cancel), but the conser-
vation of anomalies of other (including approximate, and exact but global) symmetries is a
useful “sum rule” in the study of all phase transitions.

Further details on this technique, both conceptual and practical and technical, may be found in
standard field theory textbooks, and the interested Reader is directed to Refs. [12, 224, 75, 261,
425, 554, 555, 206, 484, 496, 589, 586, 590].

7.2.4 The weak (Weinberg) angle
Although both the W±- and Z0-particles are gauge bosons of weak interactions, their masses
are not equal [☞ Table C.2 on p. 526]. This is a consequence of the fact that the Z0-boson

11 The angle θw is usually called “weak” or the Weinberg angle (although it was Glashow who introduced it);
experimentally, θw ≈ 28.75◦.
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and the photon are linear combinations of the SU(2)w-partner of the W±-boson and the U(1)y-
gauge boson. This effect is well described in the Glashow–Weinberg–Salam model of electroweak
interactions.

The conclusions of Sections 7.2.1–7.2.3 indicate a finer structure among the particles in
Table 2.3 on p. 67, of which all matter consists. That is, weak interactions may be described by
a non-abelian (non-commutative) gauge model in which, owing to the relation (7.49), the left-
and the right-handed fermions are treated differently. Akin to the GNN formula (2.44b), the weak
isospin Iw and the weak hypercharge Yw are defined so as to satisfy the relation

Q = Iw + 1
2 Yw. (7.75)

Table 7.1 The weak isospin, the weak hypercharge and the electric charge of the elementary fermions
are related by equation (7.75). The values are, however, different for fermions of left-handed and
right-handed chirality.

Fermion family Charges
1 2 3 Q Iw Yw

Ψ− = γγγγ−Ψ︸ ︷︷ ︸
left-handed

⎧⎪⎨⎪⎩
[

u

d

]
L

[
c

s

]
L

[
t

b

]
L

+ 2
3

− 1
3

+ 1
2

− 1
2

+ 1
3

+ 1
3[ νe

e−

]
L

[
νμ

μ−

]
L

[ ντ
τ−

]
L

0

−1

+ 1
2

− 1
2

−1

−1

Ψ+ = γγγγ+Ψ︸ ︷︷ ︸
right-handed

⎧⎪⎪⎨⎪⎪⎩
uR cR tR + 2

3 0 + 4
3

dR sR bR − 1
3 0 − 2

3
e−R μ−R τ−R −1 0 −2

νeR νμR ντR 0 0 0

It must be emphasized that the weak isospin and the weak hypercharge are defined akin
to the previously defined and similarly named quantities, and so that they satisfy the familiar
formula (2.44b). However, Table 7.1 shows that these quantities coincide with the “old” val-
ues (2.44a) only for the left-handed eigenfunctions of chirality and not for the right-handed ones –
which have no weak isospin and so are invariant with respect to SU(2)w. In this way, the weak
isospin and SU(2)w play the role, respectively, of the charge and the symmetry for the gauge
model of weak interactions.

In the gauge SU(2)w × U(1)y model (Glashow, Weinberg and Salam) one introduces the
gauge bosons W±

μ and W3
μ for the SU(2)w factor, and Bμ for the U(1)y factor. The weak isospin

and the weak hypercharge [☞ Table 7.1] determine the interaction intensity between these gauge
bosons and the fermions {u, d; νe, e−; c, s; νμ, μ−; . . .}, so we know that the interaction terms in the
Lagrangian density are, in order:

LGWS ( gw
(
W+
μ Jμ+ + W−

μ Jμ− + W3
μ Jμ3

)
+ gyBμ Jμy , (7.76a)

Jμ+ :=
{
[uL γγγγ

μ dwL] + [cL γγγγ
μ swL] + [tL γγγγ

μ bwL]
}

, (7.76b)

Jμ− :=
{
[dwL γγγγ

μ uL] + [swL γγγγ
μ cL] + [bwL γγγγ

μ tL]
}

, (7.76c)

Jμ3 :=
{

1
2

(
[uL γγγγ

μ uL] + [cL γγγγ
μ cL] + [tL γγγγ

μ tL] + [νeL γγγγ
μ νeL] + [νμL γγγγ

μ νμL] + [ντL γγγγ
μ ντL]

)
− 1

2

(
[dL γγγγ

μ dL] + [sL γγγγ
μ sL] + [bL γγγγ

μ bL] + [e−L γγγγμ e−L ] + [μ−L γγγγμ μ−L ] + [τ−L γγγγμ τ−L ]
)}

, (7.76d)

https://doi.org/10.1017/9781009291507.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.010


276 The Standard Model

Jμy :=
{

1
6

(
[uL γγγγ

μ uL] + [cL γγγγ
μ cL] + [tL γγγγ

μ tL] + [dL γγγγ
μ dL] + [sL γγγγ

μ sL] + [bL γγγγ
μ bL]

)
− 1

2

(
[νeL γγγγ

μ νeL] + [νμL γγγγ
μ νμL] + [ντL γγγγ

μ ντL] + [e−L γγγγμ e−L ] + [μ−L γγγγμ μ−L ] + [τ−L γγγγμ τ−L ]
)

+ 2
3

(
[uR γγγγ

μ uR] + [cR γγγγ
μ cR] + [tR γγγγ

μ tR]
)
− 1

3

(
[dR γγγγ

μ dR] + [sR γγγγ
μ sR] + [bR γγγγ

μ bR]
)

−
(
[e−R γγγγμ e−R ] + [μ−R γγγγμ μ−R ] + [τ−R γγγγμ τ−R ]

)}
, (7.76e)

where dw, sw and bw are the quark states defined by the Cabibbo–Kobayashi–Maskawa (CKM)
mixing (2.53)–(2.55), the subscript “L” denotes the projection to the left-handed chirality, and
where the expression for Jμy includes the factor 1

2 from the formula Q = Iw + 1
2 Yw, modeled on the

original GNN formula (2.44b).
For the purposes of SU(2)w × U(1)y → U(1)Q symmetry breaking, Weinberg and Salam12

introduced a doublet of complex Higgs fields:

H =
[

H1

H2

]
, with

{
Iw(H1) = + 1

2 Yw(H1) = +1 Q(H1) = +1,

Iw(H2) = − 1
2 Yw(H2) = +1 Q(H2) = 0.

(7.77)

We thus identify H1 = H+, (H1)† = H−, H2 = H0 and (H2)† = H 0.
Besides, W±

μ , W3
μ and Bμ also interact with the complex Higgs field doublet, H,

L̃H =
∥∥(∂μ − igwWα

μ
1
2σσσσα − igyBμ 1

2 1)H
∥∥2
η
+ 1

2

( μc
h̄

)2(
H†H

)− 1
4λ

(
H†H

)2, (7.78)

where the index α is summed over the values 1, 2, 3, and where

σσσσ1 =
[

0 1
1 0

]
, σσσσ2 =

[
0 −i
i 0

]
, σσσσ3 = 1

2

[
1 0
0 −1

]
. (7.79)

With the sign of the quadratic term as in equation (7.78), the minimum of the potential lies in the
values of the field H that satisfy∣∣H1

∣∣2 +
∣∣H2

∣∣2 = H 2
1r + H 2

1i + H 2
2r + H 2

2i =
( μc
λh̄

)2 (7.80)

and which form a 3-sphere S3 ⊂ R4 ≈ C2. One such value is H =
( μc
λh̄

)[ 0
1

]
.

Digression 7.3 That is, with the standard choice of the Higgs field (7.77), 〈H1〉 =
〈H+〉 �= 0 would imply that the vacuum has the electric charge +1 and that the U(1)
gauge symmetry of the electromagnetic interaction is broken – which is not the case! Of

12 S. L. Glashow had already in 1958, in his PhD dissertation mentored by J. Schwinger, proposed an electro-weak unifica-
tion based only on the SU(2)w group, where the photon corresponds to the diagonal generator J 3, and the W±-bosons
correspond to the generators J± [☞ relations (A.38)]. The model was worked out in collaboration with H. Georgi and it
turned out that this cannot be made to agree with experiments [209]. It became clear in the early 1960s that the gauge
group SU(2)w × U(1)y is a better choice, so that the photon (7.85) would interact with fermions with an intensity equal
to the electric charge obtained from the GNN formula (7.75). The mass of the W±- and the Z0-bosons had, however, re-
mained a mystery: Simply added “by hand” (as Glashow advocated), the mass of the gauge bosons explicitly breaks the
gauge invariance but also the renormalizability (and then also the self-consistency) of the model. In 1967–8, Weinberg
and, independently, Salam showed that the Higgs mechanism may be applied and produces the desired mass. G. ’t Hooft
(1971), B. W. Lee and J. Zinn–Justin, and finally G. ’t Hooft and M. Veltman (1972) proved the renormalizability of
the Glashow–Weinberg–Salam model of electroweak interactions, and D. J. Gross and R. Jackiw, and then C. Bouchiat,
J. Iliopoulos and P. Meyer showed the same year (1972) that all anomalies cancel in this model [209, 552, 473].
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course, the choice 〈H1〉 �= 0 and 〈H2〉 = 0 would only imply that the remaining massless
field is not Aμ but Zμ amongst the linear combinations (7.85)–(7.86), and that the cor-
responding U(1) ⊂ SU(2)w × U(1)y remains the exact gauge symmetry. This group U(1)
and this field would then have to be identified, respectively, with the gauge symmetry of
electromagnetism and the photon.

After redefining the Higgs field,

H̃ := H − 〈H〉, 〈H〉 =
( μc
λh̄

)[ 0
1

]
, (7.81)

it follows that H̃1r, H̃1i, H̃2r, H̃2i, W1
μ, W2

μ, W3 and Bμ are not the normal modes – just as in the
Lagrangian density (7.36)–(7.39) – and one must again diagonalize the fields. The identification
of normal modes is fairly simple. From equation (7.78), we have[

(∂μ − igwWα
μ

1
2σσσσα − igyBμ 1

2 1)H
]†
ημν

[
(∂ν − igwWβ

ν
1
2σσσσβ − igyBν 1

2 1)H
]

= · · · + ( μc
λh̄

)2
[
(−igwWα

μ
1
2σσσσα − igyBμ 1

2 1)
[

0
1

]]†
ημν

[
(−igwWβ

ν
1
2σσσσβ − igyBν 1

2 1)
[

0
1

]]
+ · · ·

= · · · + 1
4

( μc
λh̄

)2(gwW3
μ − gyBμ)†ημν(gwW3

ν − gyBν) + · · · . (7.82)

Using the “weak angle”

θw = arccos
(

gw√
g 2

w +g 2
y

)
, so cos θw = gw√

g 2
w +g 2

y
and sin θw = gy√

g 2
w +g 2

y
, (7.83)

the expression (7.82) becomes

· · · + 1
2

( μc√
2λh̄

)2(g2
w+g2

y)
∥∥∥( cos(θw)W3

μ − sin(θw)Bμ
)∥∥∥2

η
+ · · · . (7.84)

The normal modes then are the linear combinations

Aμ := cos(θw)Bμ + sin(θw)W3
μ, with the mass = 0, (7.85)

Zμ := − sin(θw)Bμ + cos(θw)W3
μ, with the mass = μc√

2λh̄

√
g2

w + g2
y. (7.86)

The gauge boson represented by the 4-vector Aμ is identified as the photon, and the gauge boson
represented by the 4-vector Z0

μ acquired a mass and is identified with the massive Z0-particle.
Similarly,[

(∂μ − igwWα
μ

1
2σσσσα − igyBμ 1

2 1)H
]†
ημν

[
(∂ν − igwWβ

ν
1
2σσσσβ − igyBν 1

2 1)H
]

= · · · + ( μc
λh̄

)2
[
−igw(W1

μ
1
2σσσσ1+W2

μ
1
2σσσσ2)

[
0
1

]]†
ημν

[
−igw(W1

ν
1
2σσσσ1+W2

ν
1
2σσσσ2)

[
0
1

]]
+ · · ·

= · · · + 1
2 g2

w
( μc
λh̄

)2
[
(W+

μ σσσσ−+W−
μ σσσσ+)

[
0
1

]]†
ημν

[
(W+

ν σσσσ−+W−
ν σσσσ+)

[
0
1

]]
+ · · ·

= · · · + g2
w
( μc√

2λh̄

)2W+
μ η

μνW−
ν + · · · , (7.87)

where
W±
μ := 1√

2

(
W1
μ ± iW2

μ

)
and σσσσ+ =

[
0 1
0 0

]
, σσσσ− =

[
0 0
1 0

]
. (7.88)
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This shows that the mass of the W±-bosons equals gw
( μc√

2λh̄

)
, and using the definition (7.83) and

the results (7.84) and (7.87) we have

MW = cos(θw) MZ, (7.89a)

since
[

gw
( μc√

2λh̄

)]
= gw√

g2
w+g2

y

[√
g2

w+g2
y
( μc√

2λh̄

)]
. (7.89b)

Conclusion 7.7 Note that the gauge fields Bμ and W3
μ couple, respectively, to the corre-

sponding “charges” Yw and Iw, and that the gauge field Aμ – the photon – couples to the
electric charge Q. The linear relation (7.85) then corresponds to the “weak” version of the
GNN formula, Q = Iw + 1

2 Yw, which holds for the values of these charges as they are given
in Table 7.1 on p. 275.

The fermion currents that interact with the gauge fields W± remain the same as in (7.76b)–
(7.76c), and the Aμ and the Z0

μ fields respectively interact with the fermion currents:

Jμem :=
[

Jμ3 + Jμy
]

= [Jμem L + Jμem R

]
, (7.90)

JμZ := 1
cos(θw)

[
Jμ3 − sin2(θw)Jμem L

]
= 1

cos(θw)

[
cos2(θw)Jμ3 − sin2(θw)Jμy

]
, (7.91)

where

Jμem i := ∑
i=L,R

{
+ 2

3

(
[ui γγγγ

μ ui] + [ci γγγγ
μ ci] + [ti γγγγ

μ ti]
)
− 1

3

(
[di γγγγ

μ di] + [si γγγγ
μ si] + [bi γγγγ

μ bi]
)

−1
(
[e−i γγγγ

μ e−i ] + [μ−i γγγγ
μ μ−i ] + [τ−i γγγγμ τ−i ]

)}
. (7.92)

Digression 7.4 That is, we have that

gw W3
μ Jμ3 + gy Bμ Jμy = gw

[
sin(θw)Aμ + cos(θw)Zμ

]
Jμ3 + gy

[
cos(θw)Aμ − sin(θw)Zμ

]
Jμy

=
[

gw sin(θw) Jμ3 + gy cos(θw) Jμy
]

Aμ +
[

gw cos(θw) Jμ3 − gy sin(θw) Jμy
]

Zμ, (7.93a)

where, of course, we know that[
gw sin(θw) Jμ3 + gy cos(θw) Jμy

]
=

[
gw gy√
g2

w+g2
y

Jμ3 + gy gw√
g2

w+g2
y

Jμy
]

= ge Jμem. (7.93b)

This recovers the original GNN formula (2.30), i.e., (2.44b):

Jμem = Jμ3 + Jμy , (7.93c)

since the 1
2 factor in the GNN formula (2.30) is built into the definition of Jμy (7.76e).

Also,
gw gy√
g2

w+g2
y

(7.83)= gw sin(θw) (7.83)= gy cos(θw) (7.90)= ge. (7.93d)

In turn,

gw cos(θw) Jμ3 − gy sin(θw) Jμy = gz

[
cos2(θw) Jμ3 − sin2(θw) Jμem

]
(7.93e)

recovers equation (7.91), where

gz = gw/ cos(θw) =
√

g2
w+g2

y. (7.93f)

Note that gz = gw/ cos(θw) > gw sin(θw) = ge, and ge
gz

= 1
2 sin(2θw).
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Already from the expansions (7.76) and (7.90)–(7.91), we see that the complete Lagrangian
density contains very many terms. There exist several different “economical” ways of writing that
“pack” of the myriads of summands in different ways. For example, we may write

Jμem = ∑
n

{
2
3 [Unγγγγ

μUn] − 1
3 [Dnγγγγ

μDn] − [�nγγγγ
μ�n]

}
, n = 1, 2, 3, (7.94)

where U1 = u, U2 = c, U3 = t, D1 = d, D2 = s, D3 = b, �1 = e−, �2 = μ− and �3 = τ−, and
omitting the projections to left-handed chirality of a particle indicates the inclusion of both left-
and right-handed particles in the sum.

For concrete computations, it is however more convenient to simply list the amplitude
contributions of each possible vertex and line, as done in the next section.

7.2.5 Feynman’s rules for weak interactions
Interactions of the W±-bosons with elementary Standard Model fermions are simple as compared
to the interactions of the Z0-boson. It is important, however, to keep in mind that the dw-, sw-
and bw-quark states, which interact by weak interactions, are defined as the CKM combinations
(2.53)–(2.55):⎡⎣|dw〉

|sw〉
|bw〉

⎤⎦ :=

⎡⎣Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎤⎦⎡⎣|d〉|s〉
|b〉

⎤⎦ , (7.95a)

=

⎡⎣ c12c13 s12c13 s13 e−iδ13

−s12c23 − c12s23s13 eiδ13 c12c23 − s12s23s13 eiδ13 s23c13
s12s23 − c12c23s13 eiδ13 −c12s23 − s12c23s13 eiδ13 c23c13

⎤⎦⎡⎣|d〉|s〉
|b〉

⎤⎦ , (7.95b)

where cij := cos(θij), sij := sin(θij), i, j = 1, 2, 3 = d, s, b,

and where |d〉, |s〉 and |b〉 are the eigenstates of the “free” Hamiltonian, i.e., the states with the
well-defined mass.13 This permits writing

(7.96)

and

(7.97)

which of course implies all processes that may be obtained from Dw n → W− + Un and �n →
W− + νn using the crossing symmetry and the principle of detailed balance [☞ Section 2.3.8].

13 These are the stationary states, well known to the Student who successfully covered quantum mechanics, the eigenstates
of the “free” Hamiltonian, i.e., the one where the mixing and interaction terms are omitted.
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That is, using the CKM definitions (7.95), the interactions with the W±-bosons do not mix the
CKM-redefined “families” of quarks.

Although Aμ is a linear combination of the W3
μ-field with the “V−A” type of interaction

with elementary Standard Model fermions and of the Bμ-field that interacts with the fermions of
both left- and right-handed chirality, the values of Iw and Yw in Table 7.1 on p. 275 ensure that
the resulting interaction with the Aμ-field is purely of the “V” type. That is, the Aμ-field interacts
equally with fermions of both left- and right-handed chirality, and of course, precisely as the photon
in electrodynamics [☞ Procedure 5.2 on p. 193].

The neutral Zμ-field is the complementary linear combination of the neutral W3
μ- and Bμ-

fields, and the interactions of this Zμ-field with the elementary Standard Model fermions are not
as simple as those of the Aμ-field. Following the textbook [243], we may write

Ψ cV cA

νn 1
2

1
2

�n − 1
2 +2 sin2(θw) − 1

2

Un 1
2− 4

3 sin2(θw) 1
2

Dn − 1
2 + 2

3 sin2(θw) − 1
2

(7.98)

As regards the internal lines that correspond to W±- and Z0-boson exchanges, analogously
to step 3 in the procedures 5.2 on p. 193, and 6.1 on p. 232, we assign

(7.99)

where M = MW or M = MZ, depending on whether the propagator corresponds to the W±- or
the Z0-boson exchange. When the exchange energies are sufficiently smaller than Mc2, we have

lim
(|q2|/M2

W c2)→0
− i(ημν − qμqν/M2c2)

q2 − M2c2 ≈ iημν
M2c2 , (7.100)

which is usually a good first approximation.
In addition to these definitions, the procedure for computing amplitudes of Feynman dia-

grams is identical to Procedures 5.2 for quantum electrodynamics on p. 193, and 6.1 for quantum
chromodynamics on p. 232.

Example 7.3 The elastic collision νμ + e− → νμ + e− may occur, to O(g 2
w ) order, only

mediated by a Z0-boson exchange:

νμ

νμ

Z 0

e−

e−

M =
g 2

z

8M2
Z c2

[
ν3γγγγ

μ(1−γ̂γγγ)ν1
][

e4γγγγ
μ(cV1−cAγ̂γγγ)e1

]
, (7.101)

where νi := Ψνμ(pi) and ei := Ψe−(pi). Computing as in the case (5.131)–(5.140) we
obtain
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〈|M|2〉 = 1
2

( gz

4MZ c

)4{
(cV+cA)2(p1·p2)(p3·p4) + (cV−cA)2(p1·p4)(p3·p2)

− m2
e c2(c 2

V −c 2
A )(p1·p3)

}
. (7.102)

In the CM-system and neglecting the electron mass, me → 0, we obtain the simpler
relation

〈|M|2〉 = 1
2

( gz E
MZ c2

)4{
(cV+cA)2 + (cV−cA)2 cos4( 1

2θ)
}

, (7.103)

where E is the energy of the electron (as well as the neutrino) in the CM-system, and θ
is the electron deflection angle. Then

dσ
dΩ

= 2
( h̄ c
π

)2( gz

4MZ c2

)4
E2

{
(cV+cA)2 + (cV−cA)2 cos4( 1

2θ)
}

, (7.104)

σ =
2

3π
(h̄ c)2

( gz

2MZ c2

)4
E2 (c 2

V +c2
A + cV cA)

=
2
π

(h̄ c)2
( gz

2MZ c2

)4
E2

(
1
4 − sin2(θw) + 4

3 sin4(θw)
)

. (7.105)

Comparing with the similar process νμ + e− → νe + μ− that involves the exchange of a
W-boson:

νμ

νe

W +

e−

μ −

σ =
1

8π

[(
gw MW c2

)2
h̄ cE

]2[
1 −

(mμc2

2E

)2
]2

(7.106)

and at energies E 
 mμc2, we have (using θw = 28.75◦, from the ratio of the measured
masses MW/MZ)

σ(νμ + e− → νμ + e−)
σ(νμ + e− → νe + μ−)

≈ 1
4 − sin2(θw) + 4

3 sin4(θw) = 0.0900. (7.107)

This agrees with the experimental value 0.11 ± 10% fairly well.

7.2.6 Exercises for Section 7.2

✎ 7.2.1 Following Example 7.1, show that the sum of all amplitudes for both diagrams of the
type (7.69) but with two (three) W3-particle and one (no) photon also vanishes.

✎ 7.2.2 For the potential process γ → 2γ described by an appropriate algebraic sum of dia-
grams of the type (7.69) but with a photon in place of W3, show that the symmetrization
of the outgoing photons (as bosons) guarantees that the sum of the contributions of these
Feynman diagrams vanishes.
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✎ 7.2.3 Following Example 7.2, show that the sum of all amplitudes for both diagrams of the
type (7.72) but with n B-particles and (3−n) photons also vanishes, for every n = 0, 1, 2, 3.

✎ 7.2.4 Complete the computation in Example 7.3.

7.3 The Standard Model
The elaborate structure called the Standard Model of elementary particle physics has the following
components:

1. the elementary spin- 1
2 fermions in Table 7.1 on p. 275, and the data (2.44);

2. electromagnetic interactions with the U(1)Q gauge symmetry [☞ Section 5.3];
3. chromodynamic interactions with the SU(3)c gauge symmetry [☞ Section 6.1];
4. the asymmetric treatment of particles with left- and right-handed chirality [☞ discussion

around the expressions (5.57)–(5.62), then Sections 7.2.1 and 7.2.4];
5. the GIM mechanism, anomaly cancellation and generalization of the GIM mechanism with

the Cabibbo–Kobayashi–Maskawa quark mixing [☞ Section 7.2.2];
6. the SU(2)w × U(1)y gauge symmetry of the electroweak interactions, in the symmetric phase;
7. the spontaneous SU(2)w × U(1)y → U(1)Q gauge symmetry breaking of electroweak

interactions in the Higgs phase [☞ Sections 7.1 and 7.2.4];
8. the very intricate and detailed structure of fermion masses [☞ Tables 4.1 on p. 152, and C.2

on p. 526].

This structure is presented in an extremely short and ultra-compact way in Table 2.3 on p. 67.
However, the incremental development of the material presented in sections from Chapter 2 up to
now clearly indicates that this short compactness is merely a convenient business-card to an oth-
erwise technically very demanding and intricate Standard Model. This demanding nature should
not be surprising, since this model successfully describes practically all known phenomena not
only at the fundamental level of quarks and leptons, but also at the level of hadronic bound
states [☞ Section 2.4.1 and Conclusion 2.4 on p. 71].

Undoubtedly, the most complex parts of the Standard Model pertain to the aspects of weak
interactions, which are roughly presented in the foregoing part of this chapter. It remains to discuss
(1) the general mechanism in the Standard Model by which fermions in Table 7.1 on p. 275 acquire
a mass, and (2) neutrino mixing.

7.3.1 Fermion masses
The argument at the very beginning of Chapter 7 shows that the gauge bosons are massless by
construction – except, as we have seen here, those corresponding to symmetries spontaneously
broken via the Higgs mechanism [☞ Section 7.1.3]. The mass of these gauge bosons stems from
the interaction with the Higgs field [☞ expressions (7.84) and (7.87)] and owing to the shift
H → H̃ + 〈H〉, which is dictated by the fact that the “flipped” sign of the quadratic term in the
Lagrangian density (7.78) puts the minimum of the potential energy at one of the points with
H†H =

( μc
λh̄

)2
> 0, so that the vacuum expectation value of the two-component Higgs field is not

zero, 〈H〉 �= 0.
Similarly, one expects that the fermion masses also stem from the Higgs field shift H →

H̃ + 〈H〉. The expression (7.47) shows that a typical term in the Lagrangian density that provides
the fermion fields with a mass must be of the form (with the customary notation Ψ+ = ΨL and
Ψ− = ΨR)

ΨL H ΨR and ΨR H ΨL. (7.108)
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Such terms are possible precisely because H is an SU(2)w-doublet, just as are the wave-functions
for all fermions of left-handed chirality, whereas all right-handed fermions are invariant under
SU(2)w transformations. Therefore, terms such as14

he e−R H†[ νe
e−

]
L
+ h.c. = he e−R [H∗

1 H∗
2 ] [ νe

e−
]

L
+ h.c. = he e−R

(
H∗

1 νeL + H∗
2 e−L

)
+ h.c.

= &e
(
he〈H2〉∗

) (
e−R e−L + e−L e−R

)
+ · · · (7.109)

are SU(2)w × U(1)y-invariant and produce the electron mass, me = &e
(
he〈H2〉

)
/c2. Similarly, for

d-quarks one has

hd dR H†[ u
d
]

L
+ h.c. = hd dR

[H∗
1 H∗

2 ] [ u
d
]

L
+ h.c. = hd dR

(
H∗

1 uL + H∗
2 dL

)
+ h.c.

= &e
(
hd〈H2〉∗

) (
dR dL + dL dR

)
+ · · · , (7.110)

which are also SU(2)w × U(1)y-invariant and produce md = &e
(
hd〈H2〉

)
/c2, the d-quark mass.

For u-quarks, an additional definition [☞ discussion of the relation (A.49)] is needed:

C : H =
[

H1
H2

]
�−→ Hc := −εεεε H∗ =

[
0 −1
1 0

][
H∗

1
H∗

2

]
=

[ −H∗
2

H∗
1

]
, (7.111)

which transforms, under SU(2)w, the same as H. We can therefore add to the Lagrangian density
also the terms

−hu uR (Hc)†[ u
d
]

L
+ h.c. = −hu uR

[−H2 H1]
[ u

d
]

L
+ h.c. = −hu uR

(− H2uL + H1dL

)
+ h.c.

= &e
(
hu〈H2〉

) (
uR uL + uL uR

)
+ · · · , (7.112)

which are also SU(2)w × U(1)y-invariant and produce mu = &e
(
hu〈H2〉

)
/c2, the u-quark mass.

The structure of the Standard Model neither requires nor prohibits adding the neutrino of
right-handed chirality, which is noted in Table 7.1 on p. 275: νiR (with i = e, μ, τ) are included in
the table but are separated from the other fermions. If one includes these right-handed neutrinos,
one can include in the Lagrange density also the terms

−hν νeR (Hc)†[ νe
e−

]
L
+ h.c. = −hν νeR

[−H2 H1]
[ νe

e−
]

L
+ = −hν νeR

(− H2νeL + H1e−L
)
+ h.c.

= &e
(
hν〈H2〉

) (
νeR νeL + νeL νeR

)
+ · · · , (7.113)

which are also SU(2)w × U(1)y-invariant and produce mν = h̄ &e
(
hν〈H2〉

)
/c, the neutrino mass.

The quantities defined by the relations (7.109), (7.110), (7.112) and (7.113) are the so-
called Dirac masses, since the variation of the Lagrangian density by fermion fields produces the
Dirac equation (5.34), with the indicated masses. In addition, terms that were omitted in the
expressions (7.109), (7.110), (7.112) and (7.113) are of the general form

hi &e
(

H2
) (

ΨiR ΨiL + ΨiL ΨiR

)
, (7.114)

which define interactions of the Higgs particle, &e(H2), with the Standard Model fermions. The
remaining components of the complex Higgs doublet, H1 = H+, H∗

1 = H− and #m(H2) have be-
come the longitudinal components of the W±- and the Z0-bosons; see Section 7.1.3, Conclusion 7.5
on p. 265, and equation (7.49).

The so-obtained fermion masses (7.109), (7.110), (7.112) and (7.113) as well as the masses
of the Z0- and the W±-bosons (7.82)–(7.87) are all proportional to the mass &e

(〈H2〉
)
/c2. The

14 The abbreviation “+h.c.” is standard for adding the Hermitian conjugate terms.
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Yukawa parameters he, hd, hu, hν (and similarly for the remaining two families) are, however, com-
pletely arbitrary parameters of the Standard Model and, besides in the fermion masses, appear
only in the terms of the type (7.114) that describe the Yukawa interactions of the fermions with
the Higgs particle. This then links the intensity of this interaction with the fermion masses. Of
course, until the details of the interactions of the Higgs particle with the Standard Model fermions
are measured sufficiently precisely, the choice of the parameters he, hd, hu, hν, etc., is determined
only in terms of the measured fermion masses – except for the neutrinos; see the next section.

Since the Standard Model fermion masses [☞ Tables 4.1 on p. 152, and C.2 on p. 526] dif-
fer significantly from the masses of the W±- and the Z0-bosons, it follows that the parameters
he, hd, hu, hν, etc., are quite far from numbers of order 1, and the structure represented by this
list of parameters ought to be explained somehow. However, that is a task beyond the Standard
Model☞ .

Digression 7.5 Let us mention a non-standard version of the Standard Model [169],
where one introduces a Higgs field that is SU(2)w × U(1)y-invariant, but has Yukawa
interactions (Ψ H̃ Ψ) with the Standard Model fermions. Shifting H̃ → H̃′ + 〈H̃〉, the
fermions acquire a mass just as by the previously described standard method (7.114).
As SU(2)w × U(1)y gauge bosons do not interact directly with this Higgs boson, their
masses stem from perturbative corrections of the type

→ (7.115)

where the shaded oval in the right-hand diagram represents the resulting effective (in-
direct) interaction between SU(2)w × U(1)y gauge bosons and the Higgs field H̃ that
sinks into the vacuum, i.e., 〈H̃〉 �= 0; compare with the illustration (7.43). Effectively, the
so-obtained mass for the gauge bosons produces a model that differs from the Stan-
dard Model results only at energies significantly larger than mW , mZ ∼ 100 GeV/c2.
Since these masses are radiatively induced, the mass of the Higgs particle itself is ex-
pected to be larger than 100 GeV/c2 – in agreement with the recent LHC results at
CERN [25, 109, 293]. Only detailed measurements of the interactions of the Higgs par-
ticle with the other Standard Model particles can distinguish this possibility from the
original version, or other generalizations and extensions☞ .

7.3.2 Neutrino mixing
It was noted in the early 1990s that amongst the neutrinos that arrive at the Earth’s surface there
are fewer muon neutrinos, νμ, than expected. That is, neutrinos are produced in the atmosphere
mainly through the decay of pions and muons:

π+ → μ+ + νμ, → (e+ + νe + νμ) + νμ, (7.116)

π− → μ− + νμ, → (e− + νe + νμ) + νμ. (7.117)

Evidently, one expects about twice as many muon (anti)neutrinos than electron (anti)neutrinos to
reach the Earth’s surface. However, experimental results of the KamiokaNDE installation showed
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that the atmospheric muon-to-electron (anti)neutrino number ratio depends on the direction of
their arrival: Among the (anti)neutrinos arriving at the Earth’s surface well-nigh vertically, the ratio
was really close to 2:1. However, amongst the neutrinos arriving at a large angle from the vertical,
this ratio is closer to 1:1. This indicates that the muon (anti)neutrinos somehow vanish whilst
passing through the atmosphere, much faster than the electron (anti)neutrinos, and certainly much
faster than would be expected from the known fact that the effective cross-section of the interaction
between neutrinos and other matter is extremely small. These experimental results were later
confirmed in the Super-KamiokaNDE installation.

In turn, the mechanisms that produce the enormous energy of a star such as our Sun had
been subject to research from the beginning of the nineteenth century, when Lord Rayleigh showed
that – with the then generally accepted assumption that the Sun’s energy stems from gravitational
contraction – the Sun could not be as old as the geological finds (of Earth) indicate and as needed
for the process of evolution. However, Becquerel discovered radioactivity in 1896, and by about
1920 the atomic weights were measured sufficiently precisely to make it possible for Arthur Ed-
dington to notice that four hydrogen atoms are a little heavier than the helium atom. According to
Einstein’s relation E0 = mc2, the difference (4mH−mHe) indicates that fusing four hydrogen atoms
into an atom of helium should release energy.

In the early 1930s Chadwick discovered the neutron, Pauli postulated the existence of the
neutrino and Fermi described the basic process of weak nuclear interaction, n0 → p+ + e− + νe.
This opened the possibility for a realistic description of the nuclear processes that produce most of
the radiation energy of the Sun. By 1938, Hans Bethe had worked out the details of the so-called
carbon cycle, where the process of fusion is catalyzed by carbon, nitrogen and oxygen, and which
is the dominant process in very large stars. In the Sun, which is a relatively smaller and lighter star,
the basic mechanism is the so-called pp-process:

1. p+ + p+ → d+ + e+ + νe, (continuous spectrum) (7.118a)

p+ + p+ + e− → d+ + νe, (discrete spectrum) (7.118b)

2. d+ + p+ → 3He++ + γ, (7.118c)

3. 3He++ + p+ → α++ + e+ + νe, (continuous spectrum) (7.118d)
3He++ + 3He++ → α++ + p+ + p+, (7.118e)

3He++ + α++ → 7Be4+ + γ, (7.118f)

4. 7Be4+ + e− → 7Li3+ + νe, (discrete spectrum) (7.118g)
7Li3+ + p+ → α++ + α++, (7.118h)
7Be4+ + p+ → 8B5+ + γ, (7.118i)

8B5+ → (8Be4+)∗ + e+ + νe, (continuous spectrum) (7.118j)
8B5+ + e− → (8Be4+)∗ + νe, (discrete spectrum) (7.118k)

(8Be4+)∗ → α++ + α++. (7.118l)

The processes (7.118a), (7.118d) and (7.118j) produce neutrinos with a continuous distribution
of energies, while the neutrinos produced in the processes (7.118b), (7.118g) and (7.118k) have
a fixed energy [☞ Section 3.2: when a collision or a decay produces only two particles, their
energies are completely determined]. Most of the neutrinos are created in the process (7.118a)
as the concentration of input “ingredients” (protons) is much larger than the concentration of
input “ingredients” in the other processes. However, the energy of the so-produced neutrinos is no
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larger than about 400 keV, which makes their detection harder. In turn, neutrinos produced in the
processes (7.118d) and (7.118j) have energies reaching over 1 MeV, where the detectors are far
more sensitive.

John Bahcall’s additional and detailed computations of the resulting distribution and total
neutrino flux were finally verified in 1968 [355, 369]: Ray Davis’s group monitored a giant tank
(4,850 feet underground, in the Homestake gold mine in South Dakota) containing a dry-cleaning
fluid with a large content of chlorine, seeking the results of the reaction

νe + n0 → p+ + e−, by way of νe + 37Cl → 37Ar + e−. (7.119)

The detection of argon-37 indicated that only about one-third of electron neutrinos that the Sun
emits actually arrive at the surface of the Earth. This discrepancy in the number of solar electron
neutrinos was dubbed the “neutrino problem.”

A little earlier, in 1967, Bruno Pontecorvo proposed (following up on a decade-earlier pro-
posal) a simple solution of the neutrino problem, by postulating that the electron neutrinos
produced in the Sun at least partially transform during their flight to the Earth into another type
(muon and tau) of neutrinos or even antineutrinos. As the Davis experiment could detect only
electron neutrinos, the transformed neutrinos would show up as “missed.” This mechanism is, in
general, called “neutrino oscillation,” as it is based on an essentially simple quantum-mechanical
effect.

To wit, with two eigenstates of the Hamiltonian

H|1〉 = E1|1〉 and H|2〉 = E2|2〉, (7.120)

the evolution of a linear combination of these two stationary states is described as

|“1+2”; t〉 = C1e−iE1t/h̄ |1〉 + C2e−iE2t/h̄ |2〉, (7.121)

where the constants C1, C2 are determined from the initial condition. The probability that this
linear combination is after the amount of time t in the state cos(α)|1〉 + sin(α)|2〉 equals

Pα :=
∣∣∣[ cos(α)〈1| + sin(α)〈2|]|“1+2”; t〉

∣∣∣2
= |C1|2 cos2(α) + |C2|2 sin2(α) + sin(2α)&e

[
C1C∗

2 e−i(E1−E2)t/h̄]. (7.122)

If the system was originally in the “opposite” linear combination, cos(α)|2〉 − sin(α)|1〉 so C1 =
− sin(α) and C2 = cos(α), we have that

P|α+ π
2 〉→|α〉 = sin2(2α) sin2( 1

2ω12t), ω12 := E1−E2
h̄ . (7.123)

Therefore, the system oscillates:(|α+π
2 〉 = − sin(α)|1〉 + cos(α)|2〉) ←→ (|α〉 = cos(α)|1〉 + sin(α)|2〉) (7.124)

under the conditions that

1. the two stationary states are not degenerate: E1 �= E2, so that ω12 �= 0, and
2. the system is initially in a nontrivial (α �= 0) linear combination of the two stationary states.

It is evident that the conceptually same phenomenon occurs in a system with three non-degenerate
stationary states, but the oscillations are more complicated.
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For relativistic particles, we have that (using that �p1 = �p2 = �p )

E1−E2 =
√
|�p|2c2 + m 2

1 c4 −
√
|�p|2c2 + m 2

2 c4 ≈ |�p|c
[ 1

2
(m 2

1 − m 2
2 )c2

|�p|2 + · · ·
]

≈ (m 2
1 − m 2

2 )c3

2|�p| + · · · ≈ (m 2
1 − m 2

2 )c4

2E
, (7.125)

where E is the average value of energies E1 and E2.
Just as |d〉, |s〉 and |b〉 – eigenstates of the free, kinetic Hamiltonian and thus characterized by

their well-defined masses – are not the eigenstates of weak interactions, suppose that the electron-,
muon- and tau-neutrinos (identified as the eigenstates of weak interactions) are not the eigenstates
of the free Hamiltonian, |νi〉. Then,

|νe〉 = − sin(θν)|ν1〉 + cos(θν)|ν2〉, |νμ〉 = cos(θν)|ν1〉 + sin(θν)|ν2〉, (7.126)

neglecting the third family. From this,

Pνe→νμ ≈ sin2(2θν)sin2
(

(m 2
1 −m 2

2 )c4

4Eh̄
t
)

= sin2(2θν)sin2
(

(m 2
1 −m 2

2 )c3

4Eh̄
z
)

, (7.127)

where z = ct is approximately equal to the distance that neutrinos traverse (the masses m1, m2
are very small, so the neutrinos propagate with speeds that are close to c). This shows that after a
traversed distance of

(2n+1) z∗, where z∗ =
2πEh̄

(m 2
1 − m 2

2 )c3
, n = 0, 1, 2, . . . (7.128)

all electron neutrinos have converted into muon neutrinos, and at distances 2n z∗ all electron
neutrinos have turned back into their initial state. In other words, 2z∗ is the wavelength of the
simple oscillation between two types of neutrinos.

Of course, there do exist three types of neutrinos, and the oscillations are more compli-
cated. Besides, traversing matter additionally changes the parameters of neutrino mixing. This
was first described by Lincoln Wolfenstein, Stanislav Mikheyev and Alexei Smirnov, and this addi-
tional effect is named after then, the MSW effect. In 2001, the first results were published from
Super-KamiokaNDE, which uses water in the detector, and which can detect all three types of
neutrinos, albeit with different levels of efficiency. Independently, in the same year, the first results
were published also from SNO (Sudbury Neutrino Observatory), which uses heavy water in the de-
tector. Because of the presence of the neutron in the deuterium nuclei, SNO detects two additional
processes with neutrinos that are not detected in Super-KamiokaNDE.

By April 2002, the combination of these experimental results unambiguously showed that the
neutrino oscillations exist and solved the so-called “neutrino problem,” showing clearly that the
neutrino stationary states, ν1, ν2, ν3 have nonzero and different masses, and that the weak inter-
action eigenstates, the particles νe, νμ, ντ, are linear combinations of the stationary states ν1, ν2, ν3.
Experiments also give the difference of the squares of masses:

�12(m2
ν) ≈ 8×10−5 (eV/c2)2, �23(m2

ν) ≈ 3×10−3 (eV/c2)2, (7.129)

but cannot show if the pattern of masses is two similar masses significantly smaller than the third
one, or two similar masses significantly larger than the third one [☞ book [369], and [370] for a
more recent and thorough review].

Finally, Section 2.3.10 discussed the research of R. Davis and D. S. Harmer, who concluded
that νe and νe are distinct elementary particles. However, a detailed analysis of the non-occurring
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process (2.24), i.e., νe + n0 �→ p+ + e−, shows that it may well be possible for νe and νe to be the
same particle – that the neutrino is its own antiparticle – but that this process (2.24) is forbidden
by helicity/chirality: whereas νe + n0 → p+ + e− could happen with a left-handed neutrino, the
absence of a left-handed antineutrino would then prevent the process (2.24).

A more direct consequence of the logically possibility that νe = νe would be the neutrino-less
double β-decay:

2d → 2u + 2e− + (2νe → νe + νe → 0) → 2u + 2e−, (7.130)

which has never been observed☞ . Nevertheless, the logical possibility that νe = νe still attracts
considerable interest as it is necessary for the so-called see-saw mechanism. This mechanism uses
the fact that the (left-handed) neutrinos are the Iw = + 1

2 components of the lepton doublets that
interact by means of weak interactions, and so also with the doublets of Higgs fields. In turn, one
may always add to the Standard Model the right-handed neutrino, which has no weak charge
(isospin):

Iw(νe L) = + 1
2 , Iw(H2) = − 1

2 , Iw(νe R) = 0. (7.131)

The Standard Model Lagrangian density may then contain the terms15

mν

(
νe R νe L + νe L νe R

)
+ 1

2 Mν νe R ν
c
e R, (7.132a)

where m is the mass that stems from the (so-called Yukawa) interaction term (7.113), where
H2 → H̃2 + 〈H2〉 produces mν = hν〈H2〉. In the basis (νe L, νe R), the Lagrangian terms (7.132a)
produce the mass matrix[

0 mν

mν Mν

]
diag.�−→ m± =

1
2

∣∣∣∣Mν ±
√

4m2
ν + M2

ν

∣∣∣∣ ≈ {
Mν,

m2
ν/Mν.

(7.132b)

One expects that mν ∼ 102 GeV/c2, while experiments indicate that the neutrino masses are
mν,exp < 2 eV [293]. Therefore, Mν ∼ (m 2

ν /m±) � 1013 GeV/c2.
A mass parameter such as Mν � 1013 GeV/c2 must stem from effects that are beyond the

Glashow–Weinberg–Salam theory of the electroweak interactions,16 and also beyond the Standard
Model, but are probably related to the so-called Grand Unification or some other phenomena
expected to occur at such high characteristic energies.

It is worth mentioning that in 1962 Ziro Maki, Masami Nakagawa and Shoichi Sakata pro-
posed a general neutrino mixing, akin to the CKM mixing of the “lower” quarks and extending
a similar proposal by Bruno Pontecorvo [353]. The analogous general neutrino mixing matrix is
thus called the PMNS-matrix [369, 370].

7.3.3 The Standard Model, summarized
We are finally ready to summarize the Lagrangian density for the Standard Model, using the list
on p. 282:
15 For any fermion, ΨΨc has twice every charge of Ψ, i.e., Ψc, a Majorana mass term M ΨΨc requires a mass parameter

M that has twice every charge of Ψ. All gauge symmetries corresponding to these charges must therefore be broken;
either explicitly by introducing such a term by hand, or spontaneously if the mass parameter is the vacuum expectation
of a scalar field. The Majorana mass term 1

2 Mν νe R ν
c
e R is possible exclusively because all the charges of a right-handed

neutrino vanish, so that νc
e R := C(νe R) transforms identically to νe L with respect to all unbroken Standard Model

symmetries.
16 Since the mass scale of the GWS-model is of the order of magnitude of W±- and Z0-bosons, ∼ 102 GeV/c2, a mass

parameter of the order of magnitude ∼ 1013 GeV/c2 would require a numerical coefficient of the order ∼ 1011, the kind
of which never occurs in typical computations. That is, although the Standard Model contains dimensionless coefficients
such as he, hd, hu, hν in the expressions (7.109), (7.110), (7.112) and (7.113), all these dimensionless coefficients are
smaller than 1 and there is no systematic computation where a combination of them would emerge to be of the order
∼ 1011. This situation here is very similar to the discussion of the hydrogen atom in Sections 1.2.5 and 4.1, where
negative powers of the fine structure constant (and so also of dimensionless coefficients larger than 1) do not occur.

https://doi.org/10.1017/9781009291507.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.010


7.3 The Standard Model 289

LSM = LF + LG + LH + LY + LMν , (7.133a)

LF = ih̄ c ∑
n

[
ΨnL /DΨnL + ΨnR /DΨnR

]
, (7.133b)

Dμ := ∂μ + igc
h̄ c Ga

μQc a + igw
h̄ c Wα

μV†
wIw αVw + igy

h̄ c BμYw, (7.133c)

LG = − 1
4

8

∑
a=1

Ga
μνGa μν − 1

4

3

∑
a=1

Wa
μνW

a μν − 1
4 BμνBμν, (7.133d)

LH =
∥∥[∂μ − igw

h̄ c Wa
μσa − igy

h̄ c 1]H
∥∥2
η
− κ

2

( μc
h̄

)2(
H†H

)− 1
4λ

(
H†H

)2, (7.133e)

LY = ∑
n

(
hnΨnR(H†ΨnL) + h∗n(ΨnLH)ΨnR

)
, (7.133f)

LMν = 1
2 Mνc2 νe R ν

c
e R. (7.133g)

Here, the summands in the Lagrangian density (7.133d) were written akin to (5.118) and (6.23),
but the gauge field tensors were denoted

Ga
μν = ∂μGa

ν − ∂νGa
μ − gc

h̄ c f a
bcGb

μGc
ν, a, b, c = 1, 2, . . . , 8, (7.134)

for the SU(3)c gluon field,

Wα
μν = ∂μWα

ν − ∂νWα
μ − gw

h̄c ε
α
βγWβ

μWγ
ν , W± = W1 ± iW2, α, β,γ = 1, 2, 3, (7.135)

for the SU(2)w gauge field, and

Bμν = ∂μBν − ∂νBμ, (7.136)

for the U(1)y gauge field. As customary, convention-dependent coefficients such as 4πε0 for elec-
tromagnetism have been absorbed in the definition of the gauge field tensors and are not explicitly
shown. In the expressions (7.133b), the derivative Dμ (7.133c) is covariant with respect to the
complete SU(3)c × SU(2)w × U(1)y Standard Model gauge group action:

1. The operator Qa is the ath generator of the chromodynamics SU(3)c gauge symmetry (6.6d),
which annihilates SU(3)c-invariant fields and wave-functions.

2. The operator Iw α is the αth (isospin) generator of the weak SU(2)w gauge symmetry. The
fermions in Table 7.1 on p. 275 are the eigenstates of the generator Iw 3, with the eigenvalues
Iw; the operators Iw± raise and lower the values of Iw by 1 [☞ relations (A.38) for the general
SU(2) algebra].

3. The operator Yw produces the weak hypercharge of the field or wave-function on which it
acts.

The Vw matrix encodes the CKM mixing of the lower, d-, s- and b-quarks [☞ relations (2.53)]
and leaves the other fermions unchanged. The sum in the expression (7.133b) contains all the
elementary fermions from Table 7.1 on p. 275.

As in Section 7.1.3, the parameter κ in the expression (7.133e) separates the symmetric
(κ = +1) and the “non-symmetric” (κ = −1) phases. For κ = +1, 〈H〉 = 0 and the
SU(3)c × SU(2)w × U(1)y gauge symmetry is unbroken; for κ = −1, 〈H〉 �= 0 and the gauge
symmetry is broken to SU(3)c × U(1)Q, the normal modes of the gauge 4-vector potentials
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are (7.85)–(7.86) and the W±- and Z0-bosons acquired a mass [☞ expressions (7.84) and (7.87)].
In the non-symmetric phase, the linear combination of gauge bosons (7.85) is identified with the
photon. On one hand, this linear combination remains massless; on the other, this linear combi-
nation interacts with the Standard Model elementary fermions proportionally to the ge-multiple of
the combination of charges Q = Iw + 1

2 Yw, which is by construction equal to the electric charge.
Similarly, in the symmetric phase (κ = +1), the terms (7.133f) describe only the interaction

between elementary fermions and the Higgs doublet of scalar fields. In the non-symmetric phase,
owing to the shift H → H̃ + 〈H〉 where 〈H〉 �= 0, the terms (7.133f) also provide the Standard
Model elementary fermions with mass. Finally, the last term (7.133g) is needed for the “see-saw
mechanism” [☞ Section 7.3.2]. This models the left-handed neutrino masses – many orders of
magnitude below other Standard Model elementary fermion masses – by means of new physics
expected at energies that are many orders of magnitude above the Standard Model masses; for
example, the masses of the right-handed neutrinos, which thereby remain not observable directly
for now.

As has been widely reported, the search for the Higgs particle has been on for the past decade
or so, with most of the meticulous analyses centering on the LEP (Large Electron–Positron collider)
and more recently the LHC (Large Hadron Collider) experiments at CERN. These culminated re-
cently with the “5-σ ” (99.999,9%) confirmation by the ATLAS and CMS collaborations from the
LHC at CERN of a new, ≈ 125.9 GeV/c2 particle [293], consistent with the Standard Model Higgs
particle [25, 109]. However, it is important to realize that the Higgs particle is hard to iden-
tify unambiguously in experiments, since its mass, decay modes and their branching ratios all
strongly depend on the details of the Standard Model – and its variations. The data compiled
from the pertinent experiments are found to be compatible with the Standard Model as described
above, but do not exclude several generalizations. For a review of recent experimental results, in-
cluding also supersymmetric variants of the Standard Model and models wherein the Higgs field
is a composite bound state, see Refs. [25, 109], the references therein, and in particular also
Refs. [160, 493, 494, 475]☞ .

7.3.4 Exercises for Section 7.3

✎ 7.3.1 For the expressions (7.109), (7.110), (7.112) and (7.113) to be Lagrangian density
terms, compute the physical unit-dimensions of the Yukawa coupling coefficients hU, hD, hν
and h� in the MxLyTz format.

✎ 7.3.2 Confirm the result (7.122) by explicit computation, using equation (7.121).

✎ 7.3.3 Confirm the result (7.125) by explicit computation.

✎ 7.3.4 Confirm the result (7.132b) by explicit diagonalization.

✎ 7.3.5 Compute the simplified neutrino oscillation wavelength 2z∗ (7.128), using one and
then the other value in equations (7.129).

✎ 7.3.6 Compute the order of magnitude of Mν so that equation (7.132b) would produce
m− ∼ 1 eV/c2.
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