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Abstract

Cyclone is a type-safe programming language that provides explicit run-time code generation.

The Cyclone compiler uses a template-based strategy for run-time code generation in which

pre-compiled code fragments are stitched together at run time. This strategy keeps the cost

of code generation low, but it requires that optimizations, such as register allocation and

code motion, are applied to templates at compile time. This paper describes a principled

approach to implementing such optimizations. In particular, we generalize standard flow-

graph intermediate representations to support templates, define a mapping from (a subset

of) Cyclone to this representation, and describe a dataflow-analysis framework that supports

standard optimizations across template boundaries.

1 Introduction

Cyclone1 (Hornof & Jim, 1999) is a type-safe language that supports explicit run-

time code generation (RTCG). What distinguishes the Cyclone implementation

from other RTCG systems, such as Tempo (Noël et al., 1996; Consel & Noël,

1996), DyC (Auslander et al., 1996; Grant et al., 1999; Grant et al., 1997), and

‘C (Engler et al., 1996; Poletto et al., 1997), is that it is a certifying compiler: the

compiler produces typed assembly language (Morrisett et al., 1999) as output. This

output can be mechanically verified for certain safety and consistency properties.

In particular, we can statically verify that any dynamically generated code will be

type-correct. Such strong guarantees are particularly useful in the RTCG setting

where debugging programs and compilers is notoriously difficult.

The original Cyclone compiler used a template-based compilation strategy for

1 The version of Cyclone discussed in this paper is the precursor to a new Cyclone language being
developed at Cornell. That language does not yet support RTCG.
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RTCG similar to that used by Tempo and DyC. A template is a pre-compiled code

fragment. At run time, templates are copied to create a new function. The generating

code controls the order and number of the copies, and it overwrites certain operands

in the template, called holes, with new values. For example, a jump target is often

overwritten with an address in the newly generated function.

With this template-based approach, we were able to improve the performance

of a number of small benchmarks. However, unlike DyC and Tempo, our original

compiler did not perform optimizations such as register allocation, loop-invariant

removal, copy propagation, or common-subexpression elimination. Rather, it gen-

erated naive, stack-based typed assembly language, and as a result, the absolute

performance relative to an optimizing compiler was disappointing.

It became clear that to achieve better performance we needed to optimize the

template code more aggressively. In particular, we needed to perform optimizations

such as register allocation across template boundaries at compile time, even without

knowing exactly how templates would be stitched together at run time. Modifying

our optimizing compiler for this purpose seemed daunting. Other compilers relied

on ad hoc techniques (in the case of Tempo) or extremely sophisticated analyses (in

the case of DyC) that were difficult to adapt.

The goal of this paper, therefore, is to describe the framework we developed and

the subtleties we encountered in combining traditional optimizations with explicit

(programmer-provided) RTCG. To this end, we describe a simple compiler using

template-based RTCG and show how we apply traditional dataflow analyses (such

as liveness analysis) and optimizations (such as register allocation) to templates.

Although our compiler is certifying the framework we develop is not specific to

certifying compilers. For this reason we present our work in an untyped context.

The primary contribution of our framework is its simplicity. The understanding

developed here should make it easier to add template-based RTCG to an existing

optimizing compiler. Thus, our contributions include:

• the design of a block-based intermediate language (CIR) that supports optim-

ization in the presence of RTCG

• a precise translation from a source language with explicit RTCG into CIR

• a discussion of how to adapt existing analyses and transformations to CIR

We have implemented a translation from the full Cyclone language to a CIR-based

intermediate form and a few important optimizations (notably inlining, null-check

elimination, and graph-coloring intraprocedural register allocation). We found our

framework invaluable for understanding and structuring the code. The compiler is

available at http://www.cs.cornell.edu/talc.

Before proceeding to our focus, we review previous approaches to RTCG (section

2) and present some preliminary performance results for our compiler (section 3).

In section 4, we give an informal overview to our compilation and optimization

approach. The next four sections make this discussion more precise by presenting

a small source language (section 5) and target language (section 6), a complete

translation from the source to the target (section 7), and dataflow analyses and

optimizations over the target (section 8). Finally, section 9 discusses future work.
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2 Overview of RTCG and related work

Programming languages like Lisp and Scheme have long had a simple model of

RTCG. In this compilation model, the compiler is included in every executable. At

run time, programs use eval to pass arbitrary “strings” (S-expressions actually) to

the compiler for compilation and the resulting function is dynamically linked so

that it is immediately available. For greater flexibility, these languages also support

a comma operator, which embeds run-time values into the generated program.

By using the compiler to dynamically generate code, this approach ensures that

the dynamic code can be well optimized. For certain kinds of applications, full

optimization may be the only way to achieve significant improvements and the time

spent compiling may be easily recovered. However, for many simple functions a

naive compiler can generate optimal code and this time will be wasted. In other

cases, a generated function may be too little used to recoup the time spent compiling.

In contrast to this heavyweight approach, lightweight RTCG aims to minimize

dynamic compile times while retaining code quality. One approach to minimizing

compile times is to use fast but less precise linear-optimization techniques. The ’C

compiler takes this approach. ’C (Engler et al., 1996; Poletto et al., 1997) is an unsafe

language providing rich low-level control over RTCG. The compiler for ’C, tcc, is

a modified version of lcc (Fraser & Hanson, 1995) that lets users choose among

different run-time compilers to trade code quality for compile time.

The cost of dynamic compilation can also be reduced by performing optimizations

in advance at compile time. To make this approach practical, it is useful to limit

the set of functions that can be generated at each code-generating program point.

By restricting the set of possible functions, the compiler gains enough context to

optimize the code effectively although the programmer may lose some flexibility and

convenience.

The template-based strategy to RTCG, pioneered by Tempo and the precursor to

DyC, is an extreme case of lightweight RTCG. In this approach, which the Cyclone

compiler uses, the dynamic compiler simply copies pre-compiled code fragments

together and replaces jump targets and instruction operands as appropriate. Previous

work has shown that this approach can generate code hundreds to thousands of

times faster than a conventional compiler while retaining high code quality for a

range of applications (Noël et al., 1996; Auslander et al., 1996).

Tempo (Noël et al., 1996; Consel & Noël, 1996) is a partial-evaluation system for

C that can be configured for RTCG. Based on user annotations, Tempo applies a

binding-time analysis to stage the program into dynamic and static parts. Instead of

generating machine code directly like the Cyclone compiler, Tempo uses an off-the-

shelf C compiler (gcc or lcc) as a back end. All code, including template code, is

compiled by constructing C source code that is then passed through the C compiler.

Tempo gets inter-template optimizations by cleverly arranging a set of related

source code templates into the body of a single dummy function and extracting

the machine code templates from the body of the compiled function. In essence,

Tempo implements inter-template optimizations using the back-end compiler’s intra-

function optimizations. The disadvantage of this approach is that the intra-function
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optimizations may result in unsound inter-template optimizations (Noël et al., 1996).

Knowing when this will happen requires intimate knowledge of how Tempo compiles

templates and how the back-end compiler performs intra-function optimizations. The

system performs correctly most of the time, but when it breaks, it takes an expert

to debug it. Our framework supports sound inter-template optimizations directly;

in principle Cyclone could serve as a more robust back end for the Tempo system.

DyC (Auslander et al., 1996; Grant et al., 1999; Grant et al., 1997) is a modified

version of the Multiflow (Lowney et al., 1993) optimizing C compiler that accepts

user annotations to direct a binding-time analysis. DyC uses templates internally but

as a final pass emits code that performs simple local optimizations such as peep-hole

optimizations and strength reduction at dynamic compile time. Another significant

difference between DyC and Cyclone is that DyC delays explicitly staging the user

code until after most traditional optimizations. By keeping the staging implicit in

the annotations on variables, the compiler gains some simplicity but the user loses

control over the code that is dynamically generated. Because we have found that

the performance advantage of RTCG is often brittle, Cyclone has programmers

explicitly stage their programs and the compiler optimizations never change the

explicit staging.

There are a number of other RTCG projects. Fabius (Leone & Lee, 1994; Lee &

Leone, 1996) pioneered using generic generating extensions for RTCG (they have

long been used in partial evaluation). A generating extension is a function taking

in a compilation context and producing code. PML (Wickline et al., 1998; Davies

& Pfenning, 1996) grew out of the theoretical work that showed the connection

between modal logics and RTCG. PML compiles into the Categorical Abstract

Machine (Cousineau et al., 1985) augmented with RTCG instructions. MetaML

(Taha & Sheard, 1997; Taha, 2000) is an extension of ML based on modal

type systems that allows safe, explicit RTCG. The MetaML compiler relies on

a heavyweight approach to RTCG.

3 Preliminary experimental results

Although this paper is about a framework for compilation and not about perform-

ance, we present some preliminary results for our compiler. Previous work (Noël

et al., 1996; Consel & Noël, 1996; Grant et al., 1999; Auslander et al., 1996) has

examined the merits of template-based RTCG. Although we think there is more to

say on this subject, it is not our goal to do so here. Instead, we hope to illustrate

the benefits of RTCG and the effectiveness of our compiler.

We present results for eight numerical micro-benchmarks that have been studied

previously, and for a port of the functional simulator (sim-fast) from the Simple

Scalar Toolset (version 1.0) (Burger et al., 1996). All experiments were performed

on a 750-Mhz Pentium II with 256 MB of memory running Linux RedHat 7.0.

We measured running times using the Pentium’s cycle counter to obtain cycle-level

precision for the micro-benchmarks and gettimeofday for the simulator runs. The

micro-benchmarks were run ten times. The simulator was run three times on each

input. We present the best running time in each case.
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Table 1. A brief description of the micro-benchmarks. The Specialized column indicates

the value used to dynamically generate code. The LOC code shows the lines of code

for the key function

BenchmarkDescription Specialized LOC

cheb Chebyshev approximation Degree of the polynomial 13

csi Cubic spline computation X-coordinates 32

dot Integer dot product One input vector, 20% zeroes 8

dotf Floating-point dot product One input vector, 20% zeroes 8

fft Fast-fourier transform Size of the input 59

poly Compute an integer polynomial Coefficients 12

polyf Compute a floating-point polynomialCoefficients 12

romberg Romberg integration Interval and precision 34

3.1 Micro-benchmarks

Table 1 gives a brief description of the micro-benchmarks and how they were

specialized. Each micro-benchmark is less than 60 lines of code. Of these programs,

cheb, csi, dot, fft and romberg have previously been used for performance

measurements by Tempo (Noël et al., 1996).

For each micro-benchmark, we wrote four versions: (No RTCG) a version without

RTCG, (RTCG) a version with RTCG, (unsafe-C) a naive C version, and (safe-C)

a C version using the same data representations and explicitly performing all the

bounds-checks that the Cyclone version performs. (Recall Cyclone is a type-safe

language; our compiler does not yet implement bounds-check elimination.) The

execution times for these four versions are shown in figure 1.

Table 2 shows the precise numbers used to generate figure 1. It also includes the

break-even point (in the Even column) and the time spent generating code (in the

Gen column). Notice that the break-even points are less than 200, a relatively small

number for numeric kernels like these that are likely to be used heavily.

3.2 Simulator

The SimpleScalar Toolset (Burger et al., 1996) is a family of instruction-set simulators

widely used in the hardware research community to model memory hierarchies. For

these experiments, we ported the fastest functional simulator from the ToolSet into

Cyclone and produced versions with and without RTCG. We then compared these

two versions to the original C version compiled with gcc -O2. Our port was about

2300 lines of code (the RTCG port was only 20 lines longer).2

To fully evaluate the performance of our simulator we ran the SPEC CPU95

benchmark suite with modified inputs through our simulator.3 The results for each

2 Lines of code was measured with an awk script that excludes comments and blank lines.
3 To limit the simulation time to about five hours, we used modified inputs commonly used with this

simulator (Burger, 1998). This run is therefore not SPEC compliant.
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Fig. 1. Normalized execution times for several benchmark programs (excluding time for code

generation). The RTCG and No-RTCG versions of each benchmark are compiled with our

optimizing compiler. The unsafe-C and safe-C versions are compiled using gcc -O2. The

safe-C version performs the same bounds check that the Cyclone versions do and is used as

a baseline to normalize the execution times.

Table 2. The execution times of the statically and dynamically compiled versions of

these benchmarks. The Gen column reports the time used to dynamically generate code.

The Even column shows the computed break-even point. All times are in cycles.

Benchmarkunsafe-Csafe-Cno RTCGRTCG GenEven

cheb 83066 81785 75185 5171379523 5

csi 16994 28232 24791 13421 12994 1

dot 193 683 538 238 26136 87

dotf 260 838 523 333 30724 162

fft 10655 14439 11587 6437347501 67

poly 98 156 154 64 3216 36

polyf 10 170 193 393 4198 14

romberg 43779 41498 41263 36401120134 25

SPEC CPU95 benchmark program are shown in figure 2. (Note that unlike the

micro-benchmarks, these running times include the time for code generation.) The

results show that on average the safe Cyclone program using RTCG runs 1.8 times

faster than the optimized, but unsafe, C version. Many interesting detailed results

are explained in the first author’s dissertation (Smith, 2002).
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Fig. 2. Normalized execution times for SPEC CPU95 benchmark programs used as input to

the simulator. The RTCG and No-RTCG versions of the simulator were compiled with our

optimizing compiler. Execution times have been normalized so that the (unsafe) C version of

the simulator (sim-fast) always takes 1.0 time.

4 Compilation overview

Cyclone is a type-safe C-like language supporting parametric polymorphism, excep-

tions, algebraic datatypes, and RTCG. For this paper, we restrict our examples to

the C subset plus the four new RTCG constructs: codegen, cut, splice, and fill.

These constructs are best conceptualized as manipulating “strings” to construct the

text of a new function. For example, the function dot gen below takes a vector u

and returns a function specialized for taking dot products of u.

(int[] -> int) dot gen(int u[]) {
return codegen (

int dot(int v[]) {
int result = 0;

cut { for(int i=0; i<size(u); i++)

splice{ result += fill(u[i]) * v[ fill(i) ]; };
}
return result;} );

}

The expression codegen (int(dot(int v[ ]) . . .) indicates RTCG of a function. The

generated function will be composed of copies of code fragments (templates) from
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(int[] -> int) dot_gen_opt(int u[]) {
return codegen (

int dot(int v[]) {
int result = 0;

cut {
for(int i=0; i<size(u); i++) {
if(u[i]!=0) {
if(u[i] == 1) splice { result += v[ fill(i)]; }
else splice { result += fill(u[i]) * v[ fill(i)]; }

}
}

}
});

}
Fig. 3. A more aggressive version of dot gen that specializes for 1 and 0. Dynamically

generated code is shown in italics.

within the codegen expression. We have highlighted the templates by surrounding

them with boxes; the boxes are not actually part of Cyclone.

The codegen expression takes an argument that is a function syntactically, but it

is not executable. It contains templates, the first of which indicates the arguments

and return type for the generated function. In our example, this template also

includes the declaration of result. The code in the template is not executed during

the invocation of dot gen; instead, it is copied as the beginning of the generated

function. The cut statement marks the end of the first template. The code within

the cut is executed during the invocation of dot gen. It iterates over the array u,

executing a splice statement for each element. The splice statement marks the

beginning of a new template; its argument is appended to the end of the function

being generated. In our example, this argument contains fill expressions. These

expressions mark holes in the template that are filled with values calculated by

dot gen; we have highlighted these holes with nested boxes. Finally, after the loop

is finished executing, a copy of a third template ends the generated function. The

result of the codegen is a pointer to the generated function. Invoking dot gen on

an array with elements {12,24,32} would thus generate a function like this:

int dot generated(int v[]) {
int result = 0;

result += 12 * v[0];

result += 24 * v[1];

result += 32 * v[2];

return result;

}

In this example, RTCG allows us to eliminate the looping overhead and to fold

constants into the instructions. A more aggressive version, like the one shown in

figure 3, could generate different code when an element of u is zero or one.

The RTCG primitives could be implemented using string manipulation and calls

to a conventional compiler. Doing so would ensure that the resulting code was well
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Fig. 4. All ways control might flow between dot’s templates. No edges flow out of t3 because

it ends in a return statement. The edges (t2, t1) and (t1, t1) are impossible only because of the

way dot gen assembles the templates.

optimized. For instance, we could reasonably expect that the result variable would

be allocated a register. However, the overhead of a conventional compiler makes it

difficult to take advantage of short-lived invariants.

We therefore use a different approach to generate code rapidly. As a first step,

we translate dynamically generated functions into a collection of templates (code

fragments with holes) in our internal representation. At compile-time, we perform

register allocation of these templates to produce machine-code templates with holes.

These machine-code templates can be copied and their holes filled to produce a

specialized function quickly. For example, the compiled dot gen would use three

templates: (t1) for the function prologue and for initializing result, (t2) for adding

to result some constant value (u[i]) multiplied by a vector element at some

constant offset (i), and (t3) for returning result and the function epilogue.

To produce good code, we must perform optimizations on the templates, such as

register allocation, at compile time. But how can we perform the necessary dataflow

analyses, such as liveness analysis, when templates can be assembled dynamically

at run time? The approach we suggest here is to perform dataflow analysis on the

generating function to construct an approximation of the set of control-flow graphs

of all functions that may be generated at run time. We compactly approximate this

set as a single control-flow graph with two kinds of edges (see section 8). Standard

control-flow optimizations can be extended to this representation.

For example, figure 4 depicts all ways control might flow between dot’s templates.

By analyzing dot gen, we discover that every specialized function it produces will

have a restricted form: It will start with one copy of the first template, followed

by some number of copies of the second template (appropriately specialized with

constants), and then one copy of the third. In other words, the edges (t2, t1) and

(t1, t1) in figure 4 could not be followed. Such an analysis would allow us to compute

more accurate live ranges for the function’s variables.

5 Mini-cyclone

Figure 5 presents the abstract syntax for Mini-Cyclone, a minimal subset of Cyclone

that serves as this paper’s source language. The primitive values are integers (i)
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(integers) i ∈ Z
(function names) f ∈ var

(variables) x ∈ var

(expressions) e ::= i | f | x | e1 + e2 | e(e1, . . . , en)

| codegen D | fill e

(statements) s ::= x := e | s1; s2 | if(e) s1 else s2 | while(e) s | return e

| cut s | splice s

(functions) D ::= f(x1, . . . , xn) s

(programs) P ::= D1, . . . , Dn

Fig. 5. Mini-cyclone syntax.

and function names (f). The other standard expressions are variables, addition, and

function application. Similar to Cyclone, there are two expression forms for RTCG:

codegen D generates a function and returns a pointer to it. fill e occurs in a

generated function. Its meaning is to evaluate e as code in the function doing the

code generation and embed the result, as a constant, in the generated function.

The standard statements (assignment, composition, conditional, loop, and return)

have their usual meanings. The statement cut s must occur within a generated

function (syntactically within a codegen). Its meaning is to execute s in the generating

function at dynamic-code-generation time. The body of a cut statement can use

a splice statement to append new code to the generated function. The statement

splice s may occur only within a cut statement. Its meaning is to append the

code computed from s onto the generated function. If s contains no cut statements

then the computed code is simply s. Otherwise, each nested cut statement suspends

generation of code from the splice statement, executes its argument, and then

resumes generating code from the splice statement.

The RTCG constructs make sense only within certain contexts. For example,

cut s and splice s may occur only within a codegen expression; and a splice

makes sense only within a cut . The Cyclone type system, which has been shown

sound (Hornof & Jim, 1999), ensures that these constructs are not misused. Because

Mini-Cyclone is untyped, we simply assume that the input program is well-formed.

A Mini-Cyclone function takes a fixed number of arguments and executes a body.

Syntactically, the argument to codegen is a function, but it is not executable.

6 Target language

Our compiler’s intermediate representation is a standard low-level block-based

language with special RTCG instructions and the type information needed to

generate certified code. In this paper, we focus on compiling for RTCG, so we

ignore typing issues and use a target language called CIR that is sufficient for

compiling Mini-Cyclone.

Figure 6 shows the syntax for CIR. Reading from bottom to top:

• A CIR program (P ) is a collection of functions (F).

• A function (F) has a list of parameters (x) and a list of blocks (B). The first
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i ∈ Z
x ∈ var

l ∈ label

h ∈ hole

t ∈ template

r ∈ region

p ∈ instance

(value) v ::= x | l | i
(destination) d ::= l | ◦ | [h]

(instruction) ι ::= x := v

| x := v1 + v2

| x := v(x1, . . . , xn)

| x := [h]

| r := start l

| p := copy t into r

| fill p.[h] with v

| fill p1.[h] with p2.l

| x := end r

(transfer) χ ::= jmp d | jnz x ? d1 : d2 | retn x

(block) B ::= (l, t, ι1 . . . ιn, χ)

(function) F ::= (x1, . . . , xn)B1, . . . , Bm

(program) P ::= F1, . . . , Fn

Fig. 6. CIR syntax.

block is the function’s entry point; its label serves as the function’s name. The

order of blocks is significant.

• A (basic) block (B) has a label (l), a template name (t), an instruction sequence

(ι1, . . . , ιn), and a terminal control transfer (χ). Template names are used to

group consecutive basic blocks. They are only meaningful in the containers

used to dynamically generate code. (For ordinary functions, template names

are ignored.)

• A control transfer (χ) is either a jump(jmp d), a conditional jump (jnz x ? d1 :

d2), or a return(retn x). (The conditional jump (jnz x ? d1 : d2) jumps to d1

if x is not zero, else it jumps to d2.)

• An instruction (ι) is either an assignment (x := v), an addition (x := v1 + v2), a

function call (x := v(x1, . . . , xn)), or a special purpose RTCG instruction. The

RTCG-specific instructions are explained below.

• The destination for a control-transfer (d) is either the label for a block (l),

a fall-through (◦) or a hole([h]). A fall-through at the end of block Bi of a

function is shorthand for the label Bi+1. Fall-throughs and holes will be useful

for RTCG and are further discussed below.

• Values (v) are either variables (x), labels (l), or integers (i).

A CIR function represents either code that is directly executable or a container

for templates. Executable functions must not contain holes, whereas containers can.

The template names on the blocks within a container are used to group blocks

into templates. Specifically, a template t is the list of blocks with template name

t.4 Executable functions use containers to generate code dynamically by copying

templates (t) into code regions (r) and filling holes ([h]). We call a copy of a template

an instance (p). Holes ([h]) allow generating code to specialize instances. Generating

code can dictate the control flow of generated code by filling destination holes, and

can insert values into the generated instructions by filling value holes (x := [h]).

4 The order of blocks in the template is the same as their order in the function. Template names within
executable functions are present only to simplify the syntax.
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(u) (dot gen, , r := start dot

p1 := copy t1 into r

i := 0,

jmp ◦)

(l3, , tst := i < size(u),

jnz tst ? l5 : ◦)

(l4, , p2 := copy t2 into r

fill p2.[h1] with u[i]

fill p2.[h2] with i

i := i + 1,

jmp l3)

(l5, , p3 := copy t3 into r

f := end r,

retn f)

(v) (dot, t1, result := 0,

jmp ◦)

(l1, t2, x := [h1]

i := [h2]

tmp := x ∗ v[i]

result := result + tmp,

jmp ◦)

(l2, t3, , retn result)

Fig. 7. Translation of the dot gen example (simplified).

The instruction r := start l allocates a code region and binds it to r. All templates

copied into r should come from the container function named l. The instruction

p := copy t into r puts an instance of t after the instances previously copied into

r.5 The term p becomes a reference to the new instance. The two fill instructions

(fill p.[h] with . . .) both fill the hole h of the specified instance (p). The second

form allows one instance to refer directly to a label in another instance. That way,

the generating code can create inter-template jumps in the generated code. Finally,

x := end r completes the generation of a function and binds x to the resulting

function pointer.

Inter-template jumps merit further discussion. It makes no sense for a template to

refer directly to a label in another template. To which instance of a template would

such a label refer? Therefore, the generating code must create all inter-template

control flow using the fill p1.[h] with p2.l instruction. There is an important

exception: If a template’s last block has a fall-through destination (such as jmp ◦),

then control will flow from an instance of that template to the next instance in the

code region. That is, fall-through destinations refer to the code region’s next block,

not the container function’s next block.

Figure 7 shows our dot gen example in CIR (extended with arrays, etc.). The

translation of section 7 would introduce more labels and variables but would

otherwise produce similar output. Notice that the translation of dot contains holes

and multiple templates, so it is not executable. When dot gen is called, it creates

a code region r in which to generate a function. It then copies dot’s prologue, t1,

and enters the loop consisting of blocks l3 and l4. The loop copies an instance of

t2 and binds p2 to it. p2 is used when filling holes h1 and h2. Its purpose is to

specify which instance’s holes to fill. Hole h1 is filled with the value in u[i] and hole

h2 is filled with the counter i. After the loop, dot gen copies t3 and ends the code

generation.

5 The implementation detects buffer overflow and moves the region to a larger buffer.
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To employ inter-template optimizations on dot, it helps to have an approximation

of the order its templates might be copied. Put another way, we seek to approximate

the set of fall-through destinations t1 and t2 might refer to. Without looking at

dot gen, we must pessimistically assume that instances of t1 and t2 might be followed

by instances of t1, t2, or t3, but an analysis of dot gen (see section 8) reveals that an

instance of t1 would never follow an instance of t1 or t2.

7 Translation

This section describes a translation from Mini-Cyclone (section 5) to CIR (section 6).

We begin with an informal description of the subtle issues that RTCG raises and how

we solve them. This overview highlights the main points that might otherwise remain

hidden in the details of the translation. We then present our translation in two parts:

We begin with the non-RTCG constructs and then integrate RTCG. This approach

reflects our development of the actual Cyclone compiler and emphasizes one of

our main conclusions, namely that we can integrate RTCG into a conventional

optimizing compiler in a principled manner.

To structure our translation like a conventional compiler, the language for the

translation (the meta-language) employs state and imperative features, such as an

“emit” construct for generating target code. We find that using state makes the

translation easier to understand and is better for showing that the translation is

largely conventional. However, nothing precludes a more formal, purely functional

translation. Appendix A presents a monadic-style translation that is actually quite

similar to our stateful one.

Mini-Cyclone has no unstructured control flow (such as break or goto). At the

end of this section, we explain how we can translate unstructured control flow into

CIR, but the translation is less efficient than a richer target language could allow.

7.1 Highlights

If a Mini-Cyclone function named f contains codegen g . . ., then we call f the

parent and g the child because f generates a function using the templates contained

in g. Cyclone has multilevel RTCG – a function generated from g might itself

generate a function – so g might be the parent for some function named h. In the

source language, children are lexically nested in parents, but CIR has no so such

hierarchical structure.

Hence our one-pass translation must simultaneously generate multiple (top-level)

CIR functions: When translating source code lexically contained in some number of

function bodies, we may need to generate code into any of the functions’ translations.

To do so, the translation maintains an ordered sequence of environments, each of

which includes a partially generated CIR function. The environment for a parent

directly precedes the environment for a child. Therefore, the first environment in the

sequence will become an executable CIR function whereas the others will become

template containers.

One of the environments is designated active; instructions are emitted into its

https://doi.org/10.1017/S095679680200463X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200463X


690 F. Smith et al.

Fig. 8. During translation, these three RTCG constructs change the active function as shown.

The higher line denotes the parent, and the lower line the child. The braces denote the start

and end of templates.

CIR function. Translating cut makes the previous environment in the sequence

(the environment for the parent) active. Dually, translating splice makes the next

environment in the sequence (the environment for the child) active. Translating

codegen creates a new environment, puts it after the active one, and makes the new

environment active. Finally, to translate fill e, we make the parent’s environment

active to translate e and emit a CIR fill instruction. We then make the child’s

environment active again and emit a value-hole.

The translation also must partition the generated template containers into tem-

plates and emit copy instructions in parents. Clearly, the translations of distinct

splice constructs must be in distinct CIR templates (i.e. in blocks with different

template names). Otherwise, the parent would not have the flexibility to copy one

statement a different number of times than another, such as happens when unrolling

a loop. Hence the translation begins a new template in the child whenever the parent

enters a splice. The translation also begins a new template in the child whenever

the child leaves a cut. The child code after the cut is put in a new template, as

opposed to the same template used before the cut, because otherwise the parent

could not generate code in-between the child code surrounding the cut. Figure 8

summarizes the changes in the active environment and the extent of templates for

codegen, cut, and splice.

Multiple templates create the possibility for inter-instance jumps. To see how such

control flow arises, consider code of the form

while(e){ ...cut {...}...}...

The cut causes the code following the loop and the loop guard to be in different

templates. Hence, the control transfer for a false guard is inter-instance. If the

loop body had not contained a cut, then no inter-instance jump would have been

necessary. Because our translation does only one pass over the syntax, it must decide

whether the loop-guard transfer is inter-instance or intra-instance after translating

the loop body. At that time, the translation checks if the template following the loop

is the same as the template for the guard. If not, the translation places a destination

hole in the guard and emits code (in the parent) to fill the hole (fill p1.[h] with p2.l).

7.2 Non-RTCG translation

Each top-level function of the input program is translated independently, so to

compile a program, the translation simply compiles each source function and collects

https://doi.org/10.1017/S095679680200463X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200463X


Compiling for template-based run-time code generation 691

all the target functions created. If we ignore RTCG, our translation environment

needs only the information necessary to translate a single function. For a language

as simple as Mini-Cyclone without RTCG, the environment needs only a partially

generated CIR function (into which we generate code) and a “current block,” the

latter just being the label for a block in the function. An example use of the

environment is the emit construct, which appends an instruction to the current

block.

As described informally in section 7.1 and precisely in section 7.3, our translation

environment is actually a sequence of function environments with a distinguished

active environment. We use Φ to range over such a sequence. The adjustment for

translating non-RTCG constructs is extremely simple: emit actually appends an

instruction to the active environment’s current block.

We write [[D]] for the translation of the function D. The role of [[D]] is to translate

the function’s body into a new function environment. Roughly, [[f(x1, . . . , xn) s]]

creates a new function environment in which there is one empty block, makes the

new environment active and the one block current, translates s, and finally adds the

new environment’s now-completed CIR function to the output. We delay the precise

definition until the next section because we use [[D]] to translate codegen.

The translation of statements, [[s]], takes a Φ as an argument. The translation

of expressions, [[e]], leaves its result in a CIR variable provided as input, so it

takes a Φ and an x. The definitions [[s]] and [[e]] are inductive over the structure

of Mini-Cyclone statements and expressions. The rest of this section presents the

non-RTCG cases for these definitions.

All of the non-RTCG expression forms appear straightforward to translate. We

use the primitive newVar to generate a fresh variable. The term emit Φ ι adds ι to

the end of the active environment’s current block. Similarly, emit Φ χ makes χ the

control transfer of the current block. L(f) is just the label for the first block in the

translation of the function named f. Finally, e1; e2 means, “Do e1 then e2.”

[[i]] Φ x =

emit Φ x := i

[[f]] Φ x =

emit Φ x := L(f)

[[x]] Φ y =

emit Φ y := x

[[e1 + e2]] Φ x =

let x1 = newVar in

let x2 = newVar in

[[e1]] Φ x1;

[[e2]] Φ x2;

emit Φ x := x1 + x2

[[e0(e1, . . . , en)]] Φ x =

let x0 = newVar in

. . .

let xn = newVar in

[[e0]] Φ x0;

. . .

[[en]] Φ xn;

emit Φ x := x0(x1, . . . , xn)

The following statement cases are just as straightforward:

[[x := e]] Φ =

[[e]] Φ x

[[s1; s2]] Φ =

[[s1]] Φ;

[[s2]] Φ

[[return e]] Φ =

let x = newVar in

[[e]] Φ x;

emit Φ retn x

The control-flow constructs (if and while) are more complicated. Both definitions

follow the same strategy: Generate the subterms while remembering the entry
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and exit blocks for each. Then replace various transfers to create the correct

control flow. As explained earlier, the translation may have to create inter-instance

control flow at these points. We use the term genDest for this purpose. In the

absence of RTCG, genDest Φ (bsrc, bdst) = bdst; the next section gives the complete

definition.

The term changeBlock puts a new block in the active environment and makes the

new block the current one. changeBlock returns a pair of the old current block’s

label and the new current block’s label. The new block has the same template name

as the old block. The term emit Φ b: χ replaces the transfer in block b with χ.

[[if(e) s1 else s2]] Φ =

let x = newVar in

[[e]] Φ x;

let (b0, bt) = changeBlock Φ in

[[s1]] Φ;

let (b1, bf) = changeBlock Φ in

[[s2]] Φ;

let (b2, bm) = changeBlock Φ in

let df = genDest Φ (b0, bf) in

let dm = genDest Φ (b1, bm) in

emit Φ b0: jnz x ? ◦ : df;

emit Φ b1: jmp dm;

emit Φ b2: jmp ◦

[[while(e) s]] Φ =

let (b0, bt) = changeBlock Φ in

let x = newVar in

[[e]] Φ x;

let (b1, bb) = changeBlock Φ in

[[s]] Φ;

let (b2, be) = changeBlock Φ in

let de = genDest Φ (b1, be) in

let dt = genDest Φ (b2, bt) in

emit Φ b0: jmp ◦;

emit Φ b1: jnz x ? ◦ : de;

emit Φ b2: jmp dt

7.3 RTCG translation

To precisely explain the translation of the RTCG constructs, we must be more exact

in our treatment of environments. An environment has (translation-language) type

τΦ, which we define as follows:

τΦ = {parents : τE list, active : τE, children : τE list}
τE = {current : label, fun : function }

We define important auxiliary functions for changing a sequence’s active environ-

ment:

child (Φ)= {parents = Φ.active :: Φ.parents, active = head (Φ.children),

children = tail (Φ.children)}
parent(Φ)= {children = Φ.active :: Φ.children, active = head (Φ.parents),

parents = tail (Φ.parents)}

So child (Φ) makes the child active and parent(Φ) makes the parent active. Translation

of well-formed source code never applies head or tail to an empty list. (In the

implementation, this property is guaranteed by the Cyclone type-checker.)

We have already used newVar to generate fresh CIR variables. We also need to

generate fresh template names, region names, holes, and instance names. Further-

more, we need to relate members of one of these syntactic classes to another. For
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example, when emitting a fill for a hole in an instance of a template named t, we

need to know the name that the parent uses for the instance.

Rather than keeping an explicit correspondence between members of different

syntax classes, we assume the classes are isomorphic and that we have functions

witnessing the isomorphisms: Given an element of any class (call it a), we can

generate the corresponding variable (V(a)), label (L(a)), hole (H(a)), template

name (T(a)), region name (R(a)), or instance name (P(a)). This technical trick

lets us exploit subtle invariants. For example, the translation has the property that

a template’s instances are manipulated by the parent one at a time, so we can

use the template name (t) to induce an instance name (P(t)). It also lets newVar

suffice for creating fresh members of any class. For example, H(newVar) is a new

hole.

Given these preliminary considerations, we can present the translation ofcodegen:

[[codegen f(x1, . . . , xn)s]] Φ x =

emit Φ R(f) := start L(f);

emit Φ P(f) := copy T(f) into R(f);

[[f(x1, . . . , xn)s]] Φ;

emit Φ x := end R(f)

The translation emits parent code and child code. In the parent, we allocate the

code region (R(f) := start L(f)) and copy the child’s first template (P(f) :=

copy T(f) into R(f)). For translating the child, we simply call [[f(x1, . . . , xn)s]]

with the current environment. That translation function (defined below) will make

the active environment the parent of the newly generated function. That way, cut

statements in s will use the correct local environment. After the child has been

translated, the parent (Φ.active) will not have any more instructions emitted into it

that manipulate this child. The last step is to emit code to convert the code region

into executable code (x := end R(f)).

Our use of [[D]] essentially implies its full definition:

[[f(x1, . . . , xn) s]] Φ =

let E = {current = L(f), fun = (x1, . . . , xn)(L(f),T(f), , jmp ◦)} in
[[s]] Φ[parents = Φ.active :: Φ.parents, active = E, children = ∅];

addFun E

(The notation Φ[label = F] is functional record update; the result has the same

fields as Φ except field label has value F .) We create a new function environ-

ment with one empty block having label L(f) and template name T(f). (The

translation of s will replace the block’s transfer.) We use addFun to add the

completed function to the CIR program. The essential point is that Φ[parents =

Φ.active :: Φ.parents, active = E, children = ∅] ensures that the translation of s

takes place in the proper environment with the correct parent. (Although we have

cleared the field children to emphasize that the values it contains will not be

used by [[s]], this step is unnecessary as the Cyclone type-checker enforces this

property.)
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The translations for cut and splice are pleasingly symmetric:

[[cut s]] Φ =

emit Φ jmp ◦;

[[s]] parent(Φ);

newTemplate Φ

[[splice s]] Φ =

newTemplate child (Φ);

[[s]] child (Φ);

emit child (Φ) jmp ◦

newTemplate Φ =

let f = activeFunction Φ in

let x = newVar in

let (b0, b1) = changeBlock Φ in

setTemplateOfCurrent Φ T(x);

emit parent(Φ) P(x) := copy T(x) into R(f)

Recall that the purpose of cut s is to execute s in the parent of the function in which

the cut appears. Dually, the argument to splice is part of the child function. In

both cases, we have a child-to-parent transition (beginning of the cut, end of the

splice) and a parent-to-child transition (end of the cut, beginning of the splice). For

child-to-parent transitions, we end the current block so that control will flow to a

new template that an ensuing parent-to-child transition creates. For parent-to-child

transitions, we add a new template because the parent may choose to copy the code

after the transition at different times than the code before the transition.

The auxiliary term newTemplate creates a new template in the child and a copy

instruction in the parent. We use a fresh template name and use it to induce a

fresh instance name. Because of the translation of codegen, R(f) is the correct

region name for the copy. (activeFunction Φ retrieves the active function’s name.

setTemplateOfCurrent Φ t changes the current block’s template name to t.)

The translation of fill e is straightforward at this point. In the parent, we

translate e and emit a fill instruction for a new hole. In the child, we emit a

value hole. Because of newTemplate, the correct instance name for the fill is P(t).

(currentTemplate retrieves the current block’s template name.)

[[fill e]] Φ x =

let x1 = newVar in

[[e]] (parent(Φ)) x1;

let x2 = newVar in

let t = currentTemplate Φ in

emit (parent(Φ)) fill P(t).[H(x2)] with x1;

emit Φ x := [H(x2)]

So far, the translation does not seem to use any fill p1.[h] with p2.l instructions.

As discussed previously, we need such instructions for inter-instance jumps. We have

just seen that new templates are created when cut statements occur inside of other

source constructs. This fact is why the control-flow jumps in the translation of if

and while may be inter-instance. We now have the machinery to define genDest

in general: We simply check whether the templates of the source and destination

blocks are the same (using templateOf Φ b to retrieve the template name in the

block with label b). If the same, we just return the destination’s label. If different,
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we create a hole, emit a fill for the hole in the parent, and return the hole.

genDest Φ (bsrc, bdst) =

let tsrc = templateOf Φ bsrc in

let tdst = templateOf Φ bdst in

if tsrc = tdst then bdst
else (let x = newVar in

emit (parent(Φ)) fill P(tsrc).[H(x)] with P(tdst).bdst;

[H(x)])

7.4 Unstructured control flow

Unlike Cyclone, Mini-Cyclone does not have unstructured jumps, such as break

or goto. Like the “forward jumps” in the translation of conditionals and loops,

such constructs can lead to inter-instance jumps, which require jump holes and code

to fill them. Unfortunately, with unstructured code, we cannot statically bound the

number fills needed. For example, in the following program, the function f will

generate x jumps to s, but our translation cannot fill the holes for these jumps until

the body of the child’s loop is translated.

f(x)

return codegen g() {
while(e) {
cut { while(x>0) {

splice { ... break ... };
x = x-1; } } };

s }

We know two solutions to this problem. First, we could enrich CIR with data

structures and first-class holes. Then the translation could have the parent maintain a

list of jump-holes to fill after generating the child’s loop. One potential disadvantage

of this solution is that it becomes much harder for a dataflow analysis to accurately

determine the destinations with which the parent might fill these holes.

The second solution turns forward jumps into backward jumps by generating a

single block before the child’s loop with a jump-hole. We translate break to jump to

this block and later fill the one hole with the necessary destination. The disadvantage

is efficiency: Unstructured jumps are translated into two jumps.

8 Analysis and optimization

This section shows how to perform intra-procedural dataflow optimizations over

CIR functions. A preliminary step in dataflow analyses is to build a control-flow

graph (CFG). A CFG for a function F is a directed graph whose nodes are the

labels in F . The graph must have an edge from l1 to l2 if control may flow directly

from the end of block l1 to the beginning of block l2.

This definition of CFG does not apply to template container functions because

there is no control flow in the containers per se. Rather, we are interested in how
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gen_f(n) {
return codegen(

f(m,max) {
ans = 0;

while(ans <max) {
y = fill(n) * m;

ans = y + ans;

}
return ans;

});
}

gen_g(n) {
return codegen(

g(m,max) {
ans = 0;

cut {
do {
splice {
if(max > ans) {

y = fill(n) * m;

ans = y + ans;

}
};
n = n - 1;

} while(n > 0);

}
return ans;

});
}

Fig. 9. Cyclone code used to demonstrate why we distinguish inter-template and intra-

template edges. Instances of f return the least multiple of n ∗ m greater than max . Instances

of g compute Σn
i=1i ∗ m in descending order, stopping if a partial sum exceeds max .

control may flow in the functions generated from the container. We want the CFG

for a container function to approximate control flow for all functions that may

eventually be generated from it. We therefore generalize the definition of CFG as

follows: A CFG for a container function F is a directed graph, with inter-template

and intra-template edges, whose nodes are the labels in F and where control may

flow from an instance of l1 to an instance of l2 only if there is an edge of some kind

from l1 to l2. The two kinds of edges represent different degrees of precision:

• An inter-template edge between (l1, l2) allows control to flow from any instance

of l1 to any instance of l2.

• An intra-template edge between (l1, l2) allows control to flow only between

copies of l1 and l2 that occur in the same instance.

8.1 Examples

To understand our decision to distinguish intra-template and inter-template edges,

consider the two (slightly embellished) Mini-Cyclone functions in figure 9. The

behaviors of f and g are not as important as the similarity of their (simplified)

translations shown in figure 10.

The significant difference between these two container functions is that the

translation of the loop in f has an intra-template back-edge (from f2 to f1) whereas

g has a cycle caused by an inter-template edge (from g3 to g1). Despite this difference,

the control-flow graphs (see figure 11) look quite similar if we ignore the edge kinds.

Yet f and g are used very differently: functions generated from f have one copy of

each block in the order they appear in f. Functions generated from g are loop-free

and contain n instances of t1.
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(m,max) (f, t, ans := 0,

jmp ◦)

(f1, t, tst := max > ans,

jnz tst ? ◦ : f3)

(f2, t, x := [h],

y = x ∗ m,

ans = y + ans,

jmp f1)

(f3, t, retn ans)

(m,max) (g, t0, ans := 0,

jmp ◦)

(g1, t1, tst := max > ans,

jnz tst ? ◦ : g3)

(g2, t1, x := [h],

y = x ∗ m,

ans = y + ans,

jmp ◦)

(g3, t1, jmp ◦)

(g4, t2, retn ans)

Fig. 10. Simplified translations into CIR of the container functions from figure 9.

Fig. 11. Control-flow graphs for f and g reflect differences in their generators. Solid arrows

denote intra-template edges; dashed arrows denote inter-template edges.

The CFGs capture most, but not all, of this information. The graph for f tells

us that the loop is intra-template, but we do not know how many times t may be

copied.6 From the CFG for g, we must conservatively assume that the inter-template

edge from g3 to g1 might give rise to an intra-instance edge or an inter-instance

edge in a generated function. In this sense, inter-template edges represent a proper

superset of the possibilities that intra-template edges represent. However, we have

two ways to reason that there will not be an intra-instance edge from g3 to g1.

First, only hole destinations can give rise to intra-instance control flow and g2 has a

fall-through destination. Secondly, the translation in section 7 never fills a hole with

a label from the same template.

6 In this example, it happens that subsequent copies would be unreachable.
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The most important difference in the CFGs for f and g is that the loop in g

has an inter-template edge. In the next section, we will demonstrate this difference’s

relevance (and often, its irrelevance) to dataflow analysis.

8.2 Dataflow analysis over CIR functions

The reason we have distinguished inter-template edges is that holes are constant in

intra-template loops, but not necessarily in inter-template loops. After all, a loop

containing an inter-template edge can lead to a generated function with multiple

instances of a template, each with its holes filled with different constants.

Analyses not concerned with the constancy of holes need not differentiate between

the kinds of edges. For example, consider liveness analysis, which is crucial to inter-

template register allocation in our compiler. Because the uses and definitions of

variables occur in the same place in every template instance, it does not help to

distinguish control flow to the same instance (i.e., the intra-template edges). Indeed,

the variables live after each corresponding instruction in our example functions are

the same (although in other examples the edge (g3, g4) could change the result).

On the other hand, distinguishing edges allows an analysis to determine that more

expressions are loop invariant. Given a loop in a conventional CFG, we say an

expression in the loop is invariant if it must have the same value from the time code

in the loop is entered until code not in the loop is entered. With RTCG, we mean

that in all generated functions, all instances of an expression must have the same

value – and the same value as all other instances – from the time an instance of

code in the loop is entered until an instance of code not in the loop is entered. Other

definitions of invariance are less useful for optimization. For example, the expression

x ∗ m is invariant in f2, but not in g2. An optimizing compiler could hoist the first

two instructions from f2 to f, but hoisting the same code from g2 to g would not

preserve meaning.7

We cannot speak precisely about an analysis being sound without defining a

formal semantics for CIR. Informally, a container function represents the set of

functions that might be generated from it. An analysis is sound when its results are

sound for all functions in this set. Because these functions have no inter-template

edges, established soundness results apply.

8.3 Transformations over CIR functions

One standard use of dataflow analysis is to direct meaning-preserving code trans-

formations. In a conventional language, an intra-procedural transformation has no

effect on any other function, so long as the function’s interface is unchanged. With

RTCG, a container function’s “interface” to the rest of the program includes how its

parent copies templates and fills holes. In other words, any change to the function’s

templates or holes may affect how its parent needs to generate the function.

7 We could hoist the instructions in g2 to a new loop-header block in t1, but doing so provides no
benefit and increases register pressure in g1.
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The changes in a parent that intra-template transformations require are straight-

forward. Essentially, a hole might be deleted (e.g. dead-code elimination), duplicated

(e.g. copy propagation), or moved (e.g. instruction scheduling). It is easy to find all

fills of the hole in a parent and do the corresponding deletion or duplication. (Intra-

template hole motion requires no change in a parent.) Note that the soundness of an

intra-template transformation may rely on inter-template information. For example,

suppose our example function f had an additional template that assigned 0 to y

and then had an inter-template jump to f2. In this case, we could not move the hole

and multiplication out of the loop.

Inter-template hole transformations are more difficult. For example, suppose it

is sound to move a hole from a template t to a different template t′. Doing so

requires rewriting the parent’s fill instruction to refer to the appropriate instance of

t′, but that instance pointer may not be available. Therefore, our compiler does not

attempt inter-template hole motion. In the future, we hope to find a convenient way

to communicate the necessary information between the parent and child to permit

such transformations.

The Cyclone compiler performs some simple template transformations. Unreach-

able templates are eliminated as are “empty templates” (templates equivalent to a

single fall-through). In both cases, it suffices to remove from the parent all copy

instructions that mention the empty template.

Note that a sound transformation of a parent cannot require changing a child:

Because the parent treats the child as data, any correct optimization will copy the

templates in the same order and fill the holes with the same values.

The Cyclone compiler implements register allocation, liveness analysis, inlining,

and null-check elimination uniformly over functions and template container func-

tions. The same code is used for these two kinds of templates with very little

modification. As discussed, these transformations and analyses are sound because

they do not involve code motion.

8.4 Control-flow graphs for CIR functions

This section describes the analysis used in the Cyclone compiler to compute

generalized CFGs for container functions. Prior to implementing this analysis our

compiler tried to construct the CFG during translation. We found that approach

difficult to maintain and less precise than this analysis. Minimizing edges in the CFG

is important because it affects the precision of all subsequent analyses. Furthermore

this analysis can be run after any number of other analyses to reconstruct the CFG

should that be necessary.

There are two distinct kinds of edges in the CFG for F , intra-template edges

(intra(F)) and inter-template edges (inter(F)). The edges in intra(F) represent

control flow within a template instance. They arise from label destinations and

from intra-template fall-through destinations. The edges in inter(F) represent

control flow that may be to another instance.8 They arise from hole destinations

8 The name is misleading because the control flow could be to the same instance.
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and fall-through destinations in a template’s last block. These edges approximate

how the generator(s) of F might create control flow by filling holes and copying

templates.

The computation of intra(F) is standard: Let F = (x1, . . . , xn)B1, . . . , Bm and

Bi = (li, ti, . . . , χi). Let d be a destination in χi. If d = lj and ti = tj , then (li, lj) ∈
intra(F).9 If d = ◦, i < m, and ti = ti+1, then (li, li+1) ∈ intra(F). No other edges

are in intra(F).

Computing inter(F) is more interesting. Given only F , we could compute only a

very conservative inter(F): Any hole could be filled with any label of any instance

and an instance of any template could follow an instance of any other. By analyzing

F ’s parents (that is, functions containing r := start f where f is F ’s name), we can

attain more precision. Our translation has the property that executable functions

have no parents and non-executable functions have exactly one parent. We use

parent(F) to denote the parent of F . We explain how to extend the analysis to

multiple parents at the end of the section.

The Cyclone compiler uses a forward dataflow analysis on parent(F) to compute

inter(F). The compiler first computes the parent’s CFG and then uses it to compute

the child’s CFG. (If F has no parent, then inter(F) has no edges.)

As discussed earlier, because this analysis does not depend on the values of

holes, it need not distinguish between the two kinds of edges. For now, assume that

parent(F) contains exactly one r := start f instruction. Our goal is to determine

what edges we must add to the CFG for F because of the way parent(F) manipulates

the templates. We assume every instruction in parent(F) is reachable, so the edges

added are the union of the edges each instruction adds:

inter(F) =
⋃

ι∈parent(F)

inter(ι)

Instructions add edges by filling holes and copying templates:

inter(ι) =




{(li, lj)} if ι = fill p1.[h] with p2.lj and h is in χi
copypred(ι) × {l} if ι copies t and t’s first block has label l

∅ otherwise

The first case includes edges introduced by filling holes. The second case is for

fall-through destinations: If ι is a copy instruction that copies t, then consider all t′

that could have been the most recently copied template when control reaches ι. If

the last block of t′ has a fall-through destination, then we must add an edge from

the last block of t′ to the first block of t. We write copypred(ι) for the set of labels

of such “last blocks”. Determining copypred(ι) for each ι in parent(F) is a dataflow

problem. We define the function fallthru(t) for a template in F to be the label of

the last block if that block has a fall-through destination:

fallthru(t) =

{
{l} if (l, t, . . . , χ) is t’s last block and χ contains ◦
∅ otherwise

9 If d = lj and ti �= tj , then F is not well-formed.
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For an instruction sequence in parent(F), last denotes the last template copied,

if any:

last(ι1, . . . , ιn) =

{
{t} if ιn = p := copy t into r

last(ι1, . . . , ιn−1) otherwise

last(·) = ∅

We extend last to blocks via last(l, t, ι1, . . . , ιn, χ) = last(ι1, . . . , ιn). We can now

state the relevant dataflow equations.

out(B) =

{
fallthru(t) if last(B) = {t}

in(B) if last(B) = ∅
in(B) =

⋃
B′∈pred(B)

out(B′)

These equations specify a forward dataflow problem that can be solved using

standard techniques (Aho et al., 1986; Muchnick, 1997), starting with in(B) = ∅
for the first block of parent(F). Note that we use the assumption that CFG for

parent(F) is already defined in the definition of in(B). Using the dataflow solution

and letting ι(l,i) denote the ith instruction in block l, we can define copypred:

copypred(ι(l,i)) =




in(B) if i = 1 and B = (l, . . .)

fallthru(t) if ι(l,i−1) = p := copy t into r

copypred(ι(l,i−1)) otherwise

The analysis we have defined above is adequate for the subset of CIR produced

by our translation. It does not, however, handle multiple parents nor mutually

generating functions. Although the utility of these features is unclear to us, we

speculate briefly on how to generalize our analysis to handle them. If F has multiple

parents, we just add the edges that each parent requires. Similarly, if one parent

uses multiple code regions, we just repeat the process for each code region. Because

code regions and instance pointers are second-class constructs, we always know

which code region an instruction affects. The interesting extension is for mutually

generating functions. That is, nothing in CIR prevents a cycle in the graph where

edge (F,G) means F is a parent for G. Here we cannot compute the CFG for a

parent before a child. The solution is to iterate the program-wide analysis in a

manner just like conventional inter-procedural analysis.

Handling more expressive languages like ’C would require more generalization.

First consider a system in which multiple functions coordinate to generate code.

In this case, we could either fall back on a conservative approximation for inter-

template control-flow at procedure boundaries or use an inter-procedural analysis

of the coordinating parent functions. We could further allow a single template to

belong to more than one container function. Keeping transformations consistent

across all the container functions using a particular template would be challenging.

This situation is somewhat analogous to inter-procedural optimization where the

templates are the procedures and the container functions are the exposed interface.

Both of these generalizations would be useful additions to Cyclone, but they would

likely lead to less precise CFGs and therefore less effective static optimizations.
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9 Future work

We have presented a framework for reasoning about analyses and transformations

in the presence of RTCG. Our framework consists of an intermediate language

(CIR) with explicit support for RTCG, a generalization of control-flow graphs

useful for optimizing code templates, and a formal translation from a source

language.

This work is only the first step in formalizing compilation for RTCG. We would

like to prove the correctness of the translation from Cyclone to CIR and the

correctness of analyses and transformations over CIR. Doing so requires a formal

semantics for Cyclone and CIR. More speculatively, it would be interesting to

extend our framework to languages with first-class code fragments such as ’C.

In such languages, templates can be shared by multiple template containers and

multiple functions can coordinate to generate a function. We believe these two

features would make inter-template optimization analogous to inter-procedural

optimization.

We are also working on more substantial benchmarks to better understand

the tradeoffs of RTCG in an application setting. Before undertaking an ex-

tensive performance evaluation we intend to add key optimizations, such as

array-bounds-check elimination, constant folding, copy propagation, dead-code

elimination, and instruction scheduling, to those already in the compiler (register

allocation, inlining, and null-check elimination). The formal framework presented

here has proven crucial for understanding how to fold these optimizations into our

compiler.

A Functional translation

We describe a purely functional translation from Mini-Cyclone to CIR. The

translation is defined as a function that takes an environment to an environ-

ment containing the translated code. The translation language is a λ-calculus

with products, records, and lists that is augmented with syntactic sugar to keep

the translation palatable. Any standard semantics for the translation language

suffices.

This translation looks similar to the one in section 7 (and often uses the same

names and syntax), but the meanings of many terms are different because they are

functional. This section assumes the reader has read the previous translation and is

therefore somewhat more terse.

In the following sections, we describe the environment for the translation, the

translation of non-RTCG constructs, and the translation of RTCG constructs.

A.1 Translation environment

The translation of a Mini-Cyclone term is with respect to a global environment,

Φ, that contains local environments, E, for each function being translated simul-
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taneously. A global environment is a record of type τΦ:

τΦ = { funs : CIR function list, ids : var list,

parents : τE list, active : τE, children : τE list}
τE = {current : label, fun : block list }

In τΦ, the funs field contains the set of completed functions and the ids field contains

the set of “used” variables. The rest of the environment is the same as in Section 7.

As in the other translation, we assume the syntax classes for CIR variables, template

names, regions names, holes, and instance names are isomorphic. As before, given

an element of any class (call it a), we can get the corresponding variable (V(a)),

label (L(a)), hole (H(a)), template name (T(a)), code region (R(a)), or instance

(P(a)).

Our initial environment, call it Φ0, is defined as follows:

E0 = {current = l, fun = ·}
Φ0 = {ids = ids0, funs = ·, parents = ·, active = E0, children = ·}

For ids0, we need the list of all x such that x appears in the source program or

x = V(f) where f appears in the source program. We use · for the empty list. E0

is a placeholder; it is never used.

A.2 Non-RTCG translation

Each top-level function of the input program is translated independently, so to

compile a program P = D1, . . . , Dn, we simply begin with an initial environment,

compile each function, and retrieve the value of the funs field:

[[D1, . . . , Dn]] = (([[D1]]; · · · ; [[Dn]]) Φ0).funs

We use dot-notation for record projection and semi-colon for reverse composition

(f; g = λx.g(f x)).

The translation of a function, [[D]], has type (τΦ → τΦ). The resulting environment

has a new CIR function that is the translation of D. It also has functions for the

codegen expressions in D, but the translation of codegen is responsible for that.

The definition of [[D]] creates an E, uses it to translate the body, and adds the

appropriate function to the funs field:

[[f(x1, . . . , xn) s]] Φ =

let E = {current = L(f), fun = [(L(f),T(f), ·, jmp ◦)]} in
let Φ1 = Φ[active = E] in

let Φ2 = [[s]] Φ1 in

Φ2[funs = Φ2.funs :: {(x1, . . . , xn)Φ2.active.fun}]

We use the notation R[label = F] for functional-record update.
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The translation of statements, [[s]], also has type (τΦ → τΦ). The translation

of expressions, [[e]], has type (var → τΦ → τΦ). The definitions [[s]] and [[e]]

are inductive over the structure of Mini-Cyclone statements and expressions. We

first present the simpler cases (relying on intuition to get the feeling for the trans-

lation), then define the unfamiliar notation, and then present the cases for control

flow.

[[i]] x =

emit x := i

[[x]] y =

emit y := x

[[f]] x =

emit x := L(f)

[[e1 + e2]] x =

let x1 = newVar then

let x2 = newVar then

[[e1]] x1;

[[e2]] x2;

emit x := x1 + x2

[[e0(e1, . . . , en)]] x =

let x0 = newVar then

. . .

let xn = newVar then

[[e0]] x0;

. . .

[[en]] xn;

emit x := x0(x1, . . . , xn)

[[x := e]] =

[[e]] x

[[s1; s2]] =

[[s1]];

[[s2]]

[[return e]] =

let x = newVar then

[[e]] x;

emit retn x

To make these definitions precise, we first describe the translation of constant

integers. The body, emit x := i, appends x := i to the body of the current block. In

general, the expression emit ι takes an environment, Φ, and produces an identical

environment except that the instruction ι is appended to the current block, i.e. the

block in Φ.active.fun with label equal to Φ.active.current. Similarly, the expression

emit χ replaces the control transfer of the current block with χ. It is easy to see that

with these definitions, [[i]] x has the type τΦ → τΦ, as required.

The argument to the emit function, x := i, is not a proper CIR instruction

because x is a metavariable. However, the translation applies [[e]] to an expression

that evaluates to a CIR variable, so we let x := i mean the CIR syntax obtained

by replacing x with the value to which it is bound. We blur this distinction between

metavariables and variables for the other CIR constructs analogously.

Now consider [[e1 + e2]] x. The last three lines are already well-defined (recall

f; g = λx.g(f x)). The rest of the body has two nested occurrences of the form

let y = f then g. For example, the outer occurence has x1 for y, newVar for f, and

the rest of the body for g. We define let y = f then g to mean (f (λy. g)). That is,

f is a function expecting a continuation and λy. g is such a continuation.

So newVar has type (var → τΦ → τΦ) → τΦ → τΦ; given a continuation and

an environment, it returns an environment. newVar calls the continuation with a

new CIR variable (not a metavariable) and an environment recording the variable’s

use:

newVar k Φ = k ′′x′′ Φ[ids = Φ.ids :: {′′x′′}] (where ′′x′′ ∈ var \ Φ.ids)

We have now described all of the notation used above. The remaining non-RTCG

constructs manipulate control flow, so they are more complicated:
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[[if(e) s1 else s2]] =

let x = newVar then

[[e]] x;

let (b0, bt) = changeBlock then

[[s1]];

let (b1, bf) = changeBlock then

[[s2]];

let (b2, bm) = changeBlock then

let df = genDest(b0, bf) then

let dm = genDest(b1, bm) then

emit b0: jnz x ? ◦ : df;

emit b1: jmp dm;

emit b2: jmp ◦

[[while(e) s]] =

let (b0, bt) = changeBlock then

let x = newVar then

[[e]] x;

let (b1, bb) = changeBlock then

[[s]];

let (b2, be) = changeBlock then

let de = genDest(b1, be) then

let dt = genDest(b2, bt) then

emit b0: jmp ◦;

emit b1: jnz x ? ◦ : de;

emit b2: jmp dt

These cases are quite like their non-functional counterparts except that they use

continuations. It remains to define changeBlock and genDest (in the next section).

changeBlock k Φ =

let E = Φ.active in

let bold = E.current in

let b = newVar then

let l = L(b) in

let t = currentTemplate E in

let E′ = {current = l, fun = append(E.fun, (l, t, ·, jmp ◦))} in
k (bold, b) Φ[active = E′]

changeBlock invokes its continuation with a pair of labels. The first is the label of

what was the current block. The second is the label of a new empty block added

to the end of the active function and made the current block. The new block has

the same template name as the old current block. To be precise, currentTemplate E
evaluates to the template name of the block in E.fun with label E.current and append

puts its second argument at the end of the list of blocks in its first argument.

A.3 RTCG translation

We now explain how the four Mini-Cyclone constructs specific to RTCG are

compiled. We begin with codegen and use it to explain most of the new concepts:

[[codegen f(x1, . . . , xn)s]] x Φ0 =

let Φ0 = emit R(f) := start L(f) Φ0 in

let Φ0 = emit P(f) := copy T(f) into R(f) Φ0 in

let Φ1 = Φ0[parents = Φ0.active :: Φ0.parents][children = ·] in
let Φ2 = [[f(x1, . . . , xn)s]] Φ1 in

let Φ3 = Φ2 [parents = tail(Φ2.parents)]

[active = head(Φ2.parents)]

[children = Φ0.children]

in (emit x := end R(f)) Φ3
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The translation creates parent and child code. At the parent level, it allocates

a code region, copies the first template, and, after everything else, converts the

code region to executable code (x := end R(f)). At the child level, we translate

the function declaration. After translating the child, we use Φ3 to create an

environment for translating the rest of the parent. The parents and active fields

must come from Φ2 because a cut or fill in s affects the value of Φ2.parents. The

children field must come from Φ0 because the codegen may be within a cut or

fill.

The translations for cut and splice defer the interesting work to auxiliary terms:

[[cut s]] =

emit jmp ◦;

↓ [[s]];

newTemplate

[[splice s]] =

↑ newTemplate;

↑ [[s]];

↑ emit jmp ◦

Intuitively, ↓ gives [[s]] an environment that “shifts” the head of parents to active

and the active field to the head of children and then “unshifts” after the translation

of s. The ↑ term used in splice s “shifts” and “unshifts” in the opposite direction.

To be precise, we define:

up Φ = Φ[parents = Φ.active :: Φ.parents, active = head (Φ.children),

children = tail (Φ.children)]

down Φ = Φ[children = Φ.active :: Φ.children, active = head (Φ.parents),

parents = tail (Φ.parents)]

↓ e = down; e; up

↑ e = up; e; down

Translation of well-formed source code never applies head or tail to an empty

list.

We use newTemplate when moving from parent to child. It creates a new template,

puts a new block in it, and emits a copy instruction in the parent.

newTemplate =

let f = currentFunction then

let x = newVar then

let (b0, b1) = changeBlock then

setTemplateOfCurrent T(x);

↓ emit P(x) := copy T(x) into R(f)

Given a template name (t) and an environment, setTemplateOfCurrent returns an

environment where t is the current block’s template name. currentFunction retrieves

the active function’s name (for Φ, the label of Φ.active.fun).

The translation of fill e is straightforward at this point. In the function

generating the current one, we translate e and emit a fill instruction for a new
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hole. In the template, we assign the hole to the result.

[[fill e]] x =

let x1 = newVar then

↓ [[e]] x1;

let x2 = newVar then

let t = activeTemplate then

↓ emit fill P(t).[H(x2)] with x1;

emit x := [H(x2)]

activeTemplate retrieves the template name of the current block.

Finally, the translation uses fill p1.[h] with p2.l instructions in the correct

definition of genDest precisely when an inter-template jump occurs:

genDest (bsrc, bdst) k Φ =

let tsrc = templateOf Φ bsrc in

let tdst = templateOf Φ bdst in

if tsrc = tdst then k bdst Φ

else (let h = newVar then

↓ emit fill P(tsrc).[H(h)] with P(tdst).bdst;

k [H(h)]) Φ

templateOf Φ b is the template name of the block in Φ.active.fun with label b.
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