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1. Introduction

The modified quantum algebra, which is denoted eUq(g), was introduced in [1] for
GLn-case and in [5] for general case. In [10], G. Lusztig showed the existence of
canonical (crystal) base of modified quantum algebras for general Lie algebra.

In [6], M. Kashiwara described detailed crystal structure of the modified quan-
tum algebras, in particular, he gave the Peter–Weyl type decomposition theorem
for the cases that g is finite type and affine type with non-zero level (=central
charge) parts. But, in [6, 7], it is mentioned that the structure of level 0 part for
affine type is still unclear. By the definition of the modified quantum algebra (2.1),
we know that originally eUq(g) is neither a highest nor a lowest weight module.
Nevertheless, if g is affine type, we can apply the powerful tool : theory of inte-
grable highest (resp. lowest) weight modules to the positive (resp. negative) level
part eUq(g)+ := �hc;�i>0Uq(g)a� (resp. eUq(g)� := �hc;�i<0Uq(g)a�) by virtue of
Weyl group actions on crystal bases, where c is a canonical central element of g.
But, in the level 0 case, there is no such a tool. However, even in level 0 case, it
is still a good way to consider Weyl group actions on crystal bases. Classification
of ’extremal vectors’ (Definition 2.3) is a crucial point in this paper. By applying
this classification to ‘path’ realization, we can clarify crystallized structure of the
level 0 part of the modified quantum algbra for g = csl2 case and give an explicit
description of its every connected component as a crystal graph. The Peter–Weyl
type theorem for this case will be given in the forthcoming paper.
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2 TOSHIKI NAKASHIMA

The path realization for the level 0 part of the modified quantum algebra for
g = csl2 case has an another feature, which is a physical one. A set of ‘path’ is like
the following thing�

(: : : ; ik; ik+1; : : : ; );
ik 2 Z; ik = 0 (k � 0);
ik = �ik+1 (k � 0):

�
: (1.1)

Meanwhile, there is so called ‘XXZ type chain model’, which is a kind of physical
model on the following space:

F = (� � � 
 Cl+1

 Cl+1


 Cl+1

 � � �)�;

where Cl+1 has a basis f(i)gi=0;���;l and the notation (� � �)� implies the condition
that F is spanned by vectors � � �
(ik)
(ik+1)
� � �with ik+ik+1 = l for jkj � 0.
We can see that this condition is similar to the condition in (1.1). It is known that
the space F has a Uq(csl2)-module structure. In fact, in [2] and [3], this space is
realized as

F =
M

hc;�i=hc;�i=l

V (�)
 V (��)�;

where V (�) (resp. V (��)) is an integrable highest (resp. lowest) weight module.
By [10] and Theorem 2.1.2 in [6], we can deduce that Uq(g)a� is a kind of limit
of F and we know that there exists crystallized structure for modified quantum
algebras. For such a limit, in [11] we gave some related algebra structure and its
representation theory. But in this paper, we do not touch this subject.

Let us see the organization of this paper. In Section 2, we shall introduce
some important notions and results related to the follwoing sections. In Section
3, we study affinization of classical crystal and give a classification of extremal
vectors in B
n, where B = f�g is the two-dimensional crystal, called ‘spin’. In
Section 4, we shall give ‘path realization’ of Uq(g)a� with level of � = 0 and
introduce notions of ‘domain’ and ‘wall’, which play a crucial role in this paper.
We also describe the actions of ~ei and ~fi on a path. In Section 5, we give the
path-spin correspondence, which is a morphism of classical crystal between paths
and spins. In Section 6, first of all, we shall introduce some parametrizations which
are necessary to describe connected components in B( eUq(g)0). Then we shall
give explicit crystallized structure of eUq(g)0 by classifying all extremal vectors ineUq(g)0.

2. Preliminaries

In this section, we give some important notions for the following sections. All
notations and definitions follow [6, Sect. 1].
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CRYSTALLIZED STRUCTURE FOR LEVEL 0 PART OF AFFINE ALGEBRA 3

DEFINITION 2.1. The crystal graph of crystalB is an oriented and colored graph
given by the rule : b1

i
�!b2 if and only if b2 = ~fib1 (b1; b2 2 B).

DEFINITION 2.2. (i) A morphism of crystals ([6, Definition 1.5.2.]) : B1 ! B2

is called strict if the associated map from B1 t f0g ! B2 t f0g commutes with
all ~ei and ~fi. If  is injective, surjective and strict,  is called an isomorphism.

(ii) A crystal B is a normal, if for any subset J of I such that ((�i; �j))i;j2J
is a positive definite symmetric matrix, B is isomorphic to a crystal base of an
integrable Uq(gJ)-module, where Uq(gJ) is the quantum algebra generated by ej ,
fj (j 2 J) and qh (h 2 P �).

For crystals, we can define their tensor product as in [6, Sect. 1]. Let C(I; P ) be
the category of crystals determined by the index set of simple roots I and the weight
lattice P . Then 
 is a functor from C(I; P ) � C(I; P ) to C(I; P ) and satisfies the
associative law: (B1
B2)
B3

�= B1
(B2
B3) by (b1
b2)
b3 $ b1
(b2
b3).
Therefore, the category of crystals is endowed with the structure of tensor category.

For an integral weight � 2 P , let Uq(g)a� be the left Uq(g)-module given by

Uq(g)a� := Uq(g)

,X
h2P �

Uq(g)(q
h
� qhh;�i); (2.1)

where a� is the image of the unit by the canonical projection. The direct sumeUq(g) :=
L

�2P Uq(g)a� is called modified quantum algebra [6, Sect. 1].
There exists crystallizations for modified quantum algebra in the sense of [10]

and Theorem 2.1.2 in [6].
Let B(�1) be the crystals for the subalgebras U�

q (g) and T� (� 2 P ) be the
crystals given in Example 1.5.3 in [6]. The following theorem plays a significant
role in this paper ([6, Sect. 3]).

THEOREM 2.3. B(Uq(g)a�) �= B(1)
 T� 
B(�1) as a crystal.

COROLLARY 2.4. B( eUq(g)) �= ��2PB(1)
 T� 
B(�1) as a crystal.

We can define the Weyl group actions on normal crystals ([6, Sect. 7]). Let Si
be the simple reflection as in (7.1.1) [6].

DEFINITION 2.5. (i) Let B be a normal crystal. An element b 2 B is called
i-extremal, if ~eib = 0 or ~fib = 0.

(ii) An element b 2 B is called extremal if for any l > 0,Si1 : : : Silb is i-extremal
for any i, i1 : : : il 2 I .

The following theorem plays a significant role in Sect.6.

THEOREM 2.6. Any connected component ofB( eUq(g)) contains an extremal vec-
tor.
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4 TOSHIKI NAKASHIMA

3. Affine crystals

In the rest of this paper, we fix g = csl2. We follow the notations in [3], [4].

3.1. AFFINIZATION OF CLASSICAL CRYSTALS

U := Uq(csl2) is the quantized enveloping algebra associated with P . Let U 0 :=
U 0
q(csl2) be its subalgebra generated by ei, fi and qh (h 2 (Pcl)

�). The algebra
U 0 is also the quantized enveloping algebra associated with Pcl. Now, we call a
P -weighted crystal an affine crystal and a Pcl-weighted crystal a classical crystal.

Remark. A U -module has a U 0-module structure but in general, the opposite
case is false.

DEFINITION 3.1. LetB be a classical crystal. We define the affine crystal Aff(B)
associated with B as follows

Aff(B) := fzn 
 b j b 2 B; n 2 Zg; (3.1)

where z is an indeterminate. We call Aff(B) an affinization of B. The actions by
~ei and ~fi, and the data are given as follows:

~ei(z
n 
 b) = zn+�i;0 
 ~ei(b); ~fi(z

n 
 b) = zn��i;0 
 ~fi(b);

"i(z
n 
 b) = "i(b); 'i(z

n 
 b) = 'i(b);

wt(zn 
 b) = n� + af(wt(b)):

(3.2)

By (3.2) we know that if B is a crystal base of U 0, Aff(B) is a crystal base of
U . Here, note that even if a classical crystal B is connected as a crystal graph, its
affinization Aff(B) is not necessarily connected.

EXAMPLE 3.2. Let B = f+;�g be a 2-dimensional classical crystal given by

~e0(+) = ~f1(+) = �; ~e1(�) = ~f0(�) = +;

~e0(�) = ~f1(�) = 0; ~e1(+) = ~f0(+) = 0;

wt(�) = �(�1 � �0);

'1(+) = '0(�) = "0(+) = "1(�) = 1;

'1(�) = '0(+) = "0(�) = "1(+) = 0:

(3.3)

It is easy to see that B
2 is connected. But its affinization

Aff(B
2) �= fzn 
 �1 
 �2 j �i = �; n 2 Zg (3.4)
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CRYSTALLIZED STRUCTURE FOR LEVEL 0 PART OF AFFINE ALGEBRA 5

is not connected. In fact, this is divided into the following two components

Aff(B
2)1 := fz2n�1

+
+; z2n�1


�
+; z2n�1

�
�;

z2n

+
�; jn 2 Zg;

Aff(B
2)0 := fz2n

+
+; z2n


�
+; z2n

�
�;

z2n+1

+
�; jn 2 Zg:

3.2. EXTREMAL VECTORS IN B
n

Let B be the 2-dimensional classical crystal introduced in Example 3.2.

PROPOSITION 3.3. B
n is connected as a crystal graph. Let E be the set of all
extremal vectors in B
n. Then we have E = f(+)
n; (�)
ng:

Proof. By the fact thatB is a perfect crystal [4, Corollary 4.6.3.], we can easily
obtain the connectedness of B
n.

By [9, Sect. 2], we know that

~f1((�)

k 
 (+)
l) = (�)
k+1 
 (+)
l�1;

~e1((�)

k 
 (+)
l) = (�)
k�1 
 (+)
l+1;

~f0((+)

k 
 (�)
l) = (+)
k+1


 (�)
l�1;

~e0((+)

k 
 (�)
l) = (+)
k�1 
 (�)
l+1;

(3.5)

where we consider (�)
m = 0 if m < 0. Since B
n is a normal crystal, we get

S1(+)

n=S0(+)


n=(�)
n; S1(�)

n=S0(�)


n=(+)
n: (3.6)

From (3.6) and the fact that ~e1(+)

n = ~e0(�)


n = ~f1(�)

n = ~f0(+)


n = 0, we
know that (+)
n and (�)
n are extremal vectors.

Now we shall show that there is no other extremal vector without these two
vectors by using the induction on n.

For n = 1, this is trivial. We assume that u
+ is an extremal vector inB
n+1.
Here note that for any b 2 B
n, 'i(b) and "i(b) are given by

'i(b) = maxfn; ~fni b 6= 0g; "i(b) = maxfn; ~eni b 6= 0g;

and then

'i(b) > 0; "i(b) > 0: (3.7)
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6 TOSHIKI NAKASHIMA

We have ~f1(u
+) 6= 0 by ~f1(+) 6= 0 and (1.5.16) in [6]. Then, by the definition
of extremal vectors, we have ~e1(u
+) = 0 and then

~e1u = 0; (3.8)

since "1(+) = 0, '1(u) > 0 and then ~e1(u
+) = ~e1(u)
+ by (1.5.16) in [6].
We shall show

~e0(u
+) 6= 0: (3.9)

If '0(u) > 1, '0(u) > 1 = "0(+) and then ~e0(u
+) = ~e0(u)
+ 6= 0 by (3.8).
Otherwise, '0(u) < "0(+) and then ~e0(u 
+) = u 
 ~e0(+) = u 
 � 6= 0. We
get (3.9) and then by the definition of extremal vector, we have

~f0(u
+) = 0: (3.10)

By (3.8), we have "1(u) = 0. Then we get hh1; wt(u 
+)i = hh1; wt(u)i + 1 =
'1(u)� "1(u) + 1 = '1(u) + 1 > 0 by (1.5.4) in [6]. Thus we have

S1(u
+) = ~f
hh1;wt(u
+)i
1 (u
+) = ~f

'1(u)
1 u
 ~f1(+) = S1(u)
�:

This S1(u) 
 � is extremal and ~f1(S1(u) 
 �) = 0, which corresponds to
(3.10). Therefore, by the similar argument as above, we get ~e0S1(u) = 0 and
S0(S1(u)
�) = S0S1(u)
+:

By arguing similarly, we get ~e1(S0S1u) = 0. Repeating these arguments, we
obtain

~e1(S0S1 : : : S1u) = 0; ~e0(S1S0 : : : S1u) = 0: (3.11)

The set f(S0S1)
kugk2Z>0 is a subset of the finite setB
n. Then there exist l; m 2

Z>0 such that l > m and (S0S1)
lu = (S0S1)

mu. Then we have (S0S1)
l�mu = u

and then for any p > 0 there exists r 2 Z>0 such that (l�m)r > p. Thus we have

(S1S0)
pu = (S0S1)

(l�m)r�pu;

S0(S1S0)
pu = S1(S0S1)

(l�m)r�p�1u: (3.12)

By (3.11) and (3.12), we obtain

~e1(S1S0 : : : S1S0)u = 0; ~e0(S0S1 : : : S1S0)u = 0: (3.13)

We shall show that ~f0u = 0:Assuming ~f0u 6= 0, we shall derive a contradiction.
The assumption implies '0(u) > 0. If '0(u) > 2, ~f0(u 
 +) = ~f0(u) 
 + 6= 0
since "0(+) = 1. This contradicts (3.10). Then we know that '0(u) = 1. Now we
write u = u1 
 u2 
 � � � 
 un (uj = �). By using (3.8) and '0(u) = 1, we get
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CRYSTALLIZED STRUCTURE FOR LEVEL 0 PART OF AFFINE ALGEBRA 7

u1 = +; and "0(u) > '0(u) = 1; (3.14)

because 0 6 hh1; wt(u)i = �hh0; wt(u)i = "0(u) � '0(u). Now, by applying

Remark 2.1.2 in [9] and (3.14) to S0 u, we obtain that S0u = ~e
�hh0;wt(u)i
0 u =

~e
"0(u)�1
0 u is in the following form

S0 u = +
 u0; (3.15)

where u0 2 B
n�1, i.e. the action of S0 never touches u1. A vector in the form
(3.15) does not vanish by the action of ~e0. This contradicts (3.13) and then we get
'0(u) = 0. Thus, we have

S0(u
+) = ~e
�hh0;wt(u
+)i
0 (u
+) = ~e

"0(u)�'0(u)+1
0 (u
+)

= ~e
"0(u)+1
0 (u
+) = ~e

"0(u)
0 u
 ~e0(+)

= S0 u
� :

The vector S0 u
� does not vanish by the action of ~f0 since ~f0(�) 6= 0. Since
S0u 
 � is an extremal vector, this vanishes by the action of ~e0. By the similar
argument to obtain (3.9), we have ~e1(S0u 
�) 6= 0 and then ~f1(S0u 
 �) = 0:
By exchanging + and �, and arguing similarly to the case ~f0(u) = 0, we get

~f1(S0u) = 0: (3.16)

By repeating the above argument, we obtain

~f0(S1S0 : : : S0 u) = 0; ~f1(S0S1 : : : S0 u) = 0: (3.17)

Furthermore, by the similar argument to get (3.13), we get

~f0(S0S1 : : : S1 u) = 0; ~f1(S1S0 � � �S1 u) = 0: (3.18)

By (3.11), (3.13), (3.17) and (3.18), we know that the vector u is an extremal vector
in B
n. By the hypothesis of the induction and (3.14), we get

u = (+)
n and then u
+ = (+)
n+1:

By assuming u 
 � is an extremal vector in B
n+1 and discussing similarly, we
get u = (�)
n and then u
� = (�)
n+1. 2

4. Path realization for B(Ua�) with level of � = 0

4.1. CRYSTAL B(1) AND B(�1)

Now, we define the following csl2-classical crystal

comp3935.tex; 17/06/1997; 13:13; v.7; p.7

https://doi.org/10.1023/A:1000172115532 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000172115532


8 TOSHIKI NAKASHIMA

DEFINITION 4.1. We set

B1 := f(n)jn 2 Zg; (wt(n) = 2n(�0 � �1));

~e1(n) = (n� 1); ~f1(n) = (n+ 1);

~e0(n) = (n+ 1); ~f0(n) = (n� 1);

"1(n) = n; '1(n) = �n; "0(n) = �n; '0(n) = n:

By the above data, B1 is equipped with a classical crystal structure.

We introduce the following remarkable result (see [8]).

PROPOSITION 4.2. Let B1 be as above. We get the following isomorphism of
classical crystal:

B(1)
�
�!B(1)
B1 (resp:B(�1)

�
�!B1 
B(�1));

u1 7! u1 
 (0) (resp:u�1 7! (0)
 u�1): (4.1)

By applying this proposition repeatedly, we get for any k > 0,

 k : B(1)
�
�!B(1)
B
k

1 (resp:B(�1)
�
�!B
k

1 
B(�1));

u1 7! u1 
 (0)
k (resp:u�1 7! (0)
k 
 u�1): (4.2)

LEMMA 4.3. For any b 2 B(1) (resp. B(�1)), there exists k > 0 such that

 k(b) 2 u1 
B

k
1 (resp:B
k

1 
 u�1): (4.3)

We set

P(1) := f(::; ik; ik+1; ::; i�1) j ik 2 B1

and if jkj � 0; ik = (0)g;
(4.4)

P(�1) := f(i0; ::; ik; ik+1; ::) j ik 2 B1

and if jkj � 0; ik = (0)g:
(4.5)

Now, we consider formally u1 = � � � 
 (0)
 (0) = (: : : ; (0); (0)) (resp. u�1 =
(0)
(0)
� � � = ((0); (0); : : :)). Then by (4.2) and Lemma 4.3, we get the following
isomorphism between B(1) (resp. B(�1)) and P(1) (resp. P(�1)).
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PROPOSITION 4.4. The crystal B(1) (resp:B(�1)) is isomorphic to P(1)
(resp:P(�1)) given by B(1) 3 b 7! p 2 P(1) (resp. B(�1) 3 b 7! p 2

P(�1)) where  k(b) = u1
 ik
 � � � 
 i�2
 i�1 (resp: k(b) = i0
 i1
 � � � 


ik 
 u�1) for jkj � 0.

4.2. PATH

Let T� be as in [6, Example 1.5.3 (2)]. The following lemma is derived easily by
Example 1.5.3 (2) and (1.5.16) in [6].

LEMMA 4.5. We set � = m(�0 � �1) 2 Pcl (m 2 Z). Then the map

' : T� 
B1
�
�!B1 
 T��;

t� 
 (n) 7! (m+ n)
 t��;
(4.6)

is an isomorphism between classical crystals.

Applying

T� 
 T�� �= T�� 
 T� �= T0; and B 
 T0
�= T0 
B �= B; (4.7)

to (4.6), we get isomorphisms

'� : B1
�
�!T�� 
B1 
 T��;

(n) 7! t�� 
 (n�m)
 t��:
(4.8)

By applying (4.8) to (4.1), we get the following isomorphisms of crystal

B(�1)
�
�!T�� 
B1 
 T�� 
B(�1);

u�1 7! t�� 
 (m)
 t�� 
 u�1;
(4.9)

B(�1)
�
�!T� 
B1 
 T� 
B(�1);

u�1 7! t� 
 (�m)
 t� 
 u�1:
(4.10)

By combining (4.9) and (4.10), and using (4.7) again, we obtain an isomorphism
of crystal,

T� 
B(�1)
�
�!B1 
B1 
 T� 
B(�1)

t� 
 u�1 7! (m)
 (�m)
 t� 
 u�1:
(4.11)

Now, we set

Pm(�1) := fp = (i0; i1; ::; ik ; ��)jik 2 B1

and if jkj � 0; i2k = (m)and i2k+1 = (�m)g:

By using (4.11) repeatedly and arguing similarly as in 4.1, we get
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PROPOSITION 4.6. The following is an isomorphism of crystal

T� 
B(�1) �= Pm(�1): (4.12)

Here note that t� 
 u�1 7! (m)
 (�m)
 (m)
 (�m)
 � � � .

We set

Pm := fp = (: : : ; ik; ik+1; : : : ; i�1; i0; i1; : : : ; il; il+1; : : :)jik 2 B1

if k�0; ik = (0) and if l�0; i2l = (m)

and i2l+1 = (�m)g:

(4.13)

Now let us call an element of Pm m-path or simply, path.
By applying (4.4) and (4.12) to Theorem 2.1, we can easily obtain the following

result:

THEOREM 4.7. For � = m(�0 � �1) 2 Pcl(m 2 Z), we have B(U 0a�) �= Pm:

Here note that this is an isomorphism of classical crystals.

4.3. WALL AND DOMAIN

For this subsection, see e.g. [2], [3]. In the rest of this paper, we identifyB1 with Z.
Thus, for (i) 2 B1 we denote i and then for i; j 2 B1 we can formally consider
the summation and subtraction i� j, and the absolute value jij.

We fix an integer m 2 Z and let p 2 Pm be a m-path.

DEFINITION 4.8. (i) A path p = (: : : ; ik�1; ik; : : :) has l walls at position k(l 2
Z>0; k 2 Z), if jik�1 + ikj = l.

(ii) Suppose that there are walls at position k. The type of walls at position k is
+(resp: �) if ik�1 + ik > 0(resp: ik�1 + ik < 0).

We also define a function n : Pm ! Z>0 by

n(p) =
X
k2Z

jik�1 + ikj

and we call this the total number of walls in p.
Here note that for any p 2 Pm; n(p) is finite by the definition of Pm.

DEFINITION 4.9. A segment d = ij ; ij+1; : : : ; il in p 2 Pm is a finite domain
with length l � j + 1 in p if there are walls at the position j and l + 1 and there is
no wall at positions j + 1; j + 2; : : : ; l. We denote l(d) := l� j + 1 for the length
of domain d.
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Remark.

(i) In this definition, we can consider a domain with length 0. This occurs in the
following case. If there are more than one walls at the same position, there is
a domain with length 0 between a pair of neighboring two walls.

(ii) By the definition of Pm, we know that any path has two infinite sequences in
the forms : : : 0; 0; 0 and �m;�m; : : : . We call these infinite domains.

(iii) By the definition of finite domain, any finite domain with positive length is in
the following form;

k;�k; k;�k; : : : ;�k;�k: (4.14)

EXAMPLE 4.10. For p = (: : : ; 0; 0; 1;�1; 3;�3; 3; : : :), we visualize walls and
domains

: : : 00j1� 1jj3� 33 : : : : (4.15)

In (4.15), we know that there are three walls, two finite domains: 1 � 1 and a
zero-length domain and two infinite domains: : : : 00 and 3� 33 : : : :

Now, for n 2 Z>0 we set

Pm(n) := fp 2 Pmjn(p) = ng:

It is trivial that Pm = �n>0Pm(n). By simple calculations, we get

PROPOSITION 4.11. (i) Ifm is odd (resp. even), thenPm(2n) = ; (resp.Pm(2n�
1) = ;).

(ii) If n < jmj, then Pm(n) = ;.

We shall see the stability of Pm(n) by the actions of ~ei and ~fi.

PROPOSITION 4.12. For a path p 2 Pm(n), suppose that ~fip 6= 0 (resp. ~eip 6= 0),
then we have n( ~fip) = n(p)(resp: n(~eip) = n(p)).

Proof. For a path p = (: : : ; ik; ik+1 : : :) and i = 0; 1, we set

a
(i)
k =

X
j<k

'i(ij)� "i(ij+1): (4.16)

Remark. If k � 0 then ik = 0, thus we have a(i)k = 0 for k � 0 and by the fact

that 'i(�m) = "i(�m) we have a(i)k = a
(i)
k+1 for k � 0.

In order to prove the proposition, we shall see the following lemma.
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12 TOSHIKI NAKASHIMA

LEMMA 4.13. (i) For a path p = (: : : ; ik; ik+1 : : :), if there exists k 2 Z such that

a(i)� > a
(i)
k (� < k) and a(i)� > a

(i)
k (� > k); (4.17)

then ~fip = (: : : ; ik�1; ~fi(ik); ik+1 : : :) and otherwise ~fip = 0.
(ii) For a path p = (: : : ; ik; ik+1 : : :) 2 Pm, if there exists k 2 Z such that

a(i)� > a
(i)
k (� < k) and a(i)� > a

(i)
k (� > k); (4.18)

then ~eip = (: : : ; ik�1; ~ei(ik); ik+1 : : :), and otherwise ~eip = 0.

Proof of Lemma 4.13. For any p = (: : : ; ik; ik+1; : : :) 2 Pm(n) there exist
j; l 2 Z>0 such that ik = 0 if k 6 �j and i2k = m and i2k+1 = �m if k > l. Then
p is identified with

u1 
 i�j 
 i�j+1 
 � � � 
 i2l 
 i2l+1 
 t� 
 u�1: (4.19)

Therefore, by the formula'i(u1) = "i(u1) = 'i(i�j) = "i(i�j) = 0 and Propo-
sition 2.1.1 (i) in [9] we obtain the desired result. 2

Here note that originally Proposition 2.1.1 (i) in [9] can be applied to ‘crystal
base’, but we have (1.5.15) and (1.5.16) in [6] and then we can apply Proposition
2.1.1 (i) in [9] to general crystals.

Now, let us show Proposition 4.12 (i). We shall consider i = 1 case. Suppose
that for p = (: : : ; ik�1; ik; ik+1 : : :) we have ~f1 p = (: : : ; ik�1; ~f1(ik); ik+1 : : :).
We know that ~f1(ik) = ik+1. Thus, we get ~f1 p = (: : : ; ik�1; ik+1; ik+1 : : :) and

by Lemma 4.13, we have a(1)k�1 > a
(1)
k and a(1)k+1 > a

(1)
k . By using this, we obtain,

0 6 a
(1)
k�1 � a

(1)
k = �('1(ik�1)� "1(ik)) = ik�1 + ik; (4.20)

0 < a
(1)
k+1 � a

(1)
k = '1(ik)� "1(ik+1) = �ik � ik+1: (4.21)

By (4.20) and (4.21), we get ik�1 + ik > 0 and ik + ik+1 < 0, and then

jik�1 + ~f1(ik)j = jik�1 + ik + 1j = jik�1 + ikj+ 1;

j ~f1(ik) + ik+1j = jik + ik+1 + 1j = jik + ik+1j � 1:

Then n( ~f1 p) = n(p). By arguing similarly we can prove other cases. 2

5. Path-spin correspondence

The purpose of this Section is to give a strict morphism of Pcl-weighted crystals
Pm(n)! B
n. (cf. 2.2)
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Now, we shall define a map from Pm(n) to B
n as follows: For p 2 Pm(n),
let (�1; �2; : : : ; �n) be the sequence of wall types (ordered from the left to the right).
The map  : Pm(n)! B
n is given by

 (p) = (��1)
 (��2)
 � � � 
 (��n); (5.1)

for any p 2 Pm(n).

THEOREM 5.1. The map  is a strict morphism of Pcl-weighted crystals from
Pm(n) to B
n.

Proof. In order to prove the theorem, we shall see that  satisfies

wt(p) = wt( (p)); (5.2)

"i(p) = "i( (p)); 'i(p) = 'i( (p)); (5.3)

~fi (p) =  ( ~fi p); (5.4)

~ei (p) =  (~ei p); (5.5)

for any p 2 Pm(n) and i = 0; 1.

An m-path g = (gk)k2Z satisfying gk = 0 for k < 0, g2k = m and g2k+1 =
�m for k > 0 is called m-ground-state path. g = (gk)k2Z just corresponds to
u1
 t�
u�1 inB(1)
T�
B(�1). Thenwt(g) = m(�0��1). Therefore,
for p = (ik)k2Z the following formula is obtained easily

wt(p) = m(�0 � �1) +
X
k2Z

(wt(ik)� wt(gk))

=

0@m+ 2
X
k2Z

(ik � gk)

1A (�0 � �1): (5.6)

By the definition of path, we know that the summation in (5.6) is finite. Therefore,
by the fact gk�1 + gk = 0 (k 6= 0) and g�1 + g0 = m, we have

wt(p) =

0@m+
X
k2Z

(ik�1 + ik � gk�1 � gk)

1A (�0 � �1)

= (]f(+)walls in pg � ]f(�)walls in pg)(�0 � �1) = wt( (p)):

Here note that wt(�) = �(�1 � �0). Now we get (5.2).

Let us show (5.3). For p = (: : : ; ik; ik+1; : : :) 2 Pm(n), let a and b be sufficient-
ly large integers such that i�j = 0, i2k = m and i2k+1 = �m for any j > a and
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14 TOSHIKI NAKASHIMA

k > b. Therefore, since p is identified with u1
i�j
� � �
i2k
i2k+1
t�
u�1
and 'i(u�1) = "i(u�1) = 0, by (1.5.15) in [6] we have

'i(p) = 'i(u1 
 i�j 
 � � � 
 i2k 
 i2k+1 
 t�); (5.7)

for j > a and k > b. By the formula 'i(t�) = �1, Proposition 2.1.1 (0) in [9]
and (1.5.15) in [6], we get

'i(p) = hhi; �i+ 'i(i2k+1) + max
�j6p62k+1

(a
(i)
2k+1 � a

(i)
p ): (5.8)

We shall consider i = 1 case. Then (5.8) can be written explicitly as follows

'1(p) = max
�j6p62k+1

0@� X
p<s62k+1

is�1 + is

1A ; (5.9)

by using '1(i2k+1) = �i2k+1 = m = �hh1; �i.
Let k1; k2; : : : ; ks (s 6 n) be the sequence of positions of walls in p such that

kj < kj+1 and there is no wall in j 6= k1; : : : ; ks. Here note that since more than
one walls can occupy the same position, s 6 n. Let ci be the position of ith wall
(then c1 6 c2 6 � � � 6 cn) and �i be the type of ith wall. We set

N�
j := ] f�r = � j cr 2 fkj ; : : : ; ksgg ; (j = 1; 2; : : : ; s):

Since ic�1+ic = 0 if c 6� fk1; : : : ; krg, The formula (5.9) can be written as follows

'1(p) = max�
16j6s

8<:�
sX

l=j

ikl�1 + ikl

9=; = max�
16j6s

fN�
j �N

+
j g; (5.10)

where max�fz1; : : : ; zng := maxfz1; : : : ; zn; 0g > 0. Note that if there is no (�)
wall in p, '1(p) = 0 and '1( (p)) = '1((�)


n) = 0. Then we may assume that
there exists (�) wall in p.

We shall investigate '1( (p)). By Proposition 2.1.1 (0) in [9], we can get the
following

'1( (p)) = '1((��1)
 � � � 
 (��n))

= max
16j6n

8<: X
j6k6n

'1(��k)�
X

j<k6n

"1(��k)

9=; : (5.11)

Since '1(+) = 1 = "1(�) and '1(�) = 0 = "1(+) by (3.3), �j6k6n'1(��k) =
]f�k = � ; j 6 k 6 ng and �j<k6n"1(��k) = ]f�k = + ; j < k 6 ng. Then we
have

'1( (p))

= max
16j6n

f]f�k = � ; j 6 k 6 ng � ]f�k = + ; j < k 6 ngg: (5.12)

Therefore, if t (1 6 t 6 n) gives the maximum in (5.12), there are two cases
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(i) �t = � and �t�1 = + (t > 1).
(ii) t = 1 and �1 = �.

Since in both cases "1(��t) = "1(+) = 0 and
P

j6k6n "1(��k) >
P

j<k6n "1(��k),
we can rewrite (5.12) to

'1( (p))

= max
16j6n

f]f�k = � ; j 6 k 6 ng � ]f�k = + ; j 6 k 6 ngg: (5.13)

Since we have (5.10), (5.13) and the following by the definition of N�
j

fN�
j �N

+
j g16j6s

� f]f�k = � ; j 6 k 6 ng � ]f�k = + ; j 6 k 6 ngg16j6n;

we get '1(p) 6 '1( (p)). We set

S :=

(
s

����� 1 6 s 6 n; sth wall in p is a (�) wall and

the left-most wall among walls at the same position

)
: (5.14)

The cases (i) and (ii) as above mean that if t gives the maximum of (5.13), t 2 S.
Here note that if s 2 S, N�

s = ]f�k = �; s 6 k 6 ng: Therefore, we get
'1(p) > '1( (p)). Now, we have '1(p) = '1( (p)). As for '0-case and "i-case
arguing similarly, we obtain (5.3).

Let us show (5.4) for i = 1. For p = (: : : ; ij�1; ij ; ij+1 : : :) we assume that
there exists k satisfying (4.17) for i = 1, i.e. ~f1 p = (: : : ; ik�1; ~f1(ik); ik+1; : : :).

We know that a(1)k is given by a(1)k = �
P

j<k ij + ij+1. Since k satisfies (4.17) for

i = 1, we have a(1)k < a
(1)
k+1 and a(1)k�1 > a

(1)
k . Then we get

ik + ik+1 = a
(1)
k � a

(1)
k+1 < 0; ik�1 + ik = a

(1)
k�1 � a

(1)
k > 0: (5.15)

Therefore, by (5.15) we obtain

j ~f1(ik) + ik+1j = jik + 1 + ik+1j = jik + ik+1j � 1; (5.16)

jik�1 + ~f1(ik)j = jik�1 + ik + 1j = jik�1 + ikj+ 1: (5.17)

Let jth wall in p be the left-most wall among walls at position k+ 1 (the existence
is due to (5.15)). Then j belongs to S. The formula (5.15), (5.16) and (5.17) imply
that the jth wall and other walls at position k + 1 are (�) walls and the jth wall is
changed by the action of ~f1 to (+) wall at position k.

That is, let (�1; �2; : : : ; �n) and (�01; �
0
2; : : : ; �

0
n) be the sequences of wall types of

p and ~f1 p respectively, we have�
�1; : : : ;

j

�; : : : ; �n

�
~f1
�!

�
�1; � � � ;

j

+; : : : ; �n

�
= (�01; : : : ; �

0
n): (5.18)
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By (5.18), we know that

 (p) = (��1)
 � � � 

j

+ 
 � � � 
 (��n);

 ( ~f1p) = (��1)
 � � � 

j

� 
 � � � 
 (��n):

(5.19)

By (5.19), it is sufficient to show the following

~f1

�
(��1)
 � � � 


j

+ 
 � � � 
 (��n)

�

= (��1)
 � � � 

j

� 
 � � � 
 (��n): (5.20)

For p with  (p) = (��1)
 � � � 
 (��n) we shall define the function ak as follows
(this just coincides with ak in Proposition 2.1.1 (0) in [9] up to the first term.).

ak := �"1(��1) +
X

16l<k

'1(��l)� "1(��l+1): (5.21)

It is easy to translate (5.21) to the following form by (3.3)

ak = ]f�l = � j 1 6 l < kg � ]f�l = + j 1 6 l 6 kg: (5.22)

By Proposition 2.1.1 (i) in [9], we know that if there exists j satisfying

a� > aj for � < j and a� > aj for j < �; (5.23)

~f1((��1)
 � � � 
 (��j)
 � � � 
 (��n))

= (��1)
 � � � 
 ~f1(��j)
 � � � 
 (��n): (5.24)

Then we shall show that j as in (5.18) and (5.19) satisfies (5.23). Since the position
of the jth wall is k + 1 and there is no (+) wall at position k + 1 by the argument
above, we get

]f�l = � j 1 6 l < jg =
X
r6k

ir�1+ir<0

jir�1 + irj

= �
X
r6k

ir�1+ir<0

ir�1 + ir; (5.25)
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]f�l = + j 1 6 l 6 jg =
X

r6k+1
ir�1+ir>0

jir�1 + irj

=
X
r6k

ir�1+ir>0

ir�1 + ir: (5.26)

The following is obtained by (5.22), (5.25) and (5.26),

aj = �
X
r6k

ir�1 + ir =
X
r<k

'1(ir)� "1(ir+1) = a
(1)
k ; (5.27)

By the form of (5.22), we know that if k 62 S and �k = +, ak > ak+1 and if k 62 S
and �k = �, ak�1 < ak. Therefore, in order to show that j satisfies (5.23) it is
enough to show that j satisfies

a�>aj for �<j(j; � 2 S) and a�>aj for j<�; (j; � 2 S): (5.28)

By the same argument as for obtaining (5.27), we can see that for any � < j (resp.
� > j) (�; j 2 S) there exists t such that

t < k (resp: t > k) and a� = a
(1)
t : (5.29)

By (4.17) for i = 1, (5.27) and (5.29), we get that j satisfies (5.28) and then (5.23).
Now, we get (5.24).

Next, we shall show that if ~f1p = 0, ~f1 (p) = 0. We assume that ~f1p = 0 and
set � = maxf� j i��1 + i� 6= 0g. By Lemma 4.13 we know that � satisfies

a(1)� > a
(1)
� for � < � and a(1)� = a(1)� for � < �: (5.30)

Now, we set F := a
(1)
� . Let us assume that a(1)��1 = a

(1)
� . Then we have

0 = a
(1)
��1 � a

(1)
� = �'1(i��1) + "1(i�) = i��1 + i�:

This contradicts the definition of �. Thus, we geta(1)��1 > a
(1)
� and then i��1+i� > 0.

Furthermore, by the fact that i��1 + i� > 0 we have �n = +: Here note that

a
(1)
� = F = an: (5.31)

Since ~f1(�) = 0, it is sufficient to show that

~f1 (p) = ~f1
�
(��1)
 � � � 
 (��n)

�
= (��n)
 � � � 
 ~f1(��n); (5.32)
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By Proposition 2.1.1. (1) in [9], in order to show (5.32), we shall prove

a� > an; for � < n: (5.33)

We assume that there exists j such that j 6= n and satisfies (5.23). Let t be the
position of the jth wall. It is easy to see that �j = � by (5.22). Thus, since �n = +,
we have t < �:

By simliar argument to the one for obtaining (5.29), we getaj = a
(1)
t . Therefore,

by (5.30) and (5.31) we have aj > F = an; which contradicts the definition of j
satisfying (5.23). Now we get (5.32) and then ~f1 (p) = 0 if ~f1p = 0.

By arguing similarly, we obtain ~f0 (p) =  ( ~f0p) and ~ei (p) =  (~eip). Then,
we have completed the proof of Theorem 5.1. 2

6. Classification of path

In this section, we shall describe every connected component in B( eUq(g)).

6.1. DOMAIN TYPE AND DOMAIN PARAMETER

For a path p 2 Pm(n) (n > 0; m 2 Z), let d0; d1; : : : ; dn�1; dn be the sequence
of domains in p. The domains d0 and dn are infinite domains.

DEFINITION 6.1. For a domain dj with non-zero length, fixing some entry i� in
dj and its position �, the domain type t(dj) of dj is given by

t(dj) := (�1)�i� : (6.1)

Remark. (i) By (4.14), this definition is well-defined, i.e., a domain type is
uniquely determined.

(ii) Domain type of domain d0 is always 0 and one of domain dn is always m
by the definition of Pm(n).

LEMMA 6.2. For a path p let ik�1 and ik be entries in p with jik�1 + ikj 6= 0 and
let dj and dl(j < l) be domains including ik�1 and ik respectively. Then we have

jt(dl)� t(dj)j � 1 = ]fdk j l(dk) = 0; j < k < lg:

Proof. jt(dl)� t(dj)j = jik�1 + ikj = ] fwalls at position kg. 2

By this lemma, the following definition is well-defined.

DEFINITION 6.3. Let dr be the ith zero-length domain between dj and dl as in
Lemma 6.2. Domain type t(dr) is given by t(dr) = t(dj) + i if t(dj) < t(dl) and
t(dr) = t(dj)� i if t(dj) > t(dl).
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EXAMPLE 6.4. For p =

�
position
� � � � � ;

�2
0 ;

�1
0 ;

0
2;

1
�1;

2
3;

3
�3;

4
3; � � �

�
, we shall visualize

walls and domains as follows

� � �
d0

00
d1

j j

d2 d3

2j � 1
d4

j j

d5

3� 33 � � � :

There are five walls and four finite domains in p. Let d1; d2; d3 and d4 be the four
finite domains. The domains d1 and d4 are zero-length domains. The domain type
of these four domains are 1; 2; 1; 2 respectively. For both infinite domains d0 and
d5, we know t(d0) = 0 and t(d5) = 3.

Remark. Note that for any path p 2 Pm(n) and j = 0; 1; : : : ; n� 1

jt(dj+1)� t(dj)j = 1: (6.2)

DEFINITION 6.5. For an integer m, a sequence of integers t1; t2; � � � ; tn�1 is in
m-domain configuration if jtj � tj�1j = 1 for j = 1; � � � ; n, where t0 = 0 and
tn = m.

The following lemma is trivial.

LEMMA 6.6. There exists a sequence t1; : : : ; tn�1 in m-domain configuration if
and only if n� jmj 2 2Z>0.

By the above remark, we get

LEMMA 6.7. A sequence of domain types for any path in Pm is in m-domain
configuration.

DEFINITION 6.8. (i) Let ~t = (t1; t2; � � � ; tn�1) be in a m-domain configuration,

(a) ~t is regular at j if tj�1 � tj = tj � tj+1.
(b) ~t is up (resp. down)-regular at j if ~t is regular at j and tj�1 < tj < tj+1

(resp: tj�1 > tj > tj+1).
(c) ~t is critical at j if tj�1 � tj = �tj + tj+1.
(d) ~t is maximal (resp. minimal) at j if~t is critical at j and tj�1+1 = tj = tj+1+1

(resp. tj�1 � 1 = tj = tj+1 � 1).

Here t0 = 0 and tn = m.
(ii) For a path p 2 Pm(n), let d1; : : : ; dn�1 be its finite domains and ~t(~d) =

(t(d1); : : : ; t(dn�1)) be the sequence of their domain types.

(a) dj is a regular domain if ~t(~d) is regular at j.
(b) dj is up-regular (resp. down-regular) if ~t(~d) is up-regular at j, in particular,

d0 is up (resp. down) if t(d0) < t(d1) (resp. t(d0) > t(d1) and dn is up (resp.
down) if t(dn�1) < t(dn) (resp. t(dn�1) > t(dn)).
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(c) dj is a critical domain if ~t(~d) is critical at j.
(d) dj is maximal (resp. minimal) if ~t(~d) is maximal (resp. minimal) at j.

Remark. (i) By Definition 6.3, any zero-length domain is a regular domain.
(ii) If~t = (t1 : : : ; tn�1) is inm-domain configuration, at any position,~t is in the

cases of Definition 6.8 (i) (b),(d) and then any domain is in the cases of Definition
6.8 (ii) (b),(d).

EXAMPLE 6.9. In Example 6.4, the infinite domains d0 and d5 are up. d1 and d4

are up-regular, d2 is maximal and d3 is minimal.

DEFINITION 6.10. For p 2 Pm(n), let d1; d2; : : : ; dn�1 be its finite domains and
l(d1); l(d2); : : : ; l(dn�1) be their lengths. Domain parameter c(dj) is given by

if dj is a regular domain; c(dj) :=
��
l(dj)

2

��
;

if dj is a critical domain; c(dj) :=
��
l(dj)� 1

2

��
;

where [[n]] = the maximum integer which is less than or equal to n.

Let ~t = (t1; t2; : : : ; tn�1) be in a m-domain configuration and ~c =
(c1; c2; : : : ; cn�1) be a sequence of non-negative integers. For ~t and ~c, we set

Pm(n;~t;~c)

:=

(
p 2 Pm(n)

����� t(dj) = tj and c(dj) = cj for any j = 1; 2; : : : ; n� 1;

where d1; : : : ; dn�1 are domains in p

)
:

PROPOSITION 6.11. Suppose that n�jmj 2 2Z>0. For any~t = (t1; : : : ; tn�1) in
m-domain configuration and any sequence of non-negative integers ~c =
(c1; : : : ; cn�1),

Pm(n;~t;~c) 6= ;: (6.3)

Proof. By Lemma 6.6, if n � jmj 2 2Z>0, there exists ~t = (t1; : : : ; tn�1) in

m-domain configuration. Let p(�)l be paths given as follows: for j = 1; : : : ; n� 1

dj :=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�tj;�tj; : : : ;�tj;�tj| {z }
2cj

if ~t is up-regular at j;

�tj;�tj; � � � ;�tj;�tj| {z }
2cj

if ~t is down-regular at j;

�tj;�tj; � � � ;�tj;�tj| {z }
2cj+1

if ~t is maximal at j;

�tj;�tj; � � � ;�tj;�tj| {z }
2cj+1

if ~t is minimal at j;

(6.4)
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dn :=
�
�m;�m; : : : if tn�1 = m� 1,
�m;�m; : : : if tn�1 = m+ 1.

(6.5)

Now, we order these domains by setting the position of the left mostm (resp.�m)
in dn being 2l (resp. 2l � 1). For example,

p
(+)
l = (: : : 00jd1jd2j : : : jdn�1j

2l
m �m: : :) or

(: : : 00jd1jd2j : : : jdn�1j �m
2l
m : : :):

For p(+)l , by using induction on the index of domains we shall show the claim that
the position of any entry tj in dj is even and the one of �tj in dj is odd. Now
we assume that dn is up. Then dn�1 must be up-regular or minimal by Definition
6.8. It is trivial that in both cases by (6.4) the position of tn�1 is even and the one
of �tn�1 is odd. Now, we assume that for i = j + 1 the claim is valid. If ~t is
up-regular or maximal at j + 1, by Definition 6.8, ~t must be up-regular or minimal
at j. Then by (6.4) we have

(: : : dj j dj+1 : : :) = (: : : tj ;�tj j tj+1;�tj+1; : : :): (6.6)

This implies that the statement is valid for i = j. If ~t is down-regular or minimal
at j + 1, by Definition 6.8, ~t must be down-regular or maximal at j. Then by (6.4)
we have

(: : : dj jdj+1 : : :) = (: : : � tj; tj j �tj+1; tj+1; : : :): (6.7)

This implies that the statement is valid for i = j. Therefore, we have tj =

t(dj) and then cj = c(dj). We obtain that p(+)l 2 Pm(n;~t;~c). We can also show

for p(�)l . 2

6.2. STABILITY OF Pm(n;~t;~c)

We shall show the stability of Pm(n;~t;~c) by the actions of ~ei and ~fi.

PROPOSITION 6.12. For any i 2 I , we have

~eiPm(n;~t;~c) � Pm(n;~t;~c) t f0g and

~fiPm(n;~t;~c) � Pm(n;~t;~c) t f0g: (6.8)

In order to show this proposition, we shall prepare several lemmas.

LEMMA 6.13. For p = (: : : ; ik�1; ik; ik+1; : : :) 2 Pm(n), suppose that ~fip =
(: : : ; ik�1; ~fi(ik); ik+1; : : :) (resp. ~eip = (: : : ; ik�1; ~ei(ik); ik+1; : : :)) and let dj
be the domain including ik. Then we have

comp3935.tex; 17/06/1997; 13:13; v.7; p.21

https://doi.org/10.1023/A:1000172115532 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000172115532


22 TOSHIKI NAKASHIMA

(i) The entry ik is the right-most entry (resp. left-most entry) in dj .
(ii) Suppose that dj is a finite domain. The length l(dj) is odd if and only if dj is

regular and the length l(dj) is even if and only if dj is critical.
(iii) Suppose that dj+1 is a finite domain. The length l(dj+1) (resp. l(dj�1)) is even

if and only if dj+1 (resp. dj�1) is regular and the length l(dj+1) (resp. l(dj�1))
is odd if and only if dj+1 (resp. dj�1) is critical.

Remark. The statement (i) means that there is a domain on the right (resp. left)
side of dj . Then, the statement (iii) makes sense.

Proof. Since the proof for the ~ei case is similar to the one for ~fi, we shall show
only for the ~fi case.

(i) By Lemma 4.13(i), the hypothesis ~fip = (: : : ; ik�1; ~fi(ik); ik+1; : : :) implies

that a(i)k < a
(i)
k+1 and then we have

ik + ik+1 < 0 if i = 1; and ik + ik+1 > 0 if i = 0: (6.9)

Then we get jik + ik+1j > 0. This gives the desired result.
(ii) We shall show the ~f1-case. Let ir be the left-most entry in dj . (by (i) the

right-most entry is ik, then r 6 k.). We set t := t(dj), then, ir = �t and ik = �t.

Let us recall a(i)k in (4.16). Owing to (4.14) and 'i(x) = "i(�x) (x 2 B1), we

have a(1)r = a
(1)
k : Then by Lemma 4.13, we get a(1)r = a

(1)
k 6 a

(1)
r�1 and then

0 6 a
(1)
r�1 � a

(1)
r = �'1(ir�1) + "1(ir) = ir�1 + ir: (6.10)

The definition of ir that ir is the left-most entry in dj implies that there are walls
at position r and then ir�1 + ir 6= 0. Thus, due to (6.10) we get

ir�1 + ir > 0: (6.11)

There are the following cases (a)–(d):

(a) ir = ik = t. (i.e. r and k are even).
(b) ir = ik = �t. (i.e. r and k are odd).
(c) ir = �t and ik = t. (i.e. r is odd and k is even).
(d) ir = t and ik = �t. (i.e. r is even and k is odd).

In fact, the condition (a) or (b) is equivalent to that l(dj) = k � r + 1 is odd and
the condition (c) or (d) is equivalent to that l(dj) = k � r + 1 is even. Since these
(a)–(d) cover all possibilities for dj , it is enough to show that if (a) or (b) holds,
dj is regular and if (c) or (d) holds, dj is critical. Let ds and dp be the domains
including ir�1 and ik+1 respectively (s < j < p).

In the case (a) (resp. (b)), by (6.9) for i = 1 and (6.11), we get ik+1 < �t

(resp. ik+1 < t) and ir�1 > �t (resp. ir�1 > t). Since k + 1 and r � 1 are odd
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(resp. even), the domain types t(dp) = �ik+1 > t (resp. t(dp) = ik+1 < t) and
t(ds) = �ir�1 < t (resp. t(ds) = ir�1 > t). This implies

t(dj+1) = t+ 1; t(dj�1) = t� 1

(resp: t(dj+1) = t� 1; t(dj�1) = t+ 1): (6.12)

Furthermore, this (6.12) implies that the domain dj is regular.
In the case (c) (resp. (d)), by (6.9) and (6.11), we get ik+1 < �t (resp. ik+1 < t)

and ir�1 > t (resp. ir�1 > �t). Since k + 1 is odd (resp. even) and r � 1 is even
(resp. odd), the domain types t(dp) = �ik+1 > t (resp. t(dp) = ik+1 < t) and
t(ds) = ir�1 > t (resp. t(ds) = �ir�1 < t). This implies that

t(dj+1) = t+ 1; t(dj�1) = t+ 1

(resp: t(dj+1) = t� 1; t(dj�1) = t� 1): (6.13)

Furthermore, this (6.13) means that the domain dj is critical. The ~f0 case is obtained
similarly. Now, we have completed the proof of (ii)

(iii) We shall show the ~f1-case. Since ik + ik+1 < 0 by (6.9), we shall consider
the following two cases

(1) ik + ik+1 6 �2.
(2) ik + ik+1 = �1.

(1) The assumption ik + ik+1 6 �2 implies that the domain dj+1 is a domain
with zero-length. By Remark under Definition 6.8, dj+1 is a regular domain.

(2) The assumption ik + ik+1 = �1 means that ik+1 = �t� 1(t = t(dj)) and
there is only one wall at position k + 1. Then we know that ik+1 is included in the
domain dj+1 and ik+1 is the left-most entry of dj+1. Let il be the right-most entry
of dj+1 (k + 1 6 l).

By the definition of a(i)k , we have

a
(1)
k+1 = a

(1)
k + '1(ik)� "1(ik+1) = a

(1)
k � (ik + ik+1) = a

(1)
k + 1: (6.14)

By Lemma 4.13 if � > k, then a(1)� > a
(1)
k . Then by (6.14) we have

a(1)� > a
(1)
k+1(� > k + 1): (6.15)

Owing to (4.14), we can easily get

a
(1)
l+1 = a

(1)
k+1 � (il + il+1): (6.16)

The formula (6.15) and (6.16) imply il + il+1 6 0. Since il is the right-most entry
in dj+1, there exist walls at position l + 1. Then, by il + il+1 6 0, we have

il + il+1 < 0: (6.17)

As in (ii), there are the following four cases (a)–(d) since ik+1 = �t� 1
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(a) ik+1 = il = t� 1. (i.e. ik = �t; k + 1 and l are even).
(b) ik+1 = il = �t� 1. (i.e. ik = t, k + 1 and l are odd).
(c) ik+1 = t� 1 and il = �t+ 1. (i.e. ik = �t, k + 1 is even and l is odd).
(d) ik+1 = �t� 1 and il = t+ 1. (i.e. ik = t, k + 1 is odd and l is even).

The condition (a) or (b) is equivalent to that l(dj+1) is odd and the condition (c)
or (d) is equivalent to that l(dj+1) is even. Thus, it is enough to show that if (a) or
(b), dj+1 is critical and if (c) or (d), dj+1 is regular.

Let dq be the domain including il+1. Applying (6.17) to these cases, we get

(a) t(dq) = �il+1 > il = t�1 = t(dj+1). This implies that t(dj+2) = t and then
dj+1 is a critical domain.

(b) t(dq) = il+1 < �il = t+1 = t(dj+1). This implies that t(dj+2) = t and then
dj+1 is a critical domain.

(c) t(dq) = il+1 < �il = t� 1 = t(dj+1). This implies that t(dj+2) = t� 2 and
then dj+1 is a regular domain.

(d) t(dq) = �il+1 > il = t+ 1 = t(dj+1). This implies that t(dj+2) = t+ 2 and
then dj+1 is a regular domain.

Since the cases (a)–(d) cover all possibilities for dj+1, we obtain the desired
results. 2

Now, we set that for domains d = ik; � � � il(k 6 l) in a path p and d0 =
js; � � � ; jt(s 6 t) in a path p0, d � d0 if s 6 k 6 l 6 t and ir = jr for r = k; � � � ; l.
We set d = d0 if and only if d � d0 and d0 � d.

LEMMA 6.14. Suppose that for p = (: : : ; ik�1; ik; ik+1; : : :) 2 Pm(n) ~fip =
(: : : ; ik�1; ~fi(ik); ik+1; : : :) (resp. ~eip = (: : : ; ik�1; ~ei(ik); ik+1; : : :)) and let
d1; : : : ;dn�1 and d01; : : : ; d

0
n�1 be the finite domains in p and ~fip (resp. ~eip) respec-

tively. In particular, let dj be the domain including ik. Then, we get

(i) If l 6= j; j + 1(resp:l 6= j � 1; j); then dl = d0l.
(ii) If the domain dj is finite, we have d0j � dj and dj n d

0
j = fikg and then

l(d0j) = l(dj)� 1.
(iii) If the domain dj+1 (resp. dj�1) is finite, we have dj+1 � d0j+1 (resp. dj�1 �

d0j�1) and d0j+1 n dj+1 = f ~fi(ik)g (resp. d0j�1 n dj�1 = f~ei(ik)g) and then
l(d0j+1) = l(dj+1) + 1 (resp:l(d0j�1) = l(dj�1) + 1).

Proof. We shall see only the ~f1 case since other cases can be shown similarly.
By (6.9), we know that ik + ik+1 < 0: We can also get ik�1 + ik > 0. By the fact
that ~f1(ik) = ik + 1, we have

j ~f1(ik) + ik+1j = jik + ik+1j � 1 and

jik�1 + ~f1(ik)j = jik�1 + ikj+ 1: (6.18)
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This means that one wall at position k + 1 shifts to position k and the entry at the
position k is transferred from dj to d0j+1 by the action of ~f1. The shifted wall is the
j + 1th wall since it is on the right boundary of the domain dj . Here note that a
domain dk is surrounded by kth wall and k + 1th wall. Thus we obtain the desired
results. 2

Proof of Proposition 6.12. For p 2 Pm(n;~t;~c), suppose that ~fip =
(: : : ; ik�1; ~fi(ik); ik+1; : : :) 6= 0: Let d0; d1; : : : ; dn�1; dn and d00; d

0
1; : : : ; d

0
n�1; d

0
n

be domains of p and ~f1p respectively, in particular dj be the domain including ik
(d0, dn, d00 and d0n are infinite domains.). First let us show

t(d0l) = t(dl) for any l = 1; 2; : : : ; n� 1: (6.19)

By Lemma 6.14(i), we know that for l 6= j; j + 1 such that dl = d0l is non-zero
length domain, t(d0l) = t(dl): We shall consider the type of d0j+1. If dj+1 and d0j+1
are infinite domains, j + 1 = 0 or n then there is nothing to prove. Then we may
assume that dj+1 and d0j+1 are finite domains. If l(dj+1) > 1, there exists a 2 Z
such that ia is included in both dj+1 and d0j+1 by Lemma 6.14(iii). Then, in this
case we get t(d0j+1) = t(dj+1). In the case l(dj+1) = 0 if we assume that t(dj) = t

and t(dj+1) = t+ 1, by the proof of Lemma 6.13 related to (a) and (c), we get that
ik = t and k is even. Then ~f1(ik) = t+ 1. This entry is included in d0j+1 and then

t(d0j+1) = (�1)k ~f1(ik) = (�1)k(t + 1) = t + 1. We can also easily see the case
t(dj+1) = t� 1. Thus we get t(d0j+1) = t(dj+1):

We shall consider the type of d0j . As same as above, we may assume that dj
and d0j are finite domains. If l(dj) > 2, there exists b 2 Z such that ib is included
in both dj and d0j by Lemma 6.14(ii). Then, in this case we get t(d0j) = t(dj).
If l(dj) = 1, by Lemma 6.13(ii) and Lemma 6.14(ii), we get that dj is a regular
domain and l(d0j) = 0: Since by the previous arguments we have already obtained
that t(d0l) = t(dl) for l 6= j such that dl or d0l is a non-zero length domain and that
d0j is a regular domain by the remark under Definition 6.8, we get t(d0j) = t(dj):
Thus we get t(dl) = t(d0l) for all other zero-length domains. Then we obtain (6.19).

Next, let us show

c(d0l) = c(dl) for any l = 1; 2; : : : ; n� 1: (6.20)

By (6.19), dl is a regular (resp. critical) domain if and only if d0l is a regular (resp.
critical) domain. Therefore, by Lemma 6.14 (i) we have

c(d0l) = c(dl) for l 6= j; j + 1: (6.21)

We shall consider the domain parameter c(d0j). We may assume that dj and d0j are
finite domains as in the previous arguments. If dj is a regular, d0j is also regular and
by Lemma 6.13(ii) and Lemma 6.14(ii) we have

l(dj) = 2cj + 1 and l(d0j) = 2cj : (6.22)
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Since dj and d0j are regular domains, the formula (6.22) implies

c(d0j) = cj = c(dj): (6.23)

If dj is a critical domain, d0j is also critical and by Lemma 6.13(ii) and Lemma
6.14(ii) we have

l(dj) = 2cj + 2 and l(d0j) = 2cj + 1: (6.24)

Since dj and d0j are critical domains, the formula (6.24) implies

c(d0j) = cj = c(dj): (6.25)

As for d0j+1, by using Lemma 6.13(iii) and Lemma 6.14(iii) we can also easily
obtain

c(d0j+1) = cj+1 = c(dj+1): (6.26)

Thus by (6.21), (6.23) (6.25) and (6.26) we get (6.20). Now, we have completed
the proof of Proposition 6.12. 2

6.3. EXTREMAL VECTORS IN Pm(n;~t;~c)

In this subsection, we shall describe all extremal vectors in Pm(n;~t;~c) explicitly.

LEMMA 6.15. Let B1 and B2 be normal crystals and � : B1 ! B2 be a strict
morphism of crystal and we assume that �(b) 6= 0 for b 6= 0. We have that b is an
extremal vector in B1 if and only if �(b) is an extremal vector in B2.

Proof. We assume that b is not an extremal vector inB1 and �(b) is an extremal
vector in B2. Then there exist i; i1; : : : ; ik 2 I such that

~eiSi1 : : : Sikb 6= 0 and ~fiSi1 : : : Sikb 6= 0:

By the assumption that �(b) 6= 0 for b 6= 0, we get �(~eiSi1 : : : Sikb) 6= 0 and
�( ~fiSi1 : : : Sikb) 6= 0. Since � is a morphism of crystal, we have

~eiSi1 � � �Sik�(b) 6= 0 and ~fiSi1 : : : Sik�(b) 6= 0:

This contradicts the fact that �(b) is an extremal vector. If b is an extremal vector
in B1 and �(b) is not an extremal vector in B2, by arguing similarly we can obtain
a contradiction. 2

Let ~t = (t1; : : : ; tn�1) be a m-domain configuration(m 2 Z) and ~c =
(c1; : : : ; cn�1) be a sequence of non-negative integers. For p 2 Pm(n;~t;~c) 6= ;,
let d1; : : : ; dn�1 be its finite domains. For a domain di we set

lmin(di) :=

(
2ci if di is regular;

2ci + 1 if di is critical:
(6.27)
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THEOREM 6.16. For p 2 Pm(n) let �1(p); : : : ; �n(p) be its types of walls and

p
(�)
l be paths given in the proof of Proposition 6.11 and set E the set of extremal

vectors in Pm(n;~t;~c); E0 := fp(�)l gl2Z,

Am(n;~t;~c) := fp 2 Pm(n;~t;~c)j�1(p) = � � � = �n(p)g: (6.28)

Em(n;~t;~c) := fp 2 Pm(n;~t;~c)jl(di) = lmin(di) for any i:g: (6.29)

Then we get

E = E0 = Am(n;~t;~c) = Em(n;~t;~c): (6.30)

Proof. For p 2 Em(n;~t;~c) suppose that a domain dj in p is a regular domain
with non-zero length and set t(dj) = t. Let ia and ib be the left-most entry and the
right-most entry in dj respectively. By (6.27), l(dj) = b� a+ 1 = 2cj > 0. Thus,
if a is even (resp. odd), b is odd (resp. even). Now we assume that a is even and b
is odd. Then we have

t(dj) = ia = �ib: (6.31)

Let dr and ds be the domains including ia�1 and ib+1 respectively. We have

t(dr) = �ia�1 and t(ds) = ib+1; (6.32)

since a� 1 is odd and b+ 1 is even. Because dj is regular,

t(dr) < t(dj) < t(ds) or t(dr) > t(dj) > t(ds): (6.33)

Applying (6.31) and (6.32) to (6.33) we obtain

ia�1 + ia > 0; ib + ib+1 > 0 or ia�1 + ia < 0; ib + ib+1 < 0:

This means that all walls in a and in b + 1 have the same type. We can get the
same result for the case that a is odd and b is even, and the case that dj is critical.
Repeating this for all domains with non-zero length, we know that all walls have
same type in p. Thus, we have

Em(n;~t;~c) � Am(n;~t;~c): (6.34)

Let p be an element ofAm(n;~t;~c) and all walls in p be +. For a regular domain
with non-zero length dj in p let ia and ib be left-most entry and right-most entry in
dj respectively. Then we get

ia�1 + ia > 0; and ib + ib+1 > 0: (6.35)
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Let dr andds be as above. Since dj is regular, we have (6.33). If a is even, t(dj) = ia
and t(dr) = �ia�1. By (6.35), we get t(dr) < t(dj). Thus, by the assumption that
dj is regular, we have

t(dr) < t(dj) < t(ds): (6.36)

Furthermore, if b is even, t(dj) = ib and t(ds) = �ib+1. Then this and (6.36)
imply that ib + ib+1 < 0. But this contradicts (6.35). Then b is odd and then
l(dj) = b� a+ 1 is even. Since dj is regular, this means

l(dj) = 2cj = lmin(dj):

By arguing similarly for other non-zero length domains, we obtain l(di) =
lmin(di) for any i. Therefore, we get

Am(n;~t;~c) � Em(n;~t;~c): (6.37)

By (6.34) and (6.37), we get the third equality in (6.30).
By the definition of the map  given in (5.1), we know that  (p) 6= 0 for

p 2 Pm(n). Therefore, by Proposition 3.3, Theorem 5.1 and Lemma 6.15, we get

Am(n;~t;~c) = E: (6.38)

By the definiton of p(�)l in the proof of Proposition 6.11, we know that E0 �

Em(n;~t;~c) easily. For p(�)l (� = �, l 2 Z) let k�;l1 ; : : : ; k
�;l
n be the positions of walls

in p(�)l . By (6.4), (6.5) and the way of ordering, we get

(k+;l1 ; : : : ; k+;ln ) = (k�;l1 + 1; : : : ; k�;ln + 1);

(k�;l1 ; : : : ; k�;ln ) = (k+;l�1
1 + 1; : : : ; k+;l�1

n + 1):
(6.39)

Let p be an element in Em(n;~t;~c) and (k1; : : : ; kn) be the positions of walls in
p. By the definiton of Em(n;~t;~c), we know that for any � and l, k�;lj+1 � k

�;l
j =

lmin(dj) = (2cj or 2cj + 1) = kj+1� kj . Therefore, by (6.39), there exist � 2 f�g
and l 2 Z such that (k1; : : : ; kn) = (k�;l1 ; : : : ; k

�;l
n ). Now, since the domain types

are fixed, the entries in p are automatically determined and it coincides with the
ones in p(�)l . This means that p = p

(�)
l and then Em(n;~t;~c) � E0: Now, we have

completed the proof. 2

Remark. By Lemma 6.14, we know that a (�)(resp. (+)) wall in a path is shifted
by one to the left direction by the action of ~f1 (resp. ~f0) and by the definition of
p
(�)
l , (k+1 ; : : : ; k

+
n ) = (k�1 + 1; : : : ; k�n + 1), where (k�1 ; : : : ; k

�
n ) are sequences of

the positions of walls in p(�)l . Therefore, we have

~fn1 p
(�)
l = p

(+)
l�1 and ~fn0 p

(+)
l = p

(�)
l : (6.40)
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Thus, we have

S1p
(�)
l = ~fn1 p

(�)
l = p

(+)
l�1 and S0p

(+)
l = ~fn0 p

(+)
l = p

(�)
l : (6.41)

By these (6.40) and (6.41), we get

S1p
(�)
l = p

(+)
l�1; S0p

(+)
l = p

(�)
l ; S1p

(+)
l = p

(�)
l+1 and S0p

(�)
l = p

(+)
l :(6.42)

Thus, we obtain the following result.

COROLLARY 6.17. Pm(n;~t;~c) is a connected component in Pm.
Proof. By the remark as above, we know that E0 is connected and then any

extremal vector in Pm(n;~t;~c) is connected to each other. Therefore, by Theorem
2.4 and Proposition 6.12, we know that Pm(n;~t;~c) is connected. 2

EXAMPLE 6.18.

� � � 0 0 0
+

j 1 �1
+

j 2 �2
+

j 3 �3 : : :

S0
 ! � � � 0 0

�

j �1 1
�

j �2 2
�

j �3 3 �3 : : :

S1
 ! � � � 0

+

j 1 �1
+

j 2 �2
+

j 3 �3 3 �3 : : :

6.4. AFFINIZATION OF THE PATH-SPIN CORRESPONDENCE

In Section 5 we introduced the path-spin correspondence. In this subsection, we
shall affinize it, that is, the path-spin correspondence in Section 5, which is a
morphism of classical crystal, is lifted to a morphism of affine crystals.

Let B = f+;�g be the classical crystal as in Example 3.2.

LEMMA 6.19. The set of all extremal vectors in Aff(B
n) is given by

fzk 
 (+)
n; zk 
 (�)
ngk2Z: (6.43)

Proof. By (3.2), (3.3) and (3.6), we have

S1(z
k

 (�)
n) = zk 
 (�)
n; and S0(z

k

 (�)
n) = zk�n 
 (�)
n:

By (3.3) and (3.5), we get for any k

~e1(z
k

 (+)
n) = ~f0(z

k

 (+)
n)

= ~e0(z
k

 (�)
n) = ~f1(z

k

 (�)
n) = 0: (6.44)
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Thus, we get the desired result. 2

Now we shall consider the affinization of the morphism  . For a level 0 affine
weight � = m(�0 � �1) + l� 2 P (l;m 2 Z) by Remark (ii) in 3.1, we have that
Ua� has a U 0-module structure and its crystal B(Ua�) is described by Pm as a
classical crystal (that is, B(Ua�) �= B(U 0acl(�)) as a classical crystal). Originally,
the crystal B(Ua�) holds an affine crystal structure. We shall recover its affine
crystal structure in terms of path. For this purpose we shall consider the energy
function (See [3, 4, 8]). For the case of B = B1, by [8] Theorem 5.1, we can
describe the energy function explicitly as follows.

PROPOSITION 6.20. We set

H((m)
 (n)) := maxfm;�ng:

This H is an energy function on B1.

By applying Proposition 6.20 to Theorem 4.9 in [8] and the same type of formula
for B(�1), we get the following proposition easily.

PROPOSITION 6.21. Let (gi)i2Z be a m-ground-state path. For a level 0 affine
weight � = m(�0 � �1) + l� 2 P and b 2 B(Ua�) which corresponds to the
m-path p = (ik)k2Z 2 Pm as a classical crystal, we have the following formula

wt(b) = wt(p) =

0@X
k2Z

ik�1 + ik

1A (�0 � �1)

+

0@l +X
k2Z

k(maxfik�1;�ikg �maxfgk�1;�gkg)

1A �: (6.45)

For a level 0 weight � = m(�0 � �1) + l�, we denote Pm;l for a set of path
corresponding to an element of B(Ua�), i.e. as a set Pm;l is equal to Pm and a
weight is given by (6.45).

By using this formula, we get the affinization of  as follows: For p 2 Pm;l a
map b is given by

b : Pm;l ! Aff(B
n)

p 7! zhd;wt(p)i 
  (p);
(6.46)

Let us denote also ~ for the restriction of b to Pm;l(n;~t;~c), where Pm;l(n;~t;~c) is
equal to Pm(n;~t;~c) as a set and a weight is given by (6.45).
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THEOREM 6.22. (i) The map b and ~ are strict morphisms of affine crystals.
(ii) The map ~ is an injective morphism of affine crystal.
Proof. (i) It is sufficient to show that for p 2 Pm;l, hd;wt( ~f0(p)) � wt(p)i =

�1 (resp. hd;wt(~e0(p)) � wt(p)i = 1) since we have (3.2), Theorem 5.1 and
Proposition 6.12. Suppose that ~f0p = (: : : ; ik�1; ik � 1; ik+1 : : :) for p = (ik)Z 2

Pm;l. Here note that ~f0(ik) = ik�1. Arguing similarly to (5.15), we get ik+ik+1 >

0 and ik�1+ ik 6 0, and then maxfik;�ik+1g = ik;maxfik�1;�ik+1g = ik�1,
maxfik�1;�ikg = �ik and maxfik�1;�ik + 1g = �ik + 1. By applying these to
(6.45) we get the desired result for the ~f0 case. The ~e0 case is shown similarly.

(ii) In order to show (ii) we shall see the following lemmas.

LEMMA 6.23. Let E be the set of all extremal vectors in Pm;l(n;~t;~c). If the map
~ jE is injective, the map ~ is injective.

Proof. We assume that ~ is not injective. Then there exist p1; p2 2 Pm;l such
that p1 6= p2 and ~ (p1) = ~ (p2). We set b� := ~ (p1) = ~ (p2) 2 Aff(B
n). Due
to the connectedness ofB
n, for this b� there exist ~xi1 ; : : : ; ~xil 2 f~ei; ~figi=0;1 and
an extremal vector v 2 Aff(B
n) such that v = ~xi1 : : : ~xil(b

�):
Since v 6= 0 is an extremal vector, by Theorem 6.22 (i) and Lemma 6.15, we

have that both ~xi1 : : : ~xilp1 6= 0 and ~xi1 : : : ~xilp2 6= 0 are elements in E. The
injectivity of ~ jE means ~ (~xi1 : : : ~xilp1) 6= ~ (~xi1 : : : ~xilp2) since p1 6= p2 and then
~xi1 : : : ~xilp1 6= ~xi1 : : : ~xilp2. But this contradicts the fact that ~xi1 : : : ~xil ~ (p1) =

v = ~xi1 : : : ~xil
~ (p2): We have completed the proof of Lemma 6.23. 2

Proof of Theorem 6.22. (ii) For a path p 2 Pm let �1(p); : : : ; �n(p) be a sequence
of the types of the walls in p. We set

E� := fp 2 E = Em(n;~t;~c) j �i(p) = �; i = 1; : : : ; ng:

These E� coincides with fp(�)l gl2Z respectively. By (6.41) and (6.42), we have
the following.

LEMMA 6.24. For any p(�1)
k 6= p

(�2)
l (�1; �2 = � and k; l 2 Z) we have

wt(p(�1)
k ) 6= wt(p(�2)

l ): (6.47)

Proof. If �1 6= �2;wt(p(�1)
k ) 6= wt(p

(�2)
l ) since wt(p(�)k ) = n(�0 � �1) +D1�

and wt(p(+)l ) = n(�1 � �0) + D2� where D1 and D2 are some integers. Then
we may assume that �1 = �2. We set �1 = �2 = + and k < l. By (6.42), we have
S1S0p

(+)
l = p

(+)
l�1: This means (S1S0)

l�kp
(+)
l = p

(+)
k : Since S1S0 = ~fn1

~fn0 for

p
(+)
l , we get

hd;wt(p(+)l )i � hd;wt(p(+)k )i = (l � k)n > 0: (6.48)
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Now, we have completed the proof of Lemma 6.24. 2

This lemma implies that any extremal vector in E has different weight each
other. Since the morphism of affine crystal ~ preserves weight, now we obtain the
injectivity of the map ~ jE . Therefore, by Lemma 6.23, we get the injectivity of ~ .
We have completed the proof of Theorem 6.22. 2

By the formula S1p
(�)
l = p

(+)
l�1 and S1p

(+)
l = p

(�)
l+1 in (6.42), we get hd; p(�)l i =

hd; p
(+)
l�1i. By this and (6.48), for any extremal vectors p1; p2 2 Pm;l(n;~t;~c), we

have

hd;wt(p1)i � hd;wt(p2)i (mod n):

By this formula, we obtain the following

COROLLARY 6.25. (i) Set In := f0; 1; : : : ; n� 1g and let Em;l(n;~t;~c) be the set
of all extremal vectors in Pm;l(n;~t;~c). Then there exists unique i 2 In such that

~ (Em;l(n;~t;~c)) = fzi+kn 
 (�)
ngk2Z:

(ii) Let us denote Aff(B
n)i for a connected component of Aff(B
n) generated
by extremal vectors fzi+kn 
 (�)
ngk2Z. Then as a morphism of affine crystals,

~ : Pm;l(n;~t;~c) �
�!Aff(B
n)i:

Now, we shall summarize the classification of paths in Pm;l
�= B(Uq(g)a�)

(� = m(�0��1)+ l�). By Corollary 6.25 (ii), if we fix one connected component
in Pm;l(n), each element in the component is classified by Aff(B
n)i. Since
Aff(B
n)i is generated by fzi+kn 
 (�)
ngk2Z, any element in Aff(B
n)i is in
the following form:

z
i�1;:::;�n�1;l

+kn

 (�1)
 � � � 
 (�n�1); (6.49)

where k is an integer called depth parameter and i�1;:::;�n�1;l 2 In is determined
only by �1; : : : ; �n�1; l (if (�1; : : : ; �n�1) = (�; : : : ;�), i�1;:::;�n�1;l = i.).

Therefore, for given m; l 2 Z, by the following parameters

n 2 Z>0 with n� jmj 2 2Z>0 (the total number of walls);

(t1; � � � ; tn�1) in m-domain configuration (domain types);

(c1; � � � ; cn�1) 2 Zn
>0 (domain parameters);

(�1; � � � ; �n�1) (�j = �) (types of walls);
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k 2 Z (depth parameter);

every path in Pm;l is uniquely classified.

Acknowledgements

The author would like to acknowledge professor Masaki Kashiwara for his helpful
advises. This work was partly done during the stay of the author at Northeastern
University as an overseas research scholar supported by the Ministry of Education,
Science and Culture of Japan. He is grateful to professor Andrei Zelevinsky for his
kind hospitality.

References

1. Beilinson, A. A, Lusztig, G. and MacPherson, R.: A geometric setting for the quantum deforma-
tion of GLn, Duke Math. J. 61 (1990) 655–677.

2. Davies, B., Foda, O., Jimbo, M., Miwa, T. and Nakayashiki, A.: Diagonalization of the XXZ
Hamiltonian by vertex operators, Commum. Math. Phys. 151 (1993) 89–153.

3. Idzumi, M., Iohara, K., Jimbo, M., Miwa, T., Nakashima, T. and Tokihiro, T.: Quantum affine
symmetry in vertex models, Int. J. Mod. Phys. A 8(8), (1993) 1479–1511.

4. Kang, S-J., Kashiwara, M., Misra, K., Miwa, T., Nakashima, T. and Nakayashiki A.: Affine
crystals and vertex models, Int. J. Mod. Phys. A7 Suppl. 1A (1992), 449–484.

5. Kashiwara, M.: Global crystal bases of quantum groups, Duke Math. J. 69 (1993) 455–485.
formula,

6. Kashiwara, M.: Crystal base of modified quantized enveloping algebra, Duke Math. J. 73 (1994)
383–413.

7. Kashiwara, M.: On Crystal Bases, Representations of Groups, Proceedings of a Summer Seminar
held at Banff, Alberta, June 15 to 24, 1995, B. N. Allison and G. H. Cliff (eds), CMSAMS, Amer.
Math. Soc., Providence, RI.

8. Kang, S.-J., Kashiwara, M. and Misra, K. C.: Crystal base of Verma modules for quantum affine
Lie algebras, Compositio Mathematica 92 (1994) 299–325.

9. Kashiwara, M. and Nakashima, T.: Crystal graph for representations of the q-analogue of classical
Lie algebras, J. Algebra 165 (1994) 295–345.

10. Lusztig, G.: Canonical bases in tensor product, Proc. Nat. Acad. Sci. USA 89 (1992) 8177–8179.
11. Nakashima, T.: Quantum R-matrix and Intertwiners for the Kashiwara algebra, Comm. Math.

Phys. 164, Number 2, (1994), 239–258.

comp3935.tex; 17/06/1997; 13:13; v.7; p.33

https://doi.org/10.1023/A:1000172115532 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000172115532

