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THE LAW OF THE ITERATED LOGARITHM ON

SUBSEQUENCES-CHARACTERIZATIONS

MICHEL WEBER

Let §> be any increasing sequence of integers and M > 1 we connect

to them in a very simply way, an increasing unbounded function φ: 3 —>

R+. Let also Xu X2, be a sequence of i.i.d. random vectors with value

in euclidian space Rm. We prove that the cluster set of the sequence

{(XΊ + + Xn)l<\/~nφ(ri), n e 3} almost surely coincides with the unit ball

of Rm, if, and only if, the covariance matrix of Xx is the identity matrix

of Rm and EXλ is the zero vector of Rm. We define a functional A on

the set of increasing sequences of integers as follows:

= limβup ^
j I log;

We prove that P{limsupβ9Λ_M(-Xi + • + Xn)N%n loglog n > 0} > 0, for at

least one sequence Xu X, of i.i.d. real r.v.'s with EXX = 0 and E(Xxf

< oo, if, and only if Λ{%) > 0; further the definition of A( ) does not

depend of the value of M. Different characterizations are also established.

Further, the law of the iterated logarithm in the sense of Strassen is

considered. We finally show a functional law of the iterated logarithm

on subsequences for lipschitzian random functions.

§ 1. Introduction

This work is a natural continuation of our previous results obtained

in [16]. Let Xu X2, be a sequence of independent, identically distrib-

uted (i.i.d), real random variables (r.v.'s). Set

Vn, > 1, Sn = Xi + + Xn.

We investigate the asymptotic behavior of the sequence {Sn} when n

runs on arbitrary subsequences of integers. This is a quite natural
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question since it is well-known that, when EXX = 0, E{X^f = 1,

(1.1) P (limsup , „ S<ιk = = l) = 1.v I *—V2.2 f c loglog 2fc i

In fact, it turns out that for any δ > 1, letting

(1.10 ^ = {2Cl* n > 1},

where we write [x] the integer part of x,

(1.2) Pίlimsup ^ = _ = 3-
1859n-~ V2n loglog n

so that (1.1) appears as a particular case (δ = 1) of a much more general

phenomenon. From this, we can also deduce the classical Hartmann-

Wintner law of the iterated logarithm [7] under a stronger form.

Let now 3 be any strictly increasing sequence of integers and Λf > 1.

In a previous work, we connected to 3 and M, in a very simple way a

function φ: £ -> 2?+ such that for every sequence Xu X2, of i.i.d. real

r.v.'s satisfying EX, = 0, £J(Z02 = 1,

(1.3) P ( d < limsup — ^ < C2) = 1,

where 0 < CΊ < C2 < oo depends on M only. One of our first results in

this work (see Theorem 2.1) is that CΊ = C2 = 1 without any modification

nor restriction. Conversely, if Xu X2, is a sequence of i.i.d. real r.v.'s

such that (1.3) holds ( d = C2 = 1), for some triple (3, M, φ) defined above,

then

EX, = 0 and EQttf = 1.

Further, this characterization extends to the case of any sequence of i.i.d.
random vectors with values in euclidian spaces. This is the Theorem 2.1.

n , n e 3 > is also identified, so that
V n φ(n) >

the law of the iterated logarithm on any subsequence, in euclidian spaces

is characterized. Besides, we characterize all the subsequences 3 such

that

(1.4) pflimsup Xί,+ " ' + h- > o) > 0 ,
I §9rc-oo V2n loglog n >

for at least one sequence Xu X2, of i.i.d. real r.v.'s such that EX, = 0
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and EiXif < oo. This is the Theorem 2.3. Moreover, we generalize this

result in Theorem 2.8. These results are proved in Section 3. Fix now

any strictly increasing sequence of integers §> = {nk, k > 1} and M > 1.

Let ΎjN e C([0, 1]) be obtained by linearly interpolating the partials sums

Snk at nk/nN9 1 < k < N, N> 1. In Theorem 2.9, we determine the cluster

set of the sequence

in two particular cases, and therefore we show that this cluster set changes

very much with the sequence §. This is proved in Section 4. The main

feature of the law of the iterated logarithm on subsequences in euclidian

spaces, is contained in the fact that the behavior of the partial sums,

when indexed on subsequences, can be as small as we want, (see (2.20).

In Theorem 2.10, we show that this feature is preserved in infinite

dimension. This result is proved in Section 5.

§ 2. Notations, main results

Let §> = {nk, k > 1} be any strictly increasing sequence of integers

and M > 1. We associate to them, (as in [16]),

Ί o = I0(M) = [0, M[ and for each integer k > 1, Ik = Ik(M) =

1 if &nip(M)Φ 0,
[M\ Mfc + 1], for every p > 0, δΏ =• δp($, M) =

0 unless,

(2.1) { kx = k,(§, M) = inf {n > 0: δn(2, M) = 1}, and for every p > 1,

kp == kp(2, M) = inf {n > kp^\ δjβ, M) = 1},

for each p>l,ri$ is some point of §> Π Ikp{M) and §* = {zij, p > 1},

^ for every n e §, φ(ή) = φ(3, M, n) = V21og(p +~2) iff n e Ikp(M).

Afterwards, a triple (3, M, ψ) will be always composed of a strictly in-

creasing sequence of integers, a number M strictly greater than 1 and a

map φ: £-+R+, defined in accordance with the notations (2.1). Note that

φ is depending on § and M. Let ψ: N -> N be strictly increasing and set

(2.2) }

Then, for every M > 1,

(2.2') lim ff(g(*),M,n) _ ,
2 1 ψ X l l ή)
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so that, when ψ grows very fast, the corresponding function φ grows

very slowly. Our first result characterizes the law of the iterated loga-

rithm on subsequences in euclidian spaces.

THEOREM 2.1. Let (3, M, ψ) be any triple defined in accordance with

(2.1), and a sequence X = {Xu i > 1} of i.i.d. random vectors with value

in m-dimensional euclidian space Rm. Let Bm be the unit ball of Rm and

set

Vrc > 1, Sn(X) = X, + + Xn.

Then,

(2 3)

if, and only if.

(2.4) Cov CXi) is the identity matrix of Rm and EX, the zero vector of Rm.

In particular, when m = 1.

(2.5) Pflimsup fAX\ = l) = 1,

if, and only if,

(2.6) EX, = 0 and E(X,Y = 1.

< 2 - 7 )

This characterization is proved in Section 3. Once it is proved for

m = 1, the general case is easily deduced from the work of H. Finkelstein

[5], for the sufficienty part. The necessity part is obtained by choosing

suitable linear forms fiyje(Rm), ί,j = 1, , m, and applying the result

obtained for m = 1 to the sequences {fitj(Xn), ne§}. The proof of Theo-

rem 2.1, when m = 1, depends essentially of the following intermediate

result:

PROPOSITION 2.2. Let (§, M, φ) be any triple defined in accordance with

(2.1) and δ > I. Set,

(2.8) S* = {Λ*,3, p > 1},
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where [x] is the integer part of x. Then, for any sequence Xu X2, of

id.d. real r.u.'s satisfying EXί = 0 and E{Xγf = 1,

(2.9) Pflimsup SAX>> = (3)"1/2) = 1.

This is precisely the intermediate step (3.59) in the proof of lemma

3.4; further (2.9) easily implies (2.7). One sees in particular, when 5 = 1,

that the lower bound in (2.5) is reached on 3*.

Next, we define on the set of strictly increasing sequences of integers,

a functional as follows: let M> 1, then we put:

(2.10) m = Hmsup
log;

It is easily seen that

(2.11) Λ(S) = limsup ( l o g/ —V" ,
y-oo I log Ay(§, M ) J

where we use the notations (2.1).

Note that 0 < A(§) < 1 and Λ(3), a priori, depends on the value of

M > 1. This functional will give us the possibility to characterize in a

very simple way the sequences of integers which "support" the law of the

iterated logarithm.

THEOREM 2.3. Let Xu X2, be any sequence of ί.ί.d. real r.υ.'s

satisfying EXX = 0 and E{Xtf = 1. Then, for any strictly increasing se-

quence of integers §,

(2.12) Pflimsup X\+ ' ' ' + Έ^ > o) > 0 ,
I s9τι-«> v 2n loglog n J

if, and only if,

(2.13) A(g) > 0 .

Then, we have,

(2.14) Pflimsup X \ + '" + Xn = A(2)\ = 1.
I ,9n^oo o/2n loglog n J

From (2.14), follows that A(§) does actually not depend on the value of

M > 1. This result takes a very simple form when the sequence 3 is of

the type defined in (2.2).
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COROLLARY 2.4. Let Xu Xz, be a sequence of i.ί.d. r.v.'s satisfying
i = 0 and E(Xtf = 1. Then, for any strictly increasing map ψ: N-+N,

(2.15) P {limsup * ' + ' ' ' + X " = limsup [ lo%m Π = 1,
UW9W-OO v2τι loglogH, m-oo L log-ψ (m) J J

where the sequence 3(ψ) is defined in (2.2).

In our next approach, we collect some easy properties of the func-
tional A( ). We set for any integer r > 1, a > 0 and any increasing
sequence of integers §,

(2.16)

(3) = {[*"], ne$} and Pa = Pa(N),

= {2\ne§},
) = K + + rir, Vi = 1, r, nt e §},

= {[an], ne §}.

LEMMA 2.5. The following properties hold for any a > 0 and any
increasing sequence of integers 3,

a) A(ag) =
b) 1̂(28)
c) j / ̂ ^ = {n{, k > 1}, ΐ = 1, 2 satisfy

(2.160 0 < liminf ΛΪ/ΛΪ < limsup Λί/Aiϊ < oo,

We notice that b) expresses the fact that Λ( ) does actually not depend
of the number M > 1 used in its definition; further a) follows easily from
b). As for c), since there are constants 0 < Ci < C2 < °o, such that for
all k,

Cx < n\\n\ < C2,

we therefore have %{i < n: §xf][M\ Mί+1[Φ0} < inΐ{p: Mn < dAί*^1"'^},
for all n, and this easily leads to A(^) < Λ($2), which implies c) by sym-
metry.

Let now ξ = {ξn, n > 1} be an increasing sequence of integer valued
r.v.'s such that

(2.17) pflimA- = l) = 1,

for some increasing sequence 3 = {nk, k > 1}.
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From the previous lemma, one deduces

(2.18) P{Λ({ξn, n > 1}) = Λ(ξ)} = 1.

Therefore, putting together Theorem 2.3 and (2.18) leads to

COROLLARY 2.6. Let §> = {nk, k > 1} be an increasing sequence of inte-

gers and an increasing sequence ξ = {ξk, k> 1} of integer valued r.u.'s

related to 3 by (2.17). Then, for any sequence Xu X2, of ίd.d. real r.v.'s

with EXλ = 0, E(Xλf = 1, which is independent of the sequence ξ9 one has

(2.19) P f l i m s u p Σ l ^flimsup =

I Λ-OO V2τi f c l o g l o g 7ifc

The next corollary establishes some relation between the law of the

iterated logarithm and the classical Waring's problem in additive number

theory, (see e.g. [15], Chapter I).

COROLLARY 2.7. Let r, q be two positive integers. For any sequence

Xu X2, - - of i.i.d, real r.v.'s satisfying EXX = 0 and E(Xλ)
2 = 1,

(2.20) P ί l i m s u p X \ + ' ' ' + Xn

V}r)9n-«» V 2 l l

= limsup
logN

where we use the notation (2.16).

This raises the following question: to determine the asymptotic be-

havior of

n ) / g g t t , n e 2i('>}

with respect to those of

{(Xι+ -" + Xn)lV2nloglogn, ne2*}.

Indeed, the fundamental aspect of the Waring's problem being solved

(see again [15]), we know that

Vg integer, 3r = r(q) < oo such that JP£r) = N,

in other words each sequence Pq defines a natural basis of the integers.

For instance, if q = 2
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so that,

(2.20a) P (limsup X \ + ' ' ' + *» = (2)"1'2) = 1,
{p^sn^oo v2?zloglogrc J

whereas,

(2.20b) Pflimsup X\+ " ' + X^ = l) = 1.
tp^3n-*oo V2n loglog n i

We thus can wonder what becomes (2-20) when indexing the partials

sums on P£° or P£\ We have not been able to answer this question.

The problem solved by Theorem 2.3 extends immediately: let (39M9φ) be

a triple defined in accordance with (2.1); characterize all the subsequences,

&ι C 3, such that

(2.21) Pfθ < limsup Xl + _ L " + Xn < l ) > 0,

for at least one sequence Xu X2, of i.i.d. real r,u.'s satisfying EXγ = 0,

rf = 1. Put,

(2.22) Λ& M, ^) = limsup [ l°*W <J' *>

We have the following characterization

THEOREM 2.8. Let (£, M, ?̂) όe αzzj ίr/p/β defined in accordance with

the notation (2.1). Then, for any sequence Xu X2, of i.i.d. real r.υ.'s

i = 0, EiXif = 1, and any subsequence ^ c g,

(2.23) Pίlimsup X l +

y . l ' ' "*" X w = ^ ^

This theorem is proved in Section 3. Its proof as well as proof of Theo-

rem 2.3, depends essentially of the Theorem 3.3.

Fix now a triple (3, M, φ) according to the notation (2.1) with § —

{nk, k > 1}, as well as a sequence Xu X2, of i.i.d. real r.v.'s satisfying

EX, = 0, E{Xtf = 1. Let ηN e C([0,1]), N > 1, be obtained by linearly

interpolating the partial sums

Snk = X\ + * ' * + XWft ,

at points nkjnN, 1 < k < N. Thus, (with the convention SQ = 0)

https://doi.org/10.1017/S0027763000003007 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003007


LIL-SUBSEQUENCES 73

(if nk < tnN <

We put,

(2.25)

The next result states a law of the iterated logarithm in the sense of V.

Strassen [12], for subsequences.

THEOREM 2.9. Let (B, M, ψ) be any triple defined in accordance with

(2.1), and a sequence Xt, X2, of i.i.d. real r.v.'s satisfying EX% — 0 and

a) }/ limt_M nk/nkil — 1, then

(2.26) P{lim dist (τ]Nl^n~H φ(nN), K,) = 0} = 1,

and

(2.27)

b) if limj;^^ nkjnk+i = 0, then (2.26) and (2.27) hold with K2 instead

of Kx.

This theorem is proved in Section 4. It is also to be connected with
Theorem 4.3. Theorem 2.1 together with (2.2') show that in euclidian
spaces, the partial sums of i.i.d. r.v.'s, when indexed on subsequences,
can grow as slow as we want, it is enough to choose a subsequence of
type defined in (2.2) with a function ψ that grows very fast. The aim
of our next statement is to show that the same property can happen in
infinite dimensional spaces.

THEOREM 2.10. Let (T, Θ) be a compact topological space. Assume

there exists a sample continuous gaussian process G = {G(ω, t), ω e Ω, te T)

and set

Vs, 16 T, p(s, t) = [E[G(s) - G(t)]ψ>.

Let y = {Y(ω, t), ωeΩ, teT} be a Θ-separable random function satisfying
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\ (s, t) e T® τ\ < oo ,
J

(2.28) E sup f
11 p(s, t)

(2.29) V* e T, EY(t) = 0 and £Y2(ί) < oo .

Let (3, M, φ) be any triple defined in accordance with (2.1) and a sequence

YD Y2, of independent copies of Y. Then,

(2.30) p ( ( 7 l + _ 1 ' ' + Yn , ne$) is relatively compact in C(T)\ = 1.
11 V n φ(ri) ) J

In other words, the random function Y satisfies the compact law of the

iterated logarithm in Q(T) for any subsequence §.

This result is proved in Section 5.

§ 3. Characterization of the law of the iterated logarithm on

subsequences

Let us denote W = {W(t), 0 < t < 00} the usual brownian motion.

In accordance with the notations (2.1), let also (3, M, ψ) be a triple in

which 3 is a strictly increasing sequence of integers, M > 1 and ψ defined

by (2.1). Set,

(3.1) C(M) = median (sup {W(ί)/VT, 1 < t < M}).

LEMMA 3.1. For any triple (§, M, φ\

(3.2) P{limsup W(ή)IV~n - φ(n) < C{M)} = 1.

Furthermore,

(3.20 P{limsup W(n)IV~n φ(n) < 1} = 1.

Proof. Fix ε > 0 and set,

(3.3) V p > l ,

Ap = {sup(W(ί)/VT, ί e §Π Jfcp) > V21og(p + 2) + C(M) + ε} .

By applying Borell's inequality [1], and letting ψ(x) = P{N(0, 1) > x},

(3.4) Vp > 1, P{AP} < ψ ( V 2 l ^ ( ^ Γ 2 ) + e),

so that, P{AP, p i.o.} = 0. Q.E.D.

LEMMA 3.2. For any triple (§, M, ψ) and any sequence Yl9 Y2, of

i.i.d. real r.υ's satisfying EY1 = 0 and E(Yxf = 1,
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(3.5) pflimsup Y l + " ' + Yn- < l) = 1.
I SB**-*, ^ {) J

Proof. By virtue of the Skohorod embedding scheme of partial
sums (see e.g. [2], Theorem 13.6, p. 276), it is enough to prove

(3.50 Pflimsup W(Tι + ' " + Tn) < l) - 1,
I 39ra-~ y ft ^?(ft) J

where Tu T2, - is a sequence of nonnegative, independent, identically
distributed r.v.'s with ETX = 1. Given h > 0, we can choose q large
enough, so that, by virtue of the strong law of large numbers, the event

(3.6) A =

has a probability greater than 1 — h. Fix ε > 0 and set,

D = m e d i a n {(sup (W(θt)lVT, 1 < θ < M, I - h<t<l + h)},

Vp > 1, Cp = {sup (W(Σ?-i ΓO/VTΓ, n e δ Π I t p)
(3.7)

> l, C;=CPΠA.

O n Cp, o n e h a s Σ ? = i ^ = ^^ f o r s o m e δe[l — h , l + h], a n d τi =
f o r s o m e θ 6 [1, M]. T h u s ,

(3.8) c ; c σ; = [sup

and

Since sup{E(W(θδ)l</T)\ 1<Θ<M, l-h<δ<l + h} = l + h, BorelΓs
inequality again implies,

(3.9) P{C;} < ψ(V21og(p + 2) +

Therefore,

(3.10) P{C;;, p i.o.} = 0 ,

and thus,
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P<limsup — —'t λ ^

Since h is arbitrary, we finally obtain,

(3.11) P (limsup J ^ Σ ^ i ψ_ ^ χ\ = x β Q.E.D.

Unlike the previous results, the proof of the next theorem involves
a far more important work.

THEOREM 3.3. Let (§, M, φ) be any triple defined in accordance with
(2.1). Let also X == {Xu ί>l} be any sequence of i.ί.d. real r.u.'s satisfy-
ing EX, = 0 and E(XX)

2 = 1. Fix any 0 < p < 1 and 0 < η < 1 - ^ and
let

(2(p, X) = {n € δ: X + + Xn > pΛfnφin)},
( 3 > 1 2 ) [3(p, η, X) = {n e 3: X, + + Z . > />V^ ?<n) « ^

^(n) > ^)Λ/2^ΐoglogn}.

Then

(3.13) P{#(̂ (/o, X)) = oo} = l ,

and

(3.130 P{limsup X l + _ 1 ' ' + Xn = l l = 1.

(3.14) P{Λ(8(p, η, X)) > A(g)VT=y} = 1,

and

(3.15) Pίlimsup
V2nloglogn

Proof

Step 1. By virtue of the Skohorod embedding scheme for partial
sums, it is enough to prove the theorem when we replace Xt + + Xn

by W(T, + + Tn), n > 1, where Tu T2, is a sequence of i.i.d. non-
negative r.v.'s with ETi = 1. Let h, μ, p and p0 be fixed in ]0,1[ with

po + V h < p,
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( 3 . 1 6 ) ε(h) = m e d i a n { s u p (| W(θ) - W(l)\, l-h<θ<l + h ) } ,

and for each integer p > 1,

εp = ε(h) + μ<J~h

77

Ap = {3/ι e [Mp, δ: X1 n^ pW' n φ(ή)} ,

A°p = {X, + • • • + Xn% > PW2n* log (p + 2)},

A ; = {i ^
(3.17)

;" = {sup(I W(βn?) - W(n*)|/V<, 1 - Λ < β < 1 + h) < εp},

and choose q large enough so that, by virtue of the strong law of large

numbers, the event

(3.18) A = <sup
^n rp

, n

has a probability greater than 1 — h.

Observe now, for any m0 large enough and any m > m0,

(3.180

(3.19)

Suppose now,

(3.20)

Then,

(3.21) P{3m0

»o *A' ' J-A >

*—- / ιp = m,n

By applying the classical Paley-Zygmund inequality for nonnegative square

integrable r.v.'s: P{X> λEX} ^ [1 - λf[EX]ηE{X)\ 0 < λ < 1, one has

> [1 - λY

JJ(3.22)

^> f 1 ^"|2 1/ ip^mp ̂ X^-p jJ

Further, suppose,

(3.23) for any 0 < h < 1, there exists m0 = mo(Λ) < °°, such that for

every m > m0,
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Σ P{A'P' n Aft <(i + h) [Σ^

and

(3.24) for any pί e]p, 1[, there exists m0 = m0(|θ) < oo, and mi = τni(m0, ρx)

< oo, such that for every m > sup(m0, mO,

Tm PiA"\ > m1-'*

Then, putting together (3.19), (3.20), (3.21), (3.22), (3.23) and (3.24) leads to

(3.25) for any strictly increasing sequence of integers Ξ and any 0 < pQ <

^ { Σ ί - i ^ j > ^ " ^ meΞ, m i.o.} = 1.

This is our first step. We therefore must show (3.20), (3.23) and (3.24).

We first prove (3.20). By using BorelΓs inequality,

(3.26) Vp > 1,

< P{sup(| W(θn*) - W(/i*)|/V< 1 - h < θ < 1) > εp]

+ P{sup (I W(βτφ - W(n*)\lVJϊ*9 I < θ < I + h)> ep},

< 2ψ(V21og(p + 2) + ̂ ) .

Therefore, by applying Borel-Cantelli lemma, leads to (3.20). In order to

obtain (3.23), we need the following classical estimate on gaussian distri-

butions, (see e.g. [3], p. 269-270).

LEMMA 3.4. Let U, V be jointly gaussian real r.v.'s satisfying EU2 =

EV2 = 1, EU = EV = 0, EUV = r and let e > 0.

a) for any x> 0, y> 0 such that rxy < ε,

P{U>x, V> y}<c(ε)P{U> x}P{V> y},

where limε_oc(ε) = 1;

b) for any a > 0, if r > 0,

P{m£(U9 V)> a}<P{U> α}
1 -f- r

Let 0 < α < p\l - M"1/2)/2 be fixed and suppose first

a) mQ<p < q <p + pa,

then by Lemma 3.4,
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(3.27) P{Af; Ω A'/} < P{AMpV(l - M- I / 2)log(p + 2)),

since flΓJ^ffiWfo?).] < jfi-<»-»/« .< jf-yt if α > n + 1.
L Vn* V< J

Thus,

p{Af; n A;7} <

so that,

(3.28) ΣL P{Ap IΊ AJ;} <

once m0 is sufficiently large.

b) mQ < p < p + pa < q.

Fix ε e ]#, 1[. Then assuming mQ large enough, one has q — p > q% so

that

(3.29) sup Uin^ψin^El-^ψ^ΆV p > m0, q > P + Pa]

< 2 sup [((logp + 2)(logg + 2)M 2 - ( ^) 1 / 2 , P > m0, g > p + p a ] ,

< 2 sup [(logg + 2)M^-qε)/\ q>mQ].

By virtue of Lemma 3.4, this one leads to

(3.30) P{A't Π AJ'} < (1 +

once m0 is sufficiently large, that we suppose; thus (3.23) is now establi-

shed. As for (3.24), fix 1 > p" > p' > p. For mQ large enough,

(3.3D Σ - „.Pm > - ^ TS^ -τ^^^ip + a-,

^ {[m + 3]'-^'>2 - [m, + 2]'-<>'>2}/[l - {p'f],

once m > mt = mi(m0, /»', p"). Hence (3.24) holds and consequently our

first step, which is (3.25) is now established. Letting 8 = N and p^ tending

to 1 in (3.25) leads to (3.13')

Step 2. In this step we prove (3.14). Obviously, there is no loss

when assuming A(§) > 0. Fix 0 < δ' < Λ(§)\ and set

(3.32) 3 = {m e N: km< mlβ'}.
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Since Λ(§)2 = limsup [log m)]/[log kn] > δ',

(3.33)

Fix also 0 < rj < 1 — p\. Then, according to (3.25), with probability one,

there are infinitely many integers me Ξ, such that,

(3.34) Akp occurs for at least m1''* — mn integers p in the interval [m\ m],

since, one has

mV<.p<,m

For such integers, by definition of Ak , one has

Sn(X) > po\/Ίΐ φin) for some n 6 §> (Ί Ik ,

and

φ(n) = V21og(p + 2).

But p>m\ n< Mkp+ί < Mfc-+1 and km < m1/δ' hence

for any 0 < rf < η, once n is sufficiently large, namely, once m is large

enough. Thus, we have

(3.35) φ(n)

On the whole, with probability one, there are infinitely many integers

m such that

[there exists at least mι~{n)<ι — mv integers pe[mη,m] such that

\Sn(X) > p»\/~n φ(n) and <p(n) > \/2δ/τ]' loglog n for some n e § lΊ Ikp.

Letting δ'η' = A\%)η", gives

(3.37) P{ Σ Iiw.z>cu*,} > n1-^ -m\meΞ, m i.o.} = 1.

Since

l<p<m y

(3.37) together with the definition of Λ($) imply

(3.38) P W f t , V", X)) > Vl - (^)2 ^(δ)} = 1

This one easily establishes (3.14).
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Step 3. We now prove (3.15). Let X* = {Xι

n, n>ΐ\,i = l, 2, be two

independent copies of the sequence X = [Xn9 n > 1}, and define

(3.39) c, = max {pVΐ^J2, 0 < p < 1} = 1/2.

From (3.14) and (3.39),

(3.40) limsup —. M*l > m a x ί liminf Sd^l 1
§9n_O3 y2?ιloglogH, oo<Pα 2 U , ί , j ) 9 r i ^ V2τzloglograJ

almost surely. This is the first step. We now apply (3.40) and (3.14)

simultaneously. We first observe, for every 0 < a < 1,

(3.41) limsup M^L±E^ΣΞ^λ> limsup Sn(aXι +
V 2 l l V 2 l

^L±E^Σ^λ> limsup
V2nloglogn «(/.,ϊ,ΛΓί)3Λ-» V2nloglogπ.

f liminf
Λ,/2n iogiog n

+ 4 limsup y > i,
Lβ(p,7,2Γ2)9n-*oo V 2 7 l l θ g l θ g 7 Z J

almost surely, and thus

(3.42)

by virtue of (3.40) (and 3.14) since X1 and X2 are independent. We put

(3.43) Vπ, > 1,

c, = max {[pVY^c? + αc^Wl - p\ 0 < p < 1, 0 < α < 1}.

From (3.42), assuming that X is gaussian,

(3.44) P {limsup S«(X) — > c2Λ^)\ = 1,
I V 2 1 l

and, by repeating the same argument,

(3.45) Pi limsup - g ; ( ^ } _ > sup (cp)^(
I 8971-.- V2raloglogft v

Now, the lower bound in (3.25) will be deduced from the study of the

sequence {cn, n > 1}. It is easy to check that the maximum of

is reached at the value
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a(p, n) = c^/V

and

UP) = φP,Mp, n))

Further, /n( ) has unique maximum on [0, 1] at the value ρ(n) =

(en_i)2]/2. Its corresponding value defines cn and finally, one has

(3.46) Vrc > 1, cn = [1 + (cn

It is now easy to see that cn increases to 1 when n tends to infinity.

This gives the lower bound in (3.15) when X is gaussian.

We now must prove this in general. First, it is quite clear that

Λ(%) = Λ(§*). Replacing § by 3*, our result becomes

(3.47) Pίlimsupίlimsup j fff sI p-oo V2w*loglog^*

By virtue of the Skohorod embedding scheme and (3.18), for any integer

p and 0 < h < 1,

(3.48) P{A ΓΊ {| W(Σti T%) - W(n*

< P{sup (I W(ί) - W(ϊ)\,

V2ΛΪoglogΛ* + ε(h)

< 2ψ(V2 loglog n^ + //), (by applying Borell's inequality),

^ 2ψ(v/21og[p0όgM)] + ^, (since < > Mfc^ > Λf').

Therefore, by applying Borel-Cantelli lemma and letting h tend to 0,

(3.49) Pflim WSfitM^Ξ&Ά = 0} = 1.
U-oo Λ/272* loglog n* >

Putting together (3.47) and (3.49) leads to

(3.50) Pίlimsup - ^ f ; ( f } ^ ^ 4^)) = 1,
I p-oo V2n* loglog n* J

which produces the lower bound in (3.15).

We now turn to the upper bound of (3.15). Set,

(3.51) L(X) = l imsup -—L=sss===s===ί.
sen— V2n loglog λi

By 0-1 law, L(X) is a number and there is no loss when assuming L(X)
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> 0. Let 0 < V < L(X) be fixed. Then for some random subsequence

{np j > 1} of 3,

(3.52) Vj > 1, L7 <
V 2AIj loglog nj

Define the random sequence of integers {pj9 j > 1} such that

(3.53) Vj > 1, Uj e Ikp..

Fix h > 0 arbitrary. By Lemma 3.2, for all large enough j ,

(3.54) Sn.(X) < V(l + h)njΨ(n^ = V(l + Λ)^2 log(p i + 2),

so that,

(3.55) L

L loglog n,

log [(log M)kp)

log[(logM)^.]

Therefore,

(3.56) V < VΓ+h limsup
logp

Letting L7 tend to L and h tend to 0 gives the conclusion. Thus (3.15)

is proved, and the proof of the Theorem 3.3 is now complete. Q.E.D.

The first part of the above proof is very classical in the study of

upper or lower classes of gaussian sequences; part 2 and part 3 are the

original parts of the proof.

LEMMA 3.5. For any triple (§, M, φ) defined in accordance with (2.1)

and any sequence X = {Xt, ί > 1} of ί.ί.d. real r.v.'s satisfying EXX = 0

and E{X,)2 < oo,

(3.57) P{C({Sn(X)WΊϊ φ(ή)9 ne$})= [

Proof. The proof is very simple. First, by homogeneity there is no

loss when assuming E(Xxy = 1. Then, let δ > 1 be fixed. We associate

to it the following subsequence of 3*,

(3.58) g* = {nfo, p > 1}.
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The corresponding sequence k% = kp(8f\ p > 1, trivially satisfies,

(3.580 Vp > 1, kl = /e [ Λ ,

so that the corresponding function φδ also satisfies

(3.58") Vn e §*, φδ(n) = \/21og(p + 2) iff τi e 3* Π i*,^,

and therefore φδ(ή) ~ φ(n)\/ δ as n tends to infinity along the sequence

»?* By applying (3.130, one obtains

(3.59) pίlimsup fAX^ = r 1 / 2 ) = 1.
1 $pn-*oo V n φ(n) )

This one easily implies (3.57). Q.E.D.

The next lemma shows the necessity of the condition E(Xxf < oo.

The proof uses a classical argument on truncated r.v.'s.

LEMMA 3.6. Let (3, M, ψ) be any triple defined in accordance with (2.1).

Let also X = {Xu i > 1} be a sequence of i.i.d. real r.v.'s. Then,

(3.60) Pίlimsup -ξ£^~ = l} = 1,

I βan-oo y n φ(n) )

if, and only if,

(3.61) EX, = 0 and E{Xxf = 1.

Proof. There is just the "only if" part of the assertion to prove.

First, assume that Xί is a symmetric r.v., and let c > 0 fixed. Then,

has same distribution as Xt. Let Xf = {X , i > 1} be a sequence of

independent copies of X[. By writing (3.60) for X and X', then using

triangular inequality, one obtains,

(3.62) Pίlimsup S ^
I J n
ίlimsup ^
I 2Bn-*oo ΛJ n φ{n)

By (3.13'),

(3.620 Pίlimsup ^ W I X I ^ ) = VSpΓΪ/ιUlls,,}] - 1,

so that,

(3.62")

https://doi.org/10.1017/S0027763000003007 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003007


LIL-SUBSEQUENCES 85

and finally EX\ < 1. But, by using again (3.130 and (3.60), this, neces-

sarily implies EX\ = 1. If Xx is not symmetric, let X/ be an independent

copy of X, and set Y = X - X'. Writing (3.60) for X and X\ and using

triangular inequality, leads to

(3.63) Pf limsup SAY\ < 2) = 1.
I 89rc-«> y n φ(n) J

Therefore, E[Xλ - X[f < 4, and by Corollary 2 (M. Loeve, Probability

theory, 3d ed., p. 246),

(3.64) E\X, - μXxf < 8,

where μXx denotes a median of Xx. This implies E\Xxf < 00. By apply-

ing (3.130 and (3.60), one obtains

(3.65) E(X1)
2 = 1 .

Further, EXX = m < co. The centering of X1 follows from the strong

law of large numbers, since

a.s. I ml = lim
89/2

Sn(X) < limsup -l^^hlL. limsup ^ - = 0 . Q.E.D.
3971-co j n φ(jι) §9w->^ *J n

Proof of Theorem 2.1.

a) if m = 1. This is given by (3.130 in Theorem 3.3, Lemmas 3.5 and

3.6.

b) if 1 < m < 00. The sufficiency results from the proof of Lemma

2 in [5], in which the sequence of normalization constants {V2n loglog n,

n > 3} does not matter except the fact that it is needed to control the

case m = 1.

As for the necessity, let fu / M , ij = 1, w, be linear forms on Rm

defined by fi(x) = x\ and fiio{x) = xί + xj for every x = (a1, , xm) e Λw.

By applying Lemma 3.5 to the sequences {fίfj(Sn(X))> n eg}, i9j = 1, - m,

one obtains

(3.66) Vi,; = 1, . . m, EfUj{X,f = E[X\ + Z{]2 = 2,

which easily allows to conclude. Q.E.D.

Proof of Theorem 2.3. As far as this is just the assertion (3.15) of

Theorem 3.3, it is already proved. Q.E.D.
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Proof of Theorem 2.8.

a) Lower bound. Fix 0 < p0 < px < 1, and set,

IVp > 1, ft* = ftpfo, M), (ftp = ftp(§, M)),

Vn, 6 §!, φjjί) = 9>(§!, M, n), (using notations (2.1)),

— ί ΠΪMP MP+1\ '? (X) l~

Since §x is a subsequence of 3, then {ft̂ , p > 1} is a subsequence of {ftp,

p > 1}, and

(3.68) Vp > 1, k\ = fte(p),

where c: N->N is strictly increasing (c(p) > p, for every p).

There is no loss when assuming A(§9 M, %λ) > 0. Observe that

(3.69) Λ(§, M, §χ) = limsup

= l i m B u p f
Fix 0 < δ < Λ\Z, M, ^ ) , and set

3 = {meN: c(m) < m1/δ}.

Then #(£) = oo. Further, by (3.25)

(3.70) P{ΣtIIA4 > m^\ meΞ, m i.o.} = 1.

Fix 0 < Ύ] < 1 — doO2. With probability one, there are infinitely many

me Ξ such that

(3.71) Aki occurs for at least m1'^2 — mη integers p e [mη

f m].

For these integers one has

Sn(X) > po's/'ϊϊ ψi(n) for some n e ^ Π Jfcj(M),

and ^(ra) = V21og(p + 2).

But m* <p<m, and Mfci = Mkc^ <n< Mkl+1 = M*e<" + 1, so that

p(π) = V21og(c(p) + ^ ) < V21og(c(m) + 2).

Thus,

(3.72) Pl(rc) > V21og(2
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for any 0 < if < η, once n is large enough. Therefore, with probability
one, there are infinitely many me B such that

there exist at least mι'{pi)2 — mη integers p e [mη, m] for which

Sn(X) > po^~n ψi(ή) and ψ\(ή) > Vδη' φ(n) for some n e ^ Π JΛi .

By arguing along the lines (3.36)-(3.38), one obtains for,

(3.73) Uptoi'tX)

= {ne§1: Sn(X) > pJΊϊ Ψι{n) and Ψl{n) > Vψ Λ(2, M, ^)ψ(n)},

P{Λ& M, ̂ (po, ̂ , X)) > V l - O O 2 ^ , M, ̂ )} - 1,

where we put δη' = η"A2(§, M, ̂ ). Next, we conclude by following the
same scheme of proof as in step 3 of the proof of Theorem 3.3.

b) Upper bound. Again there is no loss when assuming that

L(X) = limsup ^ X \ > 0 .
βi9n-.oo yj n φ(n)

Fix 0 < V < L(X), and let h > 0. Then for some random subsequence
{np j > 1} of §!,

Vy>l, V <S

One defines two random sequences of integers {qj9 j > 1} and {pp j > 1}
such that

V ; > 1 , njeIklj(M)nikq.(M).

By Lemma 3.2,

Sn,(X) < (1 + hW2nj\og(pj+~2),

for all j large enough, and ψ{n^) = Λ/2 log (g7 + 2). Thus,

for all j large enough. This one easily leads to the result by letting U
tend to L(X) and h tend to 0. Q.E.D.

§ 4. Strassen's laws of the iterated on subsequences

First, we recall the following lemma due to J. Kuelbs ([9], p. 247-248).

LEMMA 4.1. 1) Let B a separable Banach space. Let {Yk, k> 1} be
a sequence of B-valued random variables and assume μ is a mean zero
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Gaussian measure on B. Let K denote the unit ball of the reproducing

Hilbert space Hμ of μ. If,

(4.1) U(Yt),μ) = bk (k>l),

where Y^^bk < oo, and L is the Prohorov metric for probability measures

on (B, || ||). Then,

(4.2) pίω: lim d( ^ ( ω ) , K) = o) = 1,

where d(x, A) = inf {||x — y||, ye A}.

2) // (Yh) = μ for every k, and

(4.3) lim

for every /eJB* where Fm = F{Yk9 k < m}; then

<4-4)

Let If be a 1-dimensional brownian motion and define for every

integer n

(4.5) ζn(t)=Wpίί
n

Clearly each {ζn(i), 0 < t < 1} is a brownian motion on [0, 1] and it in-

duces a Wiener measure μ on C([0,1]). Further, it is well known that

the reproducing kernel Hilbert space of μ is

Hμ = [feC([O, 1]): /(ί) = J ^ ( M ) ^ where ^g\β)d8 < oo| ,

with inner product </i,/2) = fi{u)ff

2{u)du and hence
Jo

# = {/e C([0, 1]): /(ί) - ^ g(u)du where J^2(ι^)dw < lj .

Let now (§, Λf, y>) be defined in accordance with (2.1) and set

(4.50 Vp > 1, ζ^ = ζn .

LEMMA 4.2. For any triple (§, M, ̂ )

a) pflimdf-^ ζ 4 , κ\ = o) = 1,
Uoo \V21og(p + 2) / I
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b)

Proof. We mimic Kuelbs's proof in [9] p. 249-251. Since L((ζ*), μ) = 0,

a) is easily deduced from the first part of Lemma 4.1. To prove b) if

fe C*([0,1]) with /(*) = f x(t)dF(t), for x e C([0,1]), then
Jo

(4.6) E{f(ζ*+q) I Fp} = # [ [ WbpV .dF(t) | Fp} ,

Jn*M*+2 Vτι*+

Hence,

£^'n%"^'n%+q[n*+qs, n*+qt)dF(s)dF(t)

t]dF(s)dF(t)
9 CnPnP + Q Γ1

- ϊ - m i n [»?• nt+q
n*+q Jo J»v»J+d

and (4.3) holds since l i m ? ^ supp>i n*ln*i.q = 0. Thus, the second part of

Lemma 4.1 gives b). Q.E.D.

(4.6') Lemma 4.2 then holds for any subsequence 3' C § such that

#(§'Π7 tp) = 1, for every p. This simple observation will be afterwards

convenient.

THEOREM 4.3. For any triple (§, M, 9>) defined in accordance with

(2.1),

b )

Proof. Fix /z > 0 and define

(4.7)

J(g, Ap, A) = §Π [Mk*(ί + (A - 1)A), M*»(l + ΛA)[,

where ^ e ά(§, p) and

J(S, ftp, j) ^ 0 } ,
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β = 4E{ιnip{\W(r)\, l < r

Vp > 1, Vke Δ(β, p), n*k is the first point of J(§, kp, k),

Fix k e [1, (M — l)/h] and set for each p such that k e Δ(§, p),

(4.8) A\ = {3M 3 J(S, A,, k): || ζn - ζ* t

Observe now, for M e J(β, kt, k) and 0 < θ < 1,

V n
- n**/n),(4.9)

and,

(4.10) S{sup {|| ζB - ζ*„ ||, re e J(§, kp, k)}}

^ £{sup{||ζ,||, n = AP'λ, 1 < λ < M}} + E{\\ζ*t\\},

<,ββ.

By applying Borell's inequality,

(4.11) V p > l , P{AP) < 2ψ(V2loi(^

so that, for each k e [1, (M — 1)/Λ],

(4.12) P{{3n e J ( g,Ap, Λ): || ζn - ζ* t

Therefore,

2β}, p i.o.} = 0.

(4.13) Pίlimsup sup {M-LUC**! , n e J(g, ft k)} <, V¥J = 1.
I 3>-~ I p ( π ) i >

But Lemma 4.2 and remark (4.6') imply,

(4.14) VA 6 [1, (M - 1)/A], P{lim d(ζ* JV2 log (p + 2), K) = O} = 1,

and,

(4.15) V£ 6 [1, (M^ 1)/Λ], P{C({C**/V21og(p + 2), p > 1}) = if} - 1.

Combining (4.13) with (4.14), then letting h tend to 0

(4.16) P{ lim d(ζjφ(n), K) == 0} = 1.

Combining (4.15) with (4.16),
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(4.17) P{C({ζJφ(n), neg\) = K} = l. Q.E.D.

LEMMA 4.4. For any triple (3, M, φ) defined in accordance with (2.1)

such that

(4.19) lim nk/nk+ι = 1, (3 = {nfc, fe > 1}),

/or αwy sequence X = {Xu i > 1} of i.iA. real r.υ.'s satisfying EXX = 0

and E{XX)
2 = 1, one has

(4.20) Pflim ||_|L- - ζ j /φj) = o) = 1,

where ηj9 j > 1, is defined in (2.24) relatively to X and §.

Proof. By virtue of the Skohorod embedding scheme for partial sums,

it is enough to prove the Lemma 4.4 when replacing Xt (i > 1), by

Xi=W(T1+ ... + Tz) -W(TX+ ... + 7V0 (ί > 1),

where W is a 1-dimensional brownian motion and Tu T2, a sequence

of nonnegative i.i.d. r.v.'s satisfying ETX = 1. Define, with the convention

fto = 0,

(4.21) Vθ > 0, if nk < θ < nk+ί for some k > 0,

# ) = S J 1 + (nk - β)/(n»+1 - nfc)] + Snk+1[(θ - nk)l(nk+ι - nk)],

where Sn, = 2 R i ^ (* > 1)

Then,

(4.22) \η(t) - W(t)\ < max{\Snk - W(t)\, \Snk+1 - W(t)\},

i{ nk < t < nk+1. Fix h > 0. By the strong law of large numbers as well

as assumption (4.19), we can choose an integer q large enough in order

that

satisfies

(4.23) P{A} > 1 - h,

and further,

(4.24) sup{[λifc+1 - nk]/nk, k>q}<h.

For ω e A, k> q and nk < t < nk+u
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(4.25) IΣKiΓ4-ί|£

Set

(4.26) Vθ € [0, 1], V; > 1, ij0)

If θ > njn,, j > q,

< max f , 1^, - s\ < 2hnp 0 < θ

<-. max
f I Ψ(«n,) -_W(βnj)
11 V%

Let p be fixed and Πjβ ItpΠ3; one has on A,

(4.27) sup{|$X0 - ζB/(?)|, n,/n j ^ θ < 1}

< sup{\W(M"*ar) -

i<r<M,o<θ<i,\θ-r\^2h},

and on Ω,

(4.28) sup {|^0) - ζ,/tf)|, 0 < θ < njn}}

< M- ^fmaxflSΛ, j < q + 1} + max{| W(β)|, 0 < s < nq}],

so that

(4.30) P { l i m s u p {\ηβ) - ζnj(θ)\, 0<θ< njn,} = 0} = 1 .
j

Set

{

m = median {sup {| W(uv) - W(θv)\, 1 < v < M, 0 < ι 9 < l ,

. \θ-u\< 2h}},
yp > i, ψ p = J2h log (p + 2) + 2m,

Vp > 1, Ap = {sup {|3/0) - ζnj(θ), ns e I t , , Λ , / ^ <θ^l}> Ψ P } .

By using BorelΓs inequality again,

(4.32)
P{AP f]A} m

so that, P{Apf]A, p i.o.} = 0, and combining this with (4.23),

(4.33) P { l i m s u p s u p {\ηβ) - ζnβ)\lψ{n^ njn, <Θ<1}^ V2h} = 1 .

From (4.30) and (4.33),

(4.34) P{limsup \\ηs - ζni\\lφ(n}) ^ V2Λ} > 1 - h.
J->OO
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This achieves the proof by letting h tend to 0. Q.E.D.

As an easy consequence, one has, by putting together Lemma 4.4

and Theorem 4.3

COROLLARY 4.5. For any triple (§, M, φ) be defined in accordance with

(2.1), such that (4.19) holds, and for any sequence X = {Xi9 i > 1} of id.d.

real r.v.'s satisfying EXX = 0 and E(Xιf = 1, one has

(4.35) P{lim diηjφin,), K) = 0} = 1,

and

(4.36) P{C({vMni)> j>l}) = K} = l.

Proof of Theorem 2.9.

a) if lim nklnk+1 = 1. This is already proved by Corollary 4.5.

b) if limnfc/nfc+1 = 0. This is easily deduced from

sup , 1 < k < N - l) - o) = 1,

and the fact that the sequence of subdivisions {nklnN, 1 < k < N} tends

to {0,1}. Q.E.D.

§ 5. The law of the iterated logarithm on subsequences for random

functions

As explained in Section 2, the main goal of this section is to prove

that the behavior of partial sums of i.i.d. r.v.'s taking value in some

infinite dimensional space B, can be as small as we want, like in euclidian

spaces, when indexed on subsequences. This is the aim of the Theorem

2.10, that we are going to prove. We will use the following classical

exponential bound for martingales.

LEMMA 5.1. Let Mn = ^Σl=χdu (n > 1), be a real-valued martingale

satisfying

(5.1) Vi>l, \di\Kat a.s.

Then,

(5.2) Vί > 0, P{\Mn\ >t}<2 exp {-*2/2[Σ?=i «3}
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Proof of Theorem 2.10. We first assume that Y is a symmetric r.v.

For the clarity we denote (Ωγ, srfγ, Pγ) the basic probability space of the

sequence Yi, Y2, . Let gu g2, be independent ^Γ(0, 1) r.v.'s defined

on another probability space (Ωg, stf'g9 Pg). Let also εu ε2, be inde-

pendent Rademacher r.v.'s defined on a third probability space (β s, jtfe, P£).

The corresponding symbols of integration are denoted Eγ, Eg and Eε

respectively. We now use an argument due to V.V. Yurinskii [19], which

will be the first tool of the proof. Let Et = σ{εu , e j for every i > 1.

Then

where

(5.3) vί > l, d, = ^{11 Σϊ- i Y& II) - ^ " H i l Σϊ- i

and thus, \di\ < 2|| YJI, for every i > 1.

By applying Lemma 5.1 conditionally,

(5.4) vί > 0, P.{|| |Σ?-i YM - EΛΣU YM\ > t],
( t2

< 2 exp

We now need to control J^β{||Σ"=i ^είli} By using the easy fact that

{gu ί > 1} and {\gi\εu ί > 1} are identically distributed, one has by Jensen

inequality,

(5.5) #β{IIΣ?-i 5̂ *11} < J~E

Further

(5.6) V(s, ί) € T® T,

<\Σn«=ΛY*(s)-
<P(s,t)[Σumί/2

where Du D2, •• is a sequence of independent copies of sup{[(Y(s)—

Y(t)lp(s, t), (s, t) e T® T). Since we have assumed that G is sample con-

tinuous, the classical integrability properties of gaussian processes (see

e.g. [4]), together with Slepian's lemma (see again [4], Theorem 2.1.2) and

results in [13], imply

(5.7) 11/2
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where the constant B < oo only depends on T and p and tends to 0 with

diam(T, p), Let c > max(l, ED\) be fixed and

(5.8) A - sup {ΣU Dlln, n>q}<c},

where we choose q large enough so that, by virtue of the strong law of

large numbers.

(5.9) P{A} > 1/2.

On A, one has, (using (5.7)),

(5.10) sup{MΣ?=i YiSi\\}]l^n\ n>q}<Bc.

Let now (3, M, φ) be any triple defined according to (2.1). Choose s > 0

such that,

(5.11) Vp > 1, sV\2nfϊo^(p~+WM > BcVnf + SVΠfcΐoglp + 2).

Then, applying Levy's inequality conditionally to Pe,

Pγ ® Pε{{sup [|| ΣU Yέi ||/V2nlog(p + 2), n e 3 Π Jfc J > s} Π A}

< 2£F{/, Pε{||i;Si y^ | | > W[2n*log(p

and by (5.4),

(5.12)

< 4Py{A} exp { - - | log (p + 2)} ,

so that, by using Borel-Cantelli lemma and 0-1 law,

(5.13) P J s u p ( I M Ώ L , n 6 δ) < oo) = l ,
I IV n φ(n) 1 )

then, by (5.7) and usual conclusion drawn from the inequality of J.

Hoffman-J0rgensen [8], p. 164-165.

(5.14) £r{sup Ϊ1MΏL, ne§))<oo.
I IV n φ(ή) J J

We now can drop the assumption of symmetry, by using classical ine-

quality of symmetrization. The conclusion is obtained by applying, as

usual, the closed graph theorem and arguing as along the lines following

(4.13) in [10]. Q.E.D.
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§ 6. Conclusion

In this work, several problems are solved, and in the same time,

some others are raised. One can summarize them as follows:

PROBLEM 1 (CONJECTURE): is any unbounded sequence of integers §

a natural basis of the integers (i.e. 3(r) = N for some finite r), if, and

only if, A(T) > 0?, (assuming 1 e §).

PROBLEM 2: identify the set of cluster points C({ηN/Wn^ φ(nN)], N > 1})

in full generality. A partial answer is brought by the Theorem 2.9.

PROBLEM 3: extend Theorem 2.1 in any Banach space. The recent

characterization of this property when §> = N [10], reducing it to check

the same property in probability, is certainly a good basis. Nevertheless

the classical condition

E{\\x\\iβogiog\\x\\}<oo9

which is needed to satisfy this property, is no longer necessary when

indexing partial sums on subsequences. This brings a serious complica-

tion in order to truncate the r.v.'s, that is a necessary step in the proof

given in [10], since the corresponding condition cannot be expressed in

term of moment of X.
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