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THE LAW OF THE ITERATED LOGARITHM ON
SUBSEQUENCES-CHARACTERIZATIONS

MICHEL WEBER

Let 3 be any increasing sequence of integers and M > 1; we connect
to them in a very simply way, an increasing unbounded function ¢: 3 —
R*. Let also X, X;, --- be a sequence of i.i.d. random vectors with value
in euclidian space R™. We prove that the cluster set of the sequence
(X, + - + X))V 7 o(n), n €3} almost surely coincides with the unit ball
of R™, if, and only if, the covariance matrix of X, is the identity matrix
of R™ and EX, is the zero vector of R". We define a functional /4 on
the set of increasing sequences of integers as follows:

46 = limup {198 26 S J5 s VLM 2 0

i logj

We prove that P{limsup,,.. (X, + --- + X,)/v2nloglogn > 0} > 0, for at
least one sequence X, X., --- of ii.d. real r.v.’s with EX, = 0 and E(X,)*
< oo, if, and only if A(38) > 0; further the definition of /A(-) does not
depend of the value of M. Different characterizations are also established.
Further, the law of the iterated logarithm in the sense of Strassen is
considered. We finally show a functional law of the iterated logarithm
on subsequences for lipschitzian random functions.

§1. Introduction

This work is a natural continuation of our previous results obtained
in [16]. Let Xj, X,, --- be a sequence of independent, identically distrib-
uted (i.i.d), real random variables (r.v.’s). Set

Vn21, S,,:X1+"'+X7z'

We investigate the asymptotic behavior of the sequence {S,} when n
runs on arbitrary subsequences of integers. This is a quite natural

R ”Réé;s_i_v'e-(i”i\iovember 28, 1988.
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question since it is well-known that, when EX, = 0, E(X))* =1,
. Sae

1.1 P{hmsu .. SU— 1} =1.

. Pt v/2.2 loglog 2

In fact, it turns out that for any d > 1, letting

(L.1) g, = {2 n > 1},

where we write [x] the integer part of x,

1 Sn —— 5oty —

2 Pllimsup S =0 1,
so that (1.1) appears as a particular case (§ = 1) of a much more general
phenomenon. From this, we can also deduce the classical Hartmann-
Wintner law of the iterated logarithm [7] under a stronger form.

Let now 3 be any strictly increasing sequence of integers and M > 1.
In a previous work, we connected to 3 and M, in a very simple way a
function ¢: 83— R* such that for every sequence X, X,, --- of i.i.d. real
r.v.’s satisfying EX, = 0, E(X))* =1,

(1.3) P{C1 < limsup T.S’,,_ﬁ < Cz} =1,
P 7 o)

where 0 < C, < C, < oo depends on M only. One of our first results in
this work (see Theorem 2.1) is that C, = C, = 1 without any modification

nor restriction. Conversely, if X, X,, --- 1s a sequence of i.i.d. real r.v.’s
such that (1.3) holds (C, = C, = 1), for some triple (3, M, ¢) defined above,
then

EX, =0 and EX)=1.

Further, this characterization extends to the case of any sequence of i.i.d.
random vectors with values in euclidian spaces. This is the Theorem 2.1.

The cluster set of the sequence { , B€ Q} is also identified, so that

V1 e(n)
the law of the iterated logarithm on any subsequence, in euclidian spaces
is characterized. Besides, we characterize all the subsequences 3 such

that
(1.4) P{limsup Xt -+ X 0} >0,
san- 4/2nloglogn
for at least one sequence X, X, --- of ii.d. real r.v.’s such that EX, =0
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and E(X,)* < co. This is the Theorem 2.3. Moreover, we generalize this
result in Theorem 2.8. These results are proved in Section 3. Fix now
any strictly increasing sequence of integers 3 = {n,, k> 1} and M > 1.
Let 5y € C({0, 1]) be obtained by linearly interpolating the partials sums
S,, at ny/ny, 1 < k< N, N> 1. In Theorem 2.9, we determine the cluster
set of the sequence

[ N1,
vy o(ny)

in two particular cases, and therefore we show that this cluster set changes
very much with the sequence 3. This is proved in Section 4. The main
feature of the law of the iterated logarithm on subsequences in euclidian
spaces, is contained in the fact that the behavior of the partial sums,
when indexed on subsequences, can be as small as we want, (see (2.2)).
In Theorem 2.10, we show that this feature is preserved in infinite
dimension. This result is proved in Section 5.

§ 2. Notations, main results

Let 8 = {nt, £ > 1} be any strictly increasing sequence of integers
and M > 1. We associate to them, (as in [16]),

I, = I(M) = [0, M| and for each integer £ > 1, I, = I,(M) =

[M*, M*+1], for every p > 0,38, = 6,(8, M) = {1 it 30 L(M) # 2,
0 wunless,

(2.1) ky = ky(3, M) = inf{n > 0: §,(3, M) = 1}, and for every p > 1,

k, = kS8 M) =1inf{n >k, ,: 0,3, M) =1},

for each p > 1, n}} 1s some point of 3 N I, (M) and &* = {n¥, p > 1},

for every nes, o(n) = ¢(3, M, n) = v2log(p + 2) iff nel, (M).

Afterwards, a triple (3, M, ¢) will be always composed of a strictly in-
creasing sequence of integers, a number M strictly greater than 1 and a
map ¢: 83— R*, defined in accordance with the notations (2.1). Note that
¢ is depending on 8 and M. Let 4: N — N be strictly increasing and set

(2.2) () = {2¥®, k> 1},
Then, for every M > 1,

(2.2) lim p(3(y), M,n)
swan-= +/21og " (loglog n)
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so that, when + grows very fast, the corresponding function ¢ grows
very slowly. Our first result characterizes the law of the iterated loga-
rithm on subsequences in euclidian spaces.

THEOREM 2.1. Let (3, M, ¢) be any triple defined in accerdance with
(2.1), and a sequence X = {X,, i > 1} of i.i.d. random vectors with value
in m-dimensional euclidian space R™. Let B, be the unit ball of R™ and

set

vYn>1, S. X=X+ ...+ X,.
Then,
@2.3) P{C({%, ne §}> - Bm} —1,

if, and only if.
(2.4) Cov (X)) is the identity matrix of R™ and EX, the zero vector of R™

In particular, when m = 1.

: SA(X)  _ 4
(2.5) P{lgg_sgp m = 1} =1,

if, and only if,

(2.6) EX,=0 and EX) =1.
Further
@.7) P{C({V%, neé}) — (-1, 1]} —1.

This characterization is proved in Section 3. Once it is proved for
m = 1, the general case is easily deduced from the work of H. Finkelstein
[5], for the sufficienty part. The necessity part is obtained by choosing
suitable linear forms f;,€(R™), i,j =1, ---, m, and applying the result
obtained for m = 1 to the sequences {f; (X,), n€3}. The proof of Theo-
rem 2.1, when m = 1, depends essentially of the following intermediate
result:

ProposiTION 2.2. Let (3, M, ¢) be any triple defined in accordance with
2.1) and 6 > 1. Set,

2.8) 8 = {nts, p > 1},
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where [x] is the integer part of x. Then, for any sequence X, X,, --- of
i.i.d. real r.v.’s satisfying EX, =0 and E(X,)' =1,

(2.9) P{limsup S(X) (5)-*/2} ~1.
CEP v o(n)

This is precisely the intermediate step (3.59) in the proof of lemma
3.4; further (2.9) easily implies (2.7). One sees in particular, when § = 1,
that the lower bound in (2.5) is reached on 3*.

Next, we define on the set of strictly increasing sequences of integers,
a functional as follows: let M > 1, then we put:

(2'10) /I(Q) — 1imsup { ].Og ﬁ(i S]: QT [MZ’ M1+l[ + @) }1/2 ‘
0gJ

J—o

It is easily seen that

5 1/2
2.11) A8) = limsup {lqgr%(g;]lf;} ,
I\~

J—oee

where we use the notations (2.1).

Note that 0 < A4(8) <1 and A(8), a priori, depends on the value of
M > 1. This functional will give us the possibility to characterize in a
very simple way the sequences of integers which ‘“‘support” the law of the
iterated logarithm.

THEOREM 2.3. Let X, X;, --- be any sequence of i.i.d. real r.u’s
satisfying EX, =0 and E(X\)* = 1. Then, for any strictly increasing se-
quence of integers 3,

(2.12) P{limsup X+ +X o} >0,
san-w  +/2nloglogn

if, and only if,
(2.13) A3 > 0.

Then, we have,

(2.14) P{limsup X+ -+ X /l(é)} —1.
san-= 4/2nloglogn

From (2.14), follows that A(3) does actually not depend on the value of
M > 1. This result takes a very simple form when the sequence 3 is of
the type defined in (2.2).

https://doi.org/10.1017/50027763000003007 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003007

70 MICHEL WEBER

CoroLLARY 2.4. Let X,, X;, - -+ be a sequence of i.i.d. r.v.’s satisfying
EX, = 0 and E(X\)) = 1. Then, for any strictly increasing map : N — N,

. X+ -4+ X . log m 1/2
2.15 P{l : vl [__-_] }: 1,
(2.15) s(lqglssnl—l»g v2nloglogn tsup log (m)

where the sequence 3(\) is defined in (2.2).

In our next approach, we collect some easy properties of the func-
tional A(-). We set for any integer r > 1, « > 0 and any increasing
sequence of integers 3,

P8 ={nl,nes and P,= P,(N),

22 = {2", nes},

W ={pn+ - +n,Vi=1 ---rn,e8},
a8 = {[an], n € 8}.

(2.16)

Lemma 2.5. The following properties hold for any « > 0 and any
increasing sequence of integers 3,

a) Aad) = A(PL3) = A(3),

b) A2 = A2,

¢c) if 3, ={ni,k>1}, i = 1,2 satisfy
(2.16") 0 < liminf n}/n; < limsup n;/n; < oo,

k— oo k—oo

then, A(8,) = A(3y).

We notice that b) expresses the fact that A(-) does actually not depend
of the number M > 1 used in its definition; further a) follows easily from
b). As for c), since there are constants 0 < C, < C, < o, such that for
all &,

C, < nmifni < Gy,

we therefore have #{i < n: 3,N[M*, M [+ @} <inf{p: M* < C,M* =1}
for all n, and this easily leads to A(3,) < 4(3,), which implies ¢) by sym-
metry.

Let now & = {£,, n > 1} be an increasing sequence of integer valued
r.v.’s such that

(2.17) P{lim_fk_ - 1} 1,

koo Ty

for some increasing sequence 3 = {n,, k& > 1}.
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From the previous lemma, one deduces
(2.18) P{A{sn, n = 1) = A} = 1.
Therefore, putting together Theorem 2.3 and (2.18) leads to

CoROLLARY 2.6. Let 3 = {n,, k > 1} be an increasing sequence of inte-
gers and an increasing sequence & = {&,, k> 1} of integer valued r..s
related to 3 by (2.17). Then, for any sequence X,, X,, - - - of i.i.d. real r.v.’s
with EX, = 0, E(X,)* = 1, which is independent of the sequence &, one has

2.19) Pllimsup 2 X A@)} = 1.
k- /2n, loglog n,
The next corollary establishes some relation between the law of the
iterated logarithm and the classical Waring’s problem in additive number
theory, (see e.g. [15], Chapter I).

CoROLLARY 2.7. Let r,q be two positive integers. For any sequence
X, X, -+ of iid. real r.v’s satisfying EX, = 0 and E(X))’ = 1,

. X+ -+ X
2.20 P{hms Xt o+ X
(2:20 21,5,,97&2 v/2nloglog n
[log#{n= i+ -+ izéN}]‘”} =1

= limsup
log N

N—oo

where we use the notation (2.16).

This raises the following question: to determine the asymptotic be-
havior of

{(X, + --- + X,)/¥2nloglogn, ne2}
with respect to those of
(X, + - + X,)/v2nloglogn, ne2%.

Indeed, the fundamental aspect of the Waring’s problem being solved
(see again [15]), we know that

Vq integer, 3r = r(q) < o such that P{” = N,

in other words each sequence P, defines a natural basis of the integers.
For instance, if ¢ = 2

P§4)=N’
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so that,

(2.20a) P{limsup X+ A X (2)”/2} =1,
psn- ¥ 2nloglogn

whereas,

(2.20b) P{limsup X+ -+ X 1} =1.
P onace +/2nloglogn

We thus can wonder what becomes (2-20) when indexing the partials
sums on PP or P{®. We have not been able to answer this question.
The problem solved by Theorem 2.3 extends immediately: let (3, M, ¢) be
a triple defined in accordance with (2.1); characterize all the subsequences,
3, C 3, such that

(2.21) P{O <limsup Xt + X 1} >0,
P T o)

for at least one sequence X, X,, --- of i.i.d. real r,v.’s satisfying EX, = 0,
E(X))! = 1. Put,

(2‘22) /1(?5, M, gl) — limsup [ lOg‘ ﬁ{l. S j.: 51 ﬂ [Ml’ M‘i+l[¢ @} ]1/2 )
log#{i <j: 3N [M' M =+g}

joeo
We have the following characterization

THEOREM 2.8. Let (3, M, ¢) be any triple defined in accordance with
the notation (2.1). Then, for any sequence X, X,, --- of i.i.d. real r.v.’s
EX, =0, E(X))* = 1, and any subsequence 3, C 3,

: }(1 + fre + Xn — —
(2.23) P{lgn%sip 7 o) = A(3, M, él)} 1.

This theorem is proved in Section 3. Its proof as well as proof of Theo-
rem 2.3, depends essentially of the Theorem 3.3.

Fix now a triple (3, M, ¢) according to the notation (2.1) with 8 =
{n, k > 1}, as well as a sequence X;, X;, - -+ of i.i.d. real r.v.’s satisfying
EX =0, E(X)) =1. Let 5y,eC([0,1]), N> 1, be obtained by linearly
interpolating the partial sums

Snk:Xl"i' Tt +Xn;¢a

at points n,/ny, 1 < k < N. Thus, (with the convention S, = 0)
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Mgy — Ny Ngyr — Ny

Vie [0, 1], ny(t) = EC_“@_] [M]
o0 { el0.1 70 = 8.1+ + Sue, :
if ne < tny < ness

We put,

(2.25) {Kx = {f(t) = L g(w)du: L gl (wdu < 1} ,
K,={f) =t ece[-1,1]}.

The next result states a law of the iterated logarithm in the sense of V.
Strassen [12], for subsequences.

THEOREM 2.9. Let (3, M, ¢) be any triple defined in accordance with

(2.1), and a sequence X,, X,, - -+ of i.i.d. real r.v.’s satisfying EX, = 0 and
EX) =1

a) if lim,_. ny/n.,, = 1, then

(2.26) P{}lim dist (pu/v/ny plny), K\) = 0} = 1,
and
2.27) Plo({ o, N2 )=k} =1.
{«/ ny ¢(ny)
b) if lim,_ .. ne/n.., = 0, then (2.26) and (2.27) hold with K, instead
of K.

This theorem is proved in Section 4. It is also to be connected with
Theorem 4.3. Theorem 2.1 together with (2.2") show that in euclidian
spaces, the partial sums of ij.d. r.v.’s, when indexed on subsequences,
can grow as slow as we want, it is enough to choose a subsequence of
type defined in (2.2) with a function + that grows very fast. The aim
of our next statement is to show that the same property can happen in
infinite dimensional spaces.

TuroreM 2.10. Let (T,0) be a compact topological space. Assume
there exists a sample continuous gaussian process G = {G(w, t), v € 2, te T}
and set

Vs, te T, o(s, t) = [E[G(s) — GOT1".

Let Y = {Y(w,t), we @, te T} be a B-separable random function satisfying
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Y(s) — Y() | 3
(2.28) E sup {]W (5, )eT® T} < oo,
(2.29) VieT, EY(®)=0 and EY¥t)< oo.

Let (3, M, ¢) be any triple defined in accordance with (2.1) and a sequence
Y, Y, -+ of independent copies of Y. Then,

(2.30) P{{ Y, _;_ '(“}; Y, , neé} is relatively compact in Q(T)} =1,
n o(n.

In other words, the random function Y satisfies the compact law of the
iterated logarithm in C(T) for any subsequence 8.

This result is proved in Section 5.

§3. Characterization of the law of the iterated logarithm on
subsequences

Let us denote W = {W(t), 0 <t < oo} the usual brownian motion.
In accordance with the notations (2.1), let also (3, M, ¢) be a triple in
which 8 is a strictly increasing sequence of integers, M > 1 and ¢ defined
by (2.1). Set,
(3.1) C(M) = median (sup {W@®)/V t, 1 <t < M}).

Lemma 3.1. For any triple (3, M, ¢),

(3.2) P{limsup W(n)/v/n — o(n) < C(M)} = 1.
Furthermore,
(3.2) P{liﬁranglip Wn)vn en) <1} =1.

Proof. Fix ¢ > 0 and set,
(33) vp=>1,
A, = {sup(WOIV t, te3NL,) > v2log(p + 2) + C(M) + ¢}
By applying Borell’s inequality [1], and letting (x) = P{N(0, 1) > x},
(3.9) Vp>1,  P{A} < ¥(v2log(p + 2) + o),
so that, P{A,, pio0.}=0. Q.E.D.

Lemma 3.2. For any triple (3, M, ¢) and any sequence Y, Y,, --- of
i.i.d. real r.v.’s satisfying EY, = 0 and E(Y)’ =1,
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(3.5) P{limsup i+ -+ ¥, 1} —1.
NG )

Proof. By virtue of the Skohorod embedding scheme of partial
sums (see e.g. [2], Theorem 13.6, p. 276), it is enough to prove

3.5) P{limsup W+ - +T) 1} —1,
sam-c0 V1 o(n)
where T, T,, --- is a sequence of nonnegative, independent, identically

distributed r.v.’s with ET, = 1. Given h >0, we can choose ¢ large
enough, so that, by virtue of the strong law of large numbers, the event

(3.6) A={sup<!ﬁ£—i——1,ne§,n2q>gh},
n

has a probability greater than 1 — A. Fix ¢ > 0 and set,

D = median{(sup (W@)V O, 1<0< M 1—h<t<1+ h)},
Vp>1, C,={sup(W( i, T)/lv7n, nesNl,)

3.7 > V21 + h)log(p +2) + D + ¢},

Vp>1 C,=C,NA.

On C), one has > 7., T, = on for some e[l — h, 1 4+ h], and n = 6M"»
for some 0 ¢€[1, M]. Thus,

(3.8) C;,CC;)’:{sup(—wi%Mk:p—),lgﬂgM,1——hg(3g1+h)

> VIl + hlog(p +2 + D+ s},
and
P{C!} = P{sup(W(@3)VE,1<0< M, 1—h<s<1+h
> V20 + h)log(p + 2) + D + ¢}

Since sup {E(W(@3)[v 0 ), 1<0<M, 1 —h<d<1+ h} =1+ h, Borell’s
inequality again implies,

(3.9) P{C}} < ¥W(W2Iog(p + 2) + ¢[V1 + h).
Therefore,

(3.10) P{C}, pio}=0,

and thus,
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P{limsup~w <1+ h} >1—nh.
e 4/ o(n,

Since h is arbitrary, we finally obtain,

(3.11) P {timsup WiaT) 1} =1. QE.D.
son-e /()
Unlike the previous results, the proof of the next theorem involves
a far more important work.

TueoreM 3.3. Let (3, M, ¢) be any triple defined in accordance with
(2.1). Let also X = {X,, i > 1} be any sequence of i.i.d. real r.v.’s satisfy-
ing EX, =0 and E(X)))=1. Fixany 0<p<1 and 0 <5p<1-—p and
let

{é(p, X)={nes: X, + - + X, > /7 o(n)},
B12 a7 X)=(nes: X+ - + X, > pyT o(n) and
o(n) > A(8)v'2yloglog n} .

Then
(3.13) P{#(3(p, X)) = o} =1,
and
3.13 P!l ! =1;=1.
(3.13) {limeup 575 — 1)
Further
(3.14) P{A(3(p, 9, X)) > ABV1 — o} =1,
and
. X+ -+ X

3.15 P!l ! o= AB) =1.
(3.15) { it v2nloglog n ( )}

Proof.

Step 1. By virtue of the Skohorod embedding scheme for partial
sums, it is enough to prove the theorem when we replace X; + - - + X,
by W(Ty + --- + T,),n>1, where T}, T, - - - is a sequence of i.i.d. non-
negative r.v.’s with ET, = 1. Let h, 4, p and p, be fixed in 10, 1[ with
00 + \/ 7; < 0,
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(3.16) e(h) = median {sup (W@ — W(Q)|, 1 —h <6 <1+ h)},

and for each integer p > 1,

&, = e(h) + p/'h + v/2hlog(p + 2),

A, ={3ne[M”, M*"[N3: X, + - + X, > oo/ 0(n)},
={Xi+ - +Xy> pV2n¥Tog (p + 2)},

-‘A; = {inf(W(anp)‘/np’ 1-h<60<1+h)2> Po~/2log(l) + 2)},

Ay = {(Wnp)Vni > pv2log (p + 2)},

Ay = {sup(W(bn}) — Wn)|/Vnf, 1 —h <6< 14 h) <e¢),

(3.17)

and choose g large enough so that, by virtue of the strong law of large
numbers, the event

(3.18) A={sup<)-z?=-—’-;—T’l—1‘,n2q),<_h},

has a probability greater than 1 — A.
Observe now, for any m, large enough and any m > m,,

(3.18/) Zl=mo Ak > Zp mo A“ ’
> Zp moI IA ’
> ZP mo 'IA ’
(3.19) > Do m(I I(A;,“)c)]‘IA-
Suppose now,
(3.20) 2opm P{(A])} < oo
Then,

(3.21) P{am, < 001 Vm > mo, Xigmy Ly = 2 5em Lyl = 1.

By applying the classical Paley-Zygmund inequality for nonnegative square
integrable r.v.’s: P{X > 2EX} > [1 — 2[EX]*/E(X)*, 0 <2< 1, one has
(3.22) P e Ly = 2 250 P{ATH

P{A}
2 [1 —_ 2]2 [,, P=ne 7 77
p-mo P{A7} + qu w PLAY N A7}

Further, suppose,

(38.23) for any 0 < h <1, there exists m, = my(h) < oo, such that for
every m > m,
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2 P{ATN AT} < (1 + B 205m, P{AL} + (X5-m, P{ATYT,

Mo P, g <M
P#q
and

(3.24) for any p, €lp, 1[, there exists m, = my(p) < oo, and m, = m,(m,, p,)
< oo, such that for every m > sup (m,, m,),

e PAL}Y > mi=H.
Then, putting together (3.19), (3.20), (3.21), (3.22), (3.23) and (3.24) leads to

(3.25) for any strictly increasing sequence of integers & and any 0 < p, <
01 < 1,

P{3 ol > m-*, me&, mio)=1.

This is our first step. We therefore must show (3.20), (3.23) and (3.24).
We first prove (3.20). By using Borell’s inequality,

(38.26) Vp=>1, P{(A})}
< P{sup(|W(0n¥) — WnH|VnF, 1 —h<6<1) > ¢}
+ P{sup (| W(0n¥) — WnH|/vnX 1 <0 <1+ h) > ¢},
< 2y([e, — WV R),
< 29(v2log(p + 2) + 1) .
Therefore, by applying Borel-Cantelli lemma, leads to (3.20). In order to

obtain (3.23), we need the following classical estimate on gaussian distri-
butions, (see e.g. [3], p. 269-270).

LEmMmA 3.4. Let U, V be jointly gaussian real r.v.’s satisfying EU* =
EV:=1 EU=EV =0, EUV =r and let ¢ > 0.
a) for any x> 0, y > 0 such that rxy < e,

P{U> x, V> y} < c(e)P{U > x}P{V >y},

where lim,_,c(e) = 1;
b) for any a >0, if r >0,

. 17
P{inf(U, V) > a} < P{U > a}«!»(a Lor ) .

Let 0 < a < p(1 — M~*)/2 be fixed and suppose first
a) m<p<qg<p+p,
then by Lemma 3.4,
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(3.27) P{A) N A} < P{AWA(ovV A — M) Tog(p + 2)),
since [W(n ) W(ng )] < M'-e-mr < pVE ifg>p+1.
Vn¥ v/n¥
Thus,
P{A] N A/} < P{AN(p + 2)-rra-d71mn
so that,
(329 % P{A}N A < PN + 21re-n o 4 1),

p<q<p+p*

< (1 + hP{A}},

once m, is sufficiently large.
b) mi<p<p+p <gq.

Fix eele, 1[. Then assuming m, large enough, one has ¢ — p > q*, so
that

(3.29) sup [go(np)go(n e | Wé”p)?/’(”; )} p>my q>p+p

< 2sup [((logp + 2)(ogq + 2)M*~“-P)2 p > m, q > p + p°],
< 2sup((logq + 2)M“-" g > m,].

By virtue of Lemma 3.4, this one leads to
(3.30) P{A7 N A}} < (1 + h)P{A]}P{A},

once m, is sufficiently large, that we suppose; thus (3.23) is now establi-
shed. As for (3.24), fix 1> p” > p’ > p. For m, large enough,

177 1 -p2
831y >, PA} > —— ~/2 > e SRERPG) ey ey [p+ 2],

= Zp mo p+2] (p)z,
2> {lm + 317" — [m, + 2]'"“"*}/[1 — ()],
> mi-e"?
once m > m;, = my(my, o/, p”'). Hence (3.24) holds and consequently our

first step, which is (3.25) is now established. Letting & = N and p, tending
to 1 in (3.25) leads to (3.13").

Step 2. In this step we prove (38.14). Obviously, there is no loss
when assuming 4(8) > 0. Fix 0 < ¢ < 4(3), and set

(3.32) 8 ={meN: k, < m"}.
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Since A(8)* = limsup [log m)]/[log k,] > &,
(3.33) $(5) = 0.

Fix also 0 < <1 — pi. Then, according to (3.25), with probability one,
there are infinitely many integers m € &, such that,

(3.34) A,, occurs for at least m!~*1 — m" integers p in the interval [m?, m],
since, one has

Z IAkp S m” + Z IAkp .

1<p<m miI<psm

For such integers, by definition of A, , one has

S.(X) = po/ 7 o(n) for some nesN I ,
and

o(n) = v2log(p + 2).
But p > m?, n < M**' < M**! and &, < m""; hence

log (p +2) > log [2 + (%)5%] ’

> [loglog nlé'y’,

for any 0 <y <3, once n is sufficiently large, namely, once m is large
enough. Thus, we have

(3.35) o(n) > v/26" loglogn .

On the whole, with probability one, there are infinitely many integers
m such that

(3.36) {there exists at least m!~®?" — m” integers p € [m", m] such that
' S.(X) > pw/ 7 o(n) and p(n) > +/25'7 loglog n for some ne3N I,
Letting &'y = A*(3)y”, gives
(8.37) P{ > Lspprmnng =m™" —m’, me&d, mio}=1.
1<psm

Since

Z I{a(pm",XmIk,,) = Z I{s(;:o,r,",X)n[Mi,Mm[),
1<p<m 1<i<km

(3.37) together with the definition of A(3) imply

(3.38) P{A(3(00, 7", X)) > V1 — (o) 43} = 1.
This one easily establishes (3.14).
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Step 3. We now prove (3.15). Let X' = {X!, n>1},i= 1,2, be two
independent copies of the sequence X = {X,, n > 1}, and define

(3.39) o =max{pVl =g, 0<p<1}=1/2.

From (3.14) and (3.39),

(3.40) limsup - =m0l SuX) - > max [ liminf — —_af—S"QQ ~~]
FEY ‘/27;, loglog n 02523 ” #(p,7, X) 3N «/2n loglog n

= (1/2)4(3),

almost surely. This is the first step. We now apply (3.40) and (8.14)
simultaneously. We first observe, for every 0 < a <1,

(3.41) limsup S:@X' + X*V1— @) & pmayp Sa@X' + X1 —a)
o v2nloglog n o XD IR v2nloglog n

> [ liminf ‘é_@:]vi )
4(p, 7, X2)3n—2 x/2n loglog n

. S.(XY) ]
lims — ],
+ a[ﬁ(mmX?)ngL)—»w v2nloglogn

almost surely, and thus
(3.42) > [ﬁ‘—" @ovn) + S V1 —"‘p‘z]A(g),

by virtue of (3.40) (and 3.14) since X' and X* are independent. We put

(3.43) Vn>1,
¢, =max{[pvl — & +ac, W1 — 05 0<p<1, 0<a<1}

From (3.42), assuming that X is gaussian,

(3.44) P{limsup _SX) > e, A(;})} =1,
san-»  +/2nloglogn

and, by repeating the same argument,

. S.(X)
3.45 P{l _ X))
(3.45) e o loglog n

> sup (cp)/l(é)} =1.

Now, the lower bound in (3.25) will be deduced from the study of the
sequence {c,, n > 1}. It is easy to check that the maximum of

@pnl@) = (V1 — & + ac, W1 — o*

is reached at the value
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alp, n) = ¢, s/VE' + (Coy)

and

falo) = @,.a(alp, n)) = V[1 — p’ll(ca-1)* + £].

Further, f.(-) has unique maximum on [0,1] at the value p(n) =

V1 = (c,-1)/2. Its corresponding value defines ¢, and finally, one has
(3.46) vn>1, ¢, =1+ (c.-)12.

It is now easy to see that ¢, increases to 1 when n tends to infinity.
This gives the lower bound in (3.15) when X is gaussian.

We now must prove this in general. First, it is quite clear that
A(8) = A(8%). Replacing 3 by §*, our result becomes

3.47 P{lims :
(8.47) Tt Y 2n* loglog n¥

> A(g)} ~1.

By virtue of the Skohorod embedding scheme and (3.18), for any integer
pand 0 <A <1,
(348) P{AN{W(ZE T) — Wn)|/vnj > v2hloglognf + e(h) + v/ R}
< Plsup(W(@) — WD, 1 -h<0<1+h)
> v2hloglognf + «(h) + pV' R},
< 2y(v/'2loglog n¥ + p), (by applying Borell’s inequality),
< 2y(v/2log [plog M)] + p, (since n} > M* > M?).

Therefore, by applying Borel-Cantelli lemma and letting 4 tend to O,

WS T) — W(nd)|
3.49 Plim ! PE =0 =1
(3.49) {tim Vent Toglog nt J

Putting together (3.47) and (3.49) leads to

. Sy (X)
3.50 P!l = > A, =1,
(3.50) {11;15;1 P V2n¥loglogn¥ ~— ()}

which produces the lower bound in (3.15).
We now turn to the upper bound of (3.15). Set,

. S.(X)
3.51 LX)=1 S ) ol —
35D X) i v2nloglog n

By 0-1 law, L(X) is a number and there is no loss when assuming L(X)
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> 0. Let 0 <L <L(X) be fixed. Then for some random subsequence
{n;,, j =1} of 38,

(352) vizl, LU<-%
v2n,loglogn,
Define the random sequence of integers {p,, j > 1} such that

(3.53) Vi>1  nmel

pj "

Fix h > 0 arbitrary. By Lemma 3.2, for all large enough J,

(3.54) Su(X) < VA + Mng(n) = ¥+ h)n2log (p, + 2),
so that,
(3.55) v<|[18Lt D p|",
loglog n;
< [t Plos(r, + 2],
— L logl(log M)k, ]
< [A+MWlog{2 + 320, M)}]‘”_
—L log [(log M)k, ]
Therefore,
(3.56) L' < VT Filimsup | 108 2805 M,
oo logp

Letting L’ tend to L and A tend to 0 gives the conclusion. Thus (3.15)
is proved, and the proof of the Theorem 3.3 is now complete. Q.E.D.

The first part of the above proof is very classical in the study of
upper or lower classes of gaussian sequences; part 2 and part 3 are the
original parts of the proof.

LeEmMmA 3.5. For any triple (3, M, ¢) defined in accordance with (2.1)
and any sequence X = {X,,i > 1} of i.i.d. real r.v.’s satisfying EX, =0
and E(X))" < oo,

(357  P{CUS.X)/VT ¢(n), nesh) = [-VEX), VEX)} = 1.

Proof. The proof is very simple. First, by homogeneity there is no
loss when assuming E(X))* = 1. Then, let 6 > 1 be fixed. We associate
to it the following subsequence of 3*,

(3.58) 85 = {nks, p > 1}.
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The corresponding sequence k) = k,(8F), p > 1, trivially satisfies,
(3.58") Vp=>1, k), = ki,

so that the corresponding function ¢; also satisfies

(3.58) vnesk, ofn) = +2log(p + 2) iff nesfN Ly,

and therefore ¢,n) = o(n)v & as n tends to infinity along the sequence
3¥ By applying (3.13'), one obtains

. SAX) il
(3.59) P{l:;:nsip s = } —1.

This one easily implies (3.57). Q.E.D.

The next lemma shows the necessity of the condition E(X))* < oo,
The proof uses a classical argument on truncated r.v.’s.

LEmMMA 3.6. Let (3, M, ¢) be any triple defined in accordance with (2.1).
Let also X = {X,, i > 1} be a sequence of i.i.d. real r.v.’s. Then,

. S(X) | _
(3.60) P{limsup T =1,

if, and only if,
(38.61) EX, =0 and EX)=1.

Proof. There is just the “only if” part of the assertion to prove.
First, assume that X, is a symmetric r.v., and let ¢ > 0 fixed. Then,

’
X1 = XII(IXllgc) - XII(}X1|>c} ’

has same distribution as X;. Let X' ={X} i>1} be a sequence of
independent copies of X{. By writing (3.60) for X and X’, then using
triangular inequality, one obtains,

(3.62) P(timsup SeXlunz) g9} =1,
LRSS «/ n go(n)
By (3.13),
(3.62) P{limsup MQ)— = ‘/E{Xﬂuxl\sd}} =1,
sonem /T (n)
so that,
(3.62”) E{Xi <y} <1,
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and finally EX? < 1. But, by using again (3.13) and (3.60), this, neces-
sarily implies EX? = 1. If X] is not symmetric, let X’ be an independent
copy of X, and set Y= X — X’. Writing (8.60) for X and X’, and using
triangular inequality, leads to

(3.63) P{hg}zsigp Sy S 2} 1.

Therefore, E[X, — X’ <4, and by Corollary 2 (M. Loeve, Probability
theory, 3? ed., p. 246),

(3.60) E|X, — X} <8,

where pX, denotes a median of X,. This implies E|X,} < co. By apply-
ing (3.13) and (3.60), one obtains

(3.65) EX)=1.

Further, EX, = m < . The centering of X, follows from the strong
law of large numbers, since

n

a.s. m|= lim p—
l I EEYAEY Jn go(n) 33n—o

83n-00

Proof of Theorem 2.1.
a) if m = 1. This is given by (8.18") in Theorem 3.3, Lemmas 3.5 and
3.6.

b) if 1 <m < . The sufficiency results from the proof of Lemma

limsup %(?7) =0. Q.E.D.

2 in [5], in which the sequence of normalization constants {v'2nloglogn,
n > 3} does not matter except the fact that it is needed to control the
case m = 1.

As for the necessity, let f, fi,,, i,j =1, --- m, be linear forms on R™
defined by fi(x) = x%, and f, (x) = x* + &’ for every x = (x', ---,x™) € R™
By applying Lemma 3.5 to the sequences {f; (S.(X)), n€s}, i,j =1, - -m,
one obtains

(3.66) vi,j=1---m, Ef (X)=E[Xi+ X[ =2,
Ef(X) = EIX{" =1,
Ef(X) = EX; =0,

which easily allows to conclude. Q.E.D.

Proof of Theorem 2.3. As far as this is just the assertion (3.15) of
Theorem 3.3, it is already proved. Q.E.D.
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Proof of Theorem 2.8.
a) Lower bound. Fix 0 < p, < p, < 1, and set,
vp Z 17 k; == k;(gl; M): (kp = kp(g’ M)) s
(3.67) VYnes, o(n) = ¢(3,, M, n), (using notations (2.1)),
Vp>1, A,={3neszN[M? M*'[ :S(X) = p/ 1 ¢n(n)}.

Since &, is a subsequence of 3, then {k,, p > 1} is a subsequence of {%,,
p =1}, and

(3.68) Vp=>1, k= ke,
where ¢: N— N is strictly increasing (c(p) > p, for every p).
There is no loss when assuming 4(3, M, 3) > 0. Observe that

. logm 2
3.69) A3 M, 3) =1 [ : A ] ,
(869 A ) = Hmsup | < B SN, M2 5)

= limsup [M] v
m-w Llogec(myd

Fix 0 <o < 43, M, 3,), and set
g ={meN: c(m) < m"}.
Then #(&) = oo. Further, by (3.25)
(3.70) P> Ly >m' =% mek, mio}=1.

Fix 0 <5p<1—(p). With probability one, there are infinitely many
m e 5 such that

(8.71) Ay occurs for at least m'~?* — m” integers p € [m”, m].
For these integers one has
S.(X) = oo/ 1 ¢o(n)  for some ne s N Ly(M),
and o(n) = V2log(p + 2).
But m" <p <m, and M* = M*» < n < M%*' = M*>*! g0 that

o(n) = v2log(c(p) + 2) < v2log(c(m) + 2).

Thus,

(3.72) o(n) > v2log (2 + m7),
> v2log (2 + c(m)™),
> oy o(n),
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for any 0 <y’ <7, once n is large enough. Therefore, with probability
one, there are infinitely many m € 5 such that
there exist at least m!~“v* — m” integers p € [m?, m] for which
S.(X) > o/ o(n) and ¢(n) > vy p(n) for some ne 5N 1y .
By arguing along the lines (3.36)-(3.38), one obtains for,
(373) 31(‘00, 77”9 X)
={nes: Su«X) = oW/ Sl’t(n) and ¢,(n) > \/W M3, M, g1)‘/’(”’)} s
P{A(ga Ma g1(100, 7]”5 X)) —>— «/1 - (91)2 A(gs M) gl)} = 1 )
where we put &y = 5”48, M, 3,). Next, we conclude by following the

same scheme of proof as in step 3 of the proof of Theorem 3.3.
b) Upper bound. Again there is no loss when assuming that

L(X) = limsup —22%) > ¢
w7 p(n)
Fix 0 < L' < L(X), and let A~ > 0. Then for some random subsequence
{n;, j =1} of g,
Viz1 L <S,XWEen).

One defines two random sequences of integers {q,, j > 1} and {p, j =1}
such that

vji>1, n, eIk;,j(M)ﬂquj(M).
By Lemma 3.2,

S.(X) < (1 + h)2n,log(p, + 2),

for all j large enough, and ¢(n;) = v2log(q, + 2). Thus,

p log (p; + 2)]"‘Z
L <@+ k|ls@ +2 1"
<@+ | psh e

for all j large enough. This one easily leads to the result by letting L’
tend to L(X) and A tend to 0. Q.E.D.

§ 4. Strassen’s laws of the iterated on subsequences

First, we recall the following lemma due to J. Kuelbs ([9], p. 247-248).

LemmA 4.1. 1) Let B a separable Banach space. Let {Y,, k> 1} be
a sequence of B-valued random variables and assume p is a mean zero
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Gaussian measure on B. Let K denote the unit ball of the reproducing
Hilbert space H, of p. If,
4.1 L(Y),p)=0b (k=1),

where > 7, b, < oo, and L is the Prohorov metric for probability measures
on (B,|-[). Then,

(4.2) P{w: lim d(%%, K) - o} —1,

where d(x, A) = inf {||x — y|, y € AL
2) If (Y,) = p for every k, and

“3) lim E{E[f(Y)| Ef) =0,
k—m—co
for every fe B* where F,, = F{Y,, k < m}; then
Y. (w)
44 P{ :C({_ﬂ_—, 21}):[{ —1.
“4 ¢ v2logn " }
Let W be a 1-dimensional brownian motion and define for every
integer n
(45) L= o<,
Vn

Clearly each {{.(¢), 0 < ¢t <1} is a brownian motion on [0, 1] and it in-
duces a Wiener measure ¢ on C([0, 1]). Further, it is well known that
the reproducing kernel Hilbert space of yx is

H = {fe C([0, 1): £(t) = _[:g(u)du where f g(s)ds < oo} ,
with inner product {f;, f;) = ﬁ fiw)fu)du and hence

K= {fe C([0, 1): f(§) = J:g(u)du where f S (wdu < 1} .

Let now (3, M, ¢) be defined in accordance with (2.1) and set
(4'5,) Vp 2 1’ C§ = Cn; .

LemMmA 4.2. For any triple (3, M, ¢)

2) P{}ilfd< «/210522 ;) K) = 0} =1
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b) P{C{«/zlo;iwrz)’pzl})zK}:l'

Proof. We mimic Kuelbs’s proof in [9] p. 249-251. Since L(({}), 1) =0,
a) is easily deduced from the first part of Lemma 4.1. To prove b) if

fe C*([0, 1]) with f(x) = j : x()dF(2), for x e C([0, 1]), then

@8 B 5} = B[ 0 apa) E,),

P+q

_E { rp/n;m E}Mdp(t) + f W_(ﬁi';ﬂidF(t) | Ep}

Mg g VN

"
B/ +q W(nm_q

- Wd apy + [ W0 apg).

¥
0 ‘/ Nyig "5/ +q Npiq

Hence,

E{E[fCHIE]) =

j»n,,/nm.q J’"p/"p-fq mln [n;;,+qs np+qt]dF(S)dF(t)
0 0

Nysq
2

k
Nprq

+ ng (J“ dF (t))2
3 s
n 5/ 4q

p+aq

_|_

/7 rq 1 . % %
0 f . min[nf, n, AdF)AF ()
"p/"p+aq

and (4.3) holds since lim,.... sup,s, n}/n¥, = 0. Thus, the second part of
Lemma 4.1 gives b). Q.E.D.

(4.6") Lemma 4.2 then holds for any subsequence 3 C 3 such that
#(&NI,) =1, for every p. This simple observation will be afterwards
convenient.

TueoreM 4.3. For any triple (3, M, ¢) defined in accordance with
(2.1),

a) P{hm d(%) K)=0}=1,

33N—o n

B P{C({ o(n)’ }) K}zl'

Proof. Fix h > 0 and define

Vp>1, J(& ky k) =3N[M*1 + (k — Dh), M**(1 + kR,
where ke 4(3, p) and
4.7 Vp>1, 48,p)={1<j<(M—1D/h: J3 k,J)) + 0},
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B = 4E{sup{|W(r), 1 <r < M}},
Vp>1, Vked(3 p), n}, is the first point of J(3, %k, k),
Vp>1, Vked(3p), CGhi=0%,-

Fix ke[l1, (M — 1)/h] and set for each p such that ke 4(3, p),
(4.8)  AL={3n>J5 k, k): (|8, — Chill = V2R 1og (p + 2) + 26}
Observe now, for neJ(3, k,, k) and 0 <6 < 1,

E Wno) W(@H) 2
J nke

(4.9) = 20(1 — nj/n),
< 2h,
and,

(4'10) E{SUp {”Cn - C:,k”’ ne J(g, kp; k)}}
< E{sup{||L,], n = M*2, 1 <2< MY} + E{||5.l}
< B2.

By applying Borell’s inequality,

(4.11) Vp>1,  P{A} < 2y(v2log(p + 2) + BV h),

so that, for each ke[l, (M — 1)/A],

(412) P{Ened(3k, k): |C, — Tl > v2hIog(p + 2) + 28}, p i.0} = 0.

Therefore,

(4.13) P{lixﬁlp sup {”Ls;‘(.rj_?‘_' ned@, ky, k)} < JF} —1.

But Lemma 4.2 and remark (4.6") imply,

(414) Vke[1,(M — 1)/h], P{})i_li} d(Chi/v2log (p + 2), K) = 0} = 1,
and,

(4.15) Vke[l, (M= D/h], P{C{C}:/v2log(p +2), p>1) = K} =1.
Combining (4.13) with (4.14), then letting 2 tend to 0

(4.16) P{lim d(Z./p(n), K) = 0} = 1.

Combining (4.15) with (4.16),
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(4.17) P{C{C.l¢p(n), ned}) =K} =1. Q.E.D.
Lemma 4.4. For any triple (3, M, ¢) defined in accordance with (2.1)

such that

(4.19) lkim =1, (G ={m, k>1}),

and for any sequence X = {X,, i > 1} of i.i.d. real r.v.’s satisfying EX, =0
7)j - C'nj

and E(X,) = 1, one has
j

where 7,, j > 1, is defined in (2.24) relatively to X and 8.

(4.20) P{lim

J—oo

Proof. By virtue of the Skohorod embedding scheme for partial sums,
it is enough to prove the Lemma 4.4 when replacing X, (i > 1), by

Xi=WT+ - +T)—WT + - +T.) (=1,

where W is a 1-dimensional brownian motion and 7T, T,, - -- a sequence
of nonnegative i.i.d. r.v.’s satisfying ET, = 1. Define, with the convention
ny = 0,

4.21) v8>0, if n, <6< n,,, for some k>0,

70) = Sull + (e — Oy — 1)l + 8o, [0 — 1) (M — ],
where S,, = >, X, (k> 1).

Then,
(4'22) lﬁ(t) - W(t)l < max {Ignk - W(t)l, lgn};+1 - W(t)!},

if n, <t<ne,. Fix h> 0. By the strong law of large numbers as well
as assumption (4.19), we can choose an integer g large enough in order

that

A = {sup{|(C# T/ — 1|, B > g} < A},
satisfies
(4.23) P{A}>1—h,

and further,
(4.24) sup {[ne.. — ndlne, B> q} < h.
For we A, k>q and n, <t < ng,yy
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Set

If 0 2 nq/n’j) j 2 q’
W(s) — W(bn,)
vn;

gmax{ W(“nf)x/—_w(ﬁnf)‘, 0<0<1,|u —elgzh}.
n;

Let p be fixed and n, e I,,N3; one has on A,

,|an,—s[g2hn,.,ogag1},

740) — —W:/LZ_'JQ‘ < max{

4.27)  sup{l7,0) — £., (O], n,/n; <6 <1}
< sup {| W(M*»ar) — W(M*07)||M* ",
1<r<M0<60<1,10—71|<2h},

and on £,

(4.28) sup{|7,0) — &, 0], 0 < 6 < ny/nj}
< M—"p/ﬁ'[max{[S"j[, J< g+ 1} + max{{W(s)|, 0 < s < nyll,

so that
(4.30) P{lim sup{7,0) — .0, 0< 0 < nyfn} =0} = 1.
Set
m = median {sup {| W(wv) — Wv)|, 1<v< M, 0<6<L1,
(4.31) 10 — u| < 2h}},

Vp>1, ¢,=+2hlog(p + 2) + 2m,
Vp>1, A,={sup{{,0) — L.,0), n,el, nfn, <0 <1} > o).

By using Borell’s inequality again,
(4.32) P{A,N A} < 2y(v2Iog (p + 2) + m/v2h),
so that, P{A,N A, p i.0.} =0, and combining this with (4.23),

(4.33)  P{limsup sup {[7,00) — Cu(@)lfp(ny), nfn, < 0 < 1} < VER} = 1.

From (4.30) and (4.33),

(4.34) Plimsup |7, — L, llfp(n,) < V2h} > 1 — h.
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This achieves the proof by letting A tend to 0. Q.E.D.

As an easy consequence, one has, by putting together Lemma 4.4
and Theorem 4.3

CoroLLARY 4.5. For any triple (3, M, ¢) be defined in accordance with
(2.1), such that (4.19) holds, and for any sequence X = {X,, i > 1} of i.i.d.
real r.v.’s satisfying EX, = 0 and E(X,)* = 1, one has

(435) P{lim d(y,/o(n), K) = 0} = 1,
and
(4.36) P{C{nlg(n), j = 1) = K} = 1.

Proof of Theorem 2.9.
a) if limn,/n.,, = 1. This is already proved by Corollary 4.5.
k—oo

b) if lim n,/n,,, = 0. This is easily deduced from
koo

P{limsup(——LSﬁL-, 1<k<N-— 1) =0} =1,
Nooo vy e(ny)

and the fact that the sequence of subdivisions {n./ny, 1 <k < N} tends
to {0, 1}. Q.E.D.

§5. The law of the iterated logarithm on subsequences for random
functions

As explained in Section 2, the main goal of this section is to prove
that the behavior of partial sums of ii.d. r.v.’s taking value in some
infinite dimensional space B, can be as small as we want, like in euclidian
spaces, when indexed on subsequences. This is the aim of the Theorem
2.10, that we are going to prove. We will use the following classical
exponential bound for martingales.

LemMa 5.1. Let M, = >7.d, (n>1), be a real-valued martingale

satisfying

(5.1) vi>1, ldi| < e, a.s.

Then,

(5.2) Vi >0,  P{M,| >t} < 2exp{—t/2[2 7 i}
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Proof of Theorem 2.10. We first assume that Y is a symmetric r.v.
For the clarity we denote (2, &7y, Py) the basic probability space of the
sequence Y, Y,, ---. Let g, g, --- be independent A4(0,1) r.v.’s defined
on another probability space (2., «,, P,). Let also &,¢, --- be inde-
pendent Rademacher r.v.’s defined on a third probability space (2., <., P,).
The corresponding symbols of integration are denoted E,, E, and E,
respectively. We now use an argument due to V.V. Yurinskii [19], which
will be the first tool of the proof. Let F, = ofe, ---, ¢} for every i > 1.

Then
[ 2061 Yeeell — Bl 205 Vil = 2821 d,
where
63 Vizl  di= BTk Yeal) — ERYITE Vel

and thus, |d,| < 2||Y,||, for every i > 1.
By applying Lemma 5.1 conditionally,

(5.4) vt >0, Pe{]HZLl Yie — Es“Z?:l Yieilll > t} s
£
<2 { g

We now need to control E.{||> 7, Ye.}. By using the easy fact that
{g, i > 1} and {|g;|e;, L > 1} are identically distributed, one has by Jensen

inequality,

55 E{I50 Yel) £ B0 T Yl
Further

(5.6) V(s, ) e TOT,  [Eg|2 k-1 8:(Yi(s) — Yi(®)'*[],

<[5 (Yi(s) — Y1,

< ofs, O [208. DI,
where D, D,, --- is a sequence of independent copies of sup {[(Y(s) —
Y(@)/p(s, t), (s,t) e TQT}. Since we have assumed that G is sample con-
tinuous, the classical integrability properties of gaussian processes (see
e.g. [4]), together with Slepian’s lemma (see again [4], Theorem 2.1.2) and
results in [13], imply

(6.7 vn>1,  Ef|23. Yel} < B2 D,
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where the constant B < co only depends on 7 and p and tends to 0 with
diam (7, p), Let ¢ > max (1, ED}) be fixed and

(5.8) A =sup{> 7. Din,n>q}<c},

where we choose ¢ large enough so that, by virtue of the strong law of
large numbers.

(5.9) P{A} > 1)2.
On A, one has, (using (5.7)),
(5.10) sup {[E{| X Yie /W n, n> q} < Be.

Let now (3, M, ¢) be any triple defined according to (2.1). Choose s > 0
such that,

(5.11) Vp>1, svi2nflog(p + 21/M > Bevn¥ + 3vn¥clog(p + 2).
Then, applying Levy’s inequality conditionally to P.,

P, ® P{{sup [|| 25, Yies|[v2nlog (p + 2), ne 3N L] > s}N A}
< 2EAL- P30 Yeeo| > sv2nf log (p + 91/M)},

and by (5.4),

9cn} log (p + 2)

< 4Py{A} exp {—g— log (p + 2)} ,

so that, by using Borel-Cantelli lemma and 0-1 law,

(5.13) Py{sup {w, ne@} < 00} =1,

V1 o(n)
then, by (5.7) and usual conclusion drawn from the inequality of .
Hoffman-Jorgensen [8], p. 164-165.

(5.14) Ey{sup {@(—Q"—, ne é}} < o0,

V' o(n)
We now can drop the assumption of symmetry, by using classical ine-
quality of symmetrization. The conclusion is obtained by applying, as

usual, the closed graph theorem and arguing as along the lines following
(4.13) in [10]. Q.E.D.
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§ 6. Conclusion

In this work, several problems are solved, and in the same time,
some others are raised. One can summarize them as follows:

ProBLEM 1 (CONJECTURE): is any unbounded sequence of integers 3
a natural basis of the integers (i.e. 37 = N for some finite r), if, and
only if, A(2°) > 0?, (assuming 1 € 3).

ProBLEM 2: identify the set of cluster points C({ny/[v 1y ¢(ny)]l, N > 1})
in full generality. A partial answer is brought by the Theorem 2.9.

ProBLEM 3: extend Theorem 2.1 in any Banach space. The recent
characterization of this property when 3 = N [10], reducing it to check
the same property in probability, is certainly a good basis. Nevertheless
the classical condition

E{| X|Floglog || X|}} < oo,

which is needed to satisfy this property, is no longer necessary when
indexing partial sums on subsequences. This brings a serious complica-
tion in order to truncate the r.v.’s, that is a necessary step in the proof
given in [10], since the corresponding condition cannot be expressed in
term of moment of X.
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