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A RIGIDITY THEOREM FOR DISCRETE GROUPS

W E N - H A W CHEN AND JYH-YANG W U

This work considers the discrete subgroups of group of isometries of an Alexandrov
space with a lower curvature bound. By developing the notion of Hausdorff distance
in these groups, a rigidity theorem for the close discrete groups was proved.

1. INTRODUCTION

This investigation studied the discrete subgroups of group of isometries Isom(X) of
an Alexandrov space X with a lower curvature bound. Let (X, d) be a metric space with
metric d. X is an Alexandrov space of curvature ^ k is a complete locally compact length
space satisfying the following Alexandrov convexity (see [1]): If for any geodesic triangles
Apqr in X and Apqr in the complete simply connected space 2-form Ml of constant
curvature k with the same correspondent side lengths (pTg =,p, q, p~j =,pj~r, qyr =,q\r),
then p75 > p, s for any s on the side qr and s on the side qs with qTs = q, Is. Perelman
indicates in [6] that an Alexandrov space with a lower curvature bound is a locally
contractible space.

Let X be one of the standard Euclidean n-space, spherical n-space or hyperbolic
n-space. If G, F c Isom(X) are discrete then it can be shown (see [8]) that X/G is
isometric to X/T if and only if G is conjugate to F in Isom(AT), which means that there
exists $ € Isom(X) such that F = Q^G®. Moreover, for a complete simply connected
Riemannian manifold X with constant sectional curvature, two space forms X/G and
X/T are isometric if and only if G is conjugate to F in Isom(X). In this paper, we
consider a more general Alexandrov space and obtain a similar result. Our approach is
to extend the notion of the classic Hausdorff distance to these discrete groups.

The notion of classic Hausdorff distance dH between subsets of metric spaces can be
found in [5] or [7]. Let (X, d) be a metric space and A, B C X. Define the distance
dist(A, B) between A and B by

) = inf{d(a,6) | a € A, b € B),

B(A,e) = {x£X\d{x,A)<e}
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and the HausdorfF distance between A and B is denned by

dH(A, B) = inf{e | A C B{B,e), B c B(A,e)}.

This idea can be extended to the group of isometries.

DEFINITION: Let (X, d) be a topological manifold with a metric d. Then the dis-
tance d induces a natural pseudometric d on Isom(X) as follows. Given any two isometries
g and 7 in Isorri(A'). The pseudometric d is denned by

d(g,-y) = s\ipd{gz,-yx).
x€X

Moreover, d induces a Hausdorff distance d//(G, F) between two subgroups G and F of
Isom(AT).

Notably, d may not be finite (this is why we call it a pseudometric) but the triangle
inequality for d still holds, and then the HausdorfF distance dn(G, F) between two sub-
groups G and F of Isom(X) can be considered. It will be interesting to investigate the
relationship between the HausdorfF distance dH(G,F) and the group structure of G and
F. Before stating the main result, we first review some phrases in group actions.

A group G is said to act properly on a topological space X if {g € G \ gK n K ^ cf>}
is finite for each compact subset K C X. It is well-known that if G is a discrete subgroup
of Isom(A') then G acts properly on X. G acts freely on X if gx ^ x for every x € X
and every g G G — {e}. G is a cocompact group if there exists a compact set K C X such
that

X = GK = {gx I g e G and x 6 # } .

Let Gz = {g € £ | <7z = x} denote the stabiliser of G at x 6 X and Gx = {gx | g e G}
denote the G-orbit through x.

MA IN THEOREM. Let (X, d) be an Alexandrov space with a iower curvature bound.
Denoted by dn the Hausdorff distance in the group of isometries Isom(A') of X induced
by d. Given a discrete and cocompact subgroup G of Isom(X), there exists e = e(G) > 0
such that if F is another discrete and cocompact subgroup of lsom(X) with dH{G, F) < e,
then G and F are conjugate in the group of homeomorphisms of X.

COROLLARY. This theorem is obviously true for a simply connected Riemannian
manifold with a lower curvature bound since it is an Alexandrov manifold with a lower
curvature bound.

Here are two examples about these spaces. The first example is an application of
Mostow's rigidity theorem (see [8, Chapter 11]).

EXAMPLE 1. Let X be a hyperbolic space with dimension^. X/G and X/T are both
compact oriented space form with constant sectional curvature — 1. The Mostow's rigidity
theorem implies that G and F are conjugate in Isom(X) provided G and F are isomorphic.
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This means that if G, F C Isom(X) are both discrete and cocompact groups acting freely
on X, then G and F are isomorphic implies that there exists $ € Isom(X) such that

Consider a simply connected Riemannian manifolds X with negative curvature. The
first author showed in [2] a rigidity result for the discrete subgroups of Isom(X), which
is in some sense a converse of Example 1.

EXAMPLE 2. Let X be a simply connected Riemannian n-manifold with sectional cur-
vature K satisfying — 1 ^ K < 0, and F C Isom(X) be a discrete and cocompact
subgroup acting freely on X. Denote

NT = {a € Diff(X) \ aTa'1 = F}

to be the normaliser of F in the diffeomorphism group of X. It can be shown in [1] that
for a finite extension G of F (that is, G/T is a finite group) with G C Nr and

sup{d(5x,Fx) | j e G , i e l } ^ 4-(B+4>,

one has G — F. This indicates that if G, F C Isom(X) are both discrete cocompact groups
acting freely on X, then G = F provided G C NT, G/T is finite and dH(G,F) < 4~(n+4).

REMARK. Fukaya and Yamaguchi proved in [4] that the group of isometries of an Alexan-
drove space with a lower curvature bound is in fact a Lie group. Moreover, the structure
of the group of isometries of a given geometric space depends heavily on the geometric
and topological properties of the space itself. For example, Wei showed in [9] that there
are examples of complete manifolds of positive Ricci curvature with nilpotent isometry
groups. Therefore, the main theorem gives an idea to investigate the relationship between
group structure and geometric structure of a Lie group, and is helpful for one to study
the group of isometries.

2. PROOF OF THE MAIN THEOREM

A proof of the main theorem will be presented. Recall some properties about a
discrete and cocompact group G C Isom(X) acting on an Alexandrov space (see [8]).
Let P : X —¥ X/G be the quotient map and B(x, r) denote the open ball centred at x
with radius r. Then for each x (E X with P(x) = 5", the map P induces a homeomorphism
from B(x, r)/Gx onto B(x, r) for all r such that

0 < r ^ ( l /2 )d i s t ( i ,Gx-{x» .

Moreover, P induces an isometry from B(x,r)/Gx onto B(x, r) for all r such that

0 < T ^ (l/4)dist(x,Gx - {x}).
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A point x e X i s called a regular point if Gx = {e} is the trivial group, otherwise x is
called a singular point of X. The set of all regular points of X is a connected, open,
dense subset and then the set of all singular points of X is a closed nowhere dense subset.
A point x = P(x) G X/G is said to be a regular (or singular) point if x is a regular (or
singular) point in X.

The closed Dirichlet domain for a regular point x0 G X is the set

DG(x0) = {uG X \ d(u,x0) ^ d(u,gx0) for all g G G}.

The open interior DG(x0) of DG is called the open Dirichlet domain for the regular orbit
GXQ. Since X = (J gDG(xo), there is a fundamental set FG in X containing xo, which

means that FG meets each orbit in exactly one point, for the action of G satisfying
DG{XQ) C FG C DG(X0). Note that each point in DG(x0) is a regular point and then
gDG(x0) consists of regular points for all g G G. So the set of all singular points of X is
contained in the set

{g(Dc(x0) - D°G(x0)) \ g € G ) .

LEMMA 1. Consider two discrete and cocompact subgroups G and F of Isom(X)
of an Alexandrov space with a lower curvature bound. Let P\ : X —> X/G and P2 : X
->• X/F be the quotient maps. Then dH(X/G,X/T) < e provides dH{G,T) < e.

PROOF: Since the groups G and F are both discrete and cocompact subgroups in
Isom(X), there exist compact subsets DQ and Dr of X containing the same point x0

such that GDG = X and FDr = X. For each i G X the two sets Gx n DG and Tx n DT

are both finite. To prove this lemma, it suffices to show that there exists g G G such that
dH{gDr, DG) < e.

Suppose there were x G DG — Dr such that d(x, gy) ^ e for all g G G and y G Dp-
Since x & Dp, there exist y € Dr and 7 G F such that 73/ = x. This implies that
d{iy,gy) = d(x,gy) ^ £ for all g G G. It contradicts to the assumption that dn{G, F)
<e D

The quotient spaces X/G and X/T can be shown to be compact Alexandrov spaces
with lower curvature bound. Perelman indicates in [6] that there exists e\ = £i(G) > 0
depending only on the group G such that if dH(X/G, X/T) < £y then there exists a
homeomorphism <j> : X/G —¥ X/T, and <j> is also an ei-Hausdorff approximation, which
means that

\d(<l>{xi),<i>{x2j)-d{xi,x2) <£i

for all xi, x2 G X/G. Similar argument also applies to the inverse <f>~1 : X/T —> X/G of

LEMMA 2 . There exists e = e{G) > 0 such that ifdH{G,Y) < e then for each
g G G there is a unique 7 G F such that d(g, 7) < e for the pseudometric d. Moreover, if
gu y2 G G and 7!, 72 G F satisfy d(ffi,71) < £ and d{g2,72) < £ then d(gig2,7^2) < e.
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P R O O F : Denote x0 be a regular point in X, xQ = P\(x0), y0 = <t>{x0), Pi{yo) = Vo

and DQ(X0) be the open Dirichlet domain for x0. The point i 0 can be chosen such that
the open ball B(xo,ro) with

r0 = (1/2) dist(i0 , Gx0 - {xo})

is the largest ball contained in DQ(X0). Here the radius r0 depends on the group G. Let

e = £(G) = min{e, , ( l /10)r 0 }

depending on the group G and d(G,T) < e. Then Pi(B(x0,5e)) is isometric to the ball
B(xo,5e). Since by Lemma 1 0 is an e-Hausdorff approximation and a homeomorphism,

B(yo,3e) C <j>(B{xQ,5e))

and B(yo,3e) consists of regular points. This implies that d(yo,7J/o) > 2e for each
nontrivial 7 € F.

Let 7U 72 € T such that d(g,71) < e and ̂ (5,72) < e. Then d(7i,72) ^ 2e by the
triangle inequality. Denote 7 = 7fx72 and then d(e, 7) ^ 2e. However, d(yo,72/o) > 2e
for each nontrivial 7 € F. Therefore 7 is the identity and then qx =72 . This proves the
first part of Lemma 2.

Moreover, the triangle inequality implies that

, 7l72)

Therefore, by the proof proposed in the first part, 7^2 is the unique element in T with

<%i<?2,7i72) < £• D

It can be shown that the homomorphism 4> : X/G -+ X/T between the quotient

spaces can be lifted to a homeomorphism $ : X —• X.

LEMMA 3 . Suppose that <j> : X/G -* X/T with <j>(x0) = y0 is a homeomorphism

as above. Then there exists a homeomorphism $ : X —¥ X with $(io) = 2/0 such that

the following diagrams commute.

(X,x0) - ^ (X,y0) (X,x0) <Z±- (X,yQ)

(X/G,x0) -^-> (X/T,y0) (X/G,x0) ^ - (X/T,y0)

PROOF: First note that X is a length space and has the property of local con-
tractibility. Then, since <f>: X/G —̂  X/T is a homeomorphism, 4> lifts a homeomorphism
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$! from the open Dirichlet fundamental domain DG(x0) to an open set D° contain-
ing j/o in X- Choose a fixed fundamental set FG with £>G(zo) C F G C DG(X0). For
each x' E FG - DG(x0), there is a sequence {x̂ } in Dc(x0) such that X{ -¥ x' as
i -> oo. Define a new map $2, which extends $1, by $2(2;) = $\(x) if x G DG(x0);
and $2(1') = limi-too ^i(^i)- Set y' = $2(z') and Fr = $2(FG). Then we claim that the
map $2 '• FG -t Fr is a homeomorphism and Fp is a fundamental set for F.

Let {ut} be another sequence in D%{XQ) such that $I(UJ) —> 71/' in X as i —• 00 for
some nontrivial 7 G F with 71/ ^ y'. Without lose of generality, both of the sequences
{$i(xi)} and {$x(ui)} can be assumed to consist of regular points. Let a* denote a
minimal geodesic from xt to u*, /% = $i(ai), a* = Pi(ca) and /3{ = P2(A)- Then <j> maps
Qj homeomorphically to 0{ for each i. However, a,- tends to a point however Pt tends to
a loop. It is impossible. Therefore the map $2 is well-defined. Since FG is a fundamental
set for G, Fr is a fundamental set for F and hence $2 • FG -+ Fp is a homeomorphism.

Next, $2 can be extended to a map $ defined on the whole X. For each x € X
there is a unique g € G such that x G gFG. By Lemma 2, there is a unique 7 € F such
that d{g, 7) < e. So we define the map <& : X -* X by

$(x) = 70 $2 O J " ' ( I ) .

It is clear that <j> is a bijection. Moreover, $ maps homeomorphically the open dense set
{gDG(x0) I 5 G G} in X to the open set {7D? | 7 € F} in X. It can be shown that the
map $ : X —• X is in fact a homeomorphism by the following argument. Let i j £ ^FG
for all i and x̂  -* x" as i —• 00. If x" £ gFG then, by the above argument, we have

$(XJ) = 7 o $2 ° 5-1(ii) ->• 7 o $2 ° ff"1^') = $(x")

as i —• cx>. On the other hand, it suffices to show that if x< G FG for all i, xt -> x"
e~FG - FG and x" G p'FG for some nontrivial g' G G, then $(xi) -> $(x") G F r - F r

and $(x") G 7'FC with d(g', 7') < e.
Let d(g', 7') < e. Then g'~FG D F G ^ 0 if and only if 1~FT n F r # 0. Therefore

$(x") e F r - f t Since $(XJ) G F r for all i, there exists y" G F r - F r such that $(XJ) -> y"
as i —> 00. Moreover,

Hence y" = $(x") and the proof of Lemma 3 is complete.

PROOF OF THE MAIN THEOREM: Denote

$ - i r $ = { $ - l o 7 o $ | 7 G F } .
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Then, for given 7 € F and 1 6 X , one has by Lemma 3 that

Pi o $ - 1 0 7 0 $(1) = <frx o P2 o 7 o $(1)

This shows that $ - 1 0 7 0 $(x) = gxx for some gz € G and <?x depends on the point x.

Note that gx — g for all x € Fa, where d(g, 7) < e. Let i* = <?*£ for gk G G, d(gfc, 7*) < e

and $(1) = y. Then by Lemma 2,

o 7 o $(xfc) =

= 99k(x)

This indicates that for each 7 € F, $ - 1 o 7 o $ e G and then $ - 1 r $ is a subgroup of G.
Also, $G$ - 1 C F is a subgroup of F. Therefore,

G = S - ^ G S " ^ C $ - ! F $ C G.

Hence $ - 1 F $ = G and the proof of the main theorem is complete. D

REMARK. The approach can apply to manifolds with lower Ricci curvature bound. Con-
sider a discrete and cocompact subgroup G of Isom(X) acting freely on a simply connect
Riemannian n-manifold with Ricci curvature Ricx ^ — (n — 1). Cheeger and Colding
proposed in ([3, Theorem A.I.2]) that compact Riemannian n-manifolds with lower Ricci
curvature bound — (n — 1) and close Hausdorff distance will be diffeomorphic. Therefore
there exists e = e(G) > 0 such that if F is another discrete and cocompact subgroup of
Isom(X) acting freely on X with d#(G, F) < e, then G and F are conjugate in the group
of homeomorphisms of X.
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