Can. J. Math., Vol. XXVIII, No. 1, 1976, pp. 104-111

UNIFORM AND TANGENTIAL APPROXIMATIONS BY MEROMORPHIC FUNCTIONS ON CLOSED SETS

ALICE ROTH

1. Let G be an (open) domain in the finite complex plane and F a relatively closed proper subset of G. We denote by M(G) the set of functions meromorphic on G and as usual by R(K) (for a compact set K) the set of uniform limits of rational functions without poles on K.

The problem of approximating uniformly a complex valued function on F by functions in M(G) is reduced by the following Theorem I to the problem of uniform approximation by rational functions on a compact set.

THEOREM I. A function f can be approximated uniformly on F by functions in M(G) without poles on F if and only if

 $(*) \quad f_{|K} \in R(K)$

for every compact subset K of F.

The necessity of condition (*) is obvious: if m is a meromorphic function which approximates f on F, the restriction $m_{|K}$ can be approximated uniformly on K by rational functions (using Runge's Theorem).

To prove that the condition (*) is sufficient we shall use the following Lemma 1.

LEMMA 1. (Fusion of rational functions). Let K_1 K_2 , and K be compact subsets of the extended plane with K_1 and K_2 disjoint. If r_1 and r_2 are any two rational functions satisfying, for some $\epsilon > 0$,

(1) $|r_1(z) - r_2(z)| < \epsilon$, for $z \in K$,

then there is a positive number a, depending only on K_1 and K_2 and a rational function r such that for j = 1, 2,

(2) $|r(z) - r_j(z)| < a\epsilon$, for $z \in K_j \cup K$.

We remark that in Lemma 1, r_1 and r_2 are allowed to have poles on the sets in question.

Proof. We may assume $K_2 \setminus K \neq \emptyset$ and $\infty \in K_2$. Thus, we can construct open neighbourhoods U_1 and U_2 of K_1 and K_2 respectively such that $\overline{U}_1 \cap \overline{U}_2 = \emptyset$ and $\infty \in U_2$. Moreover, we may assume that the boundaries of U_1 and U_2 consist of finitely many disjoint smooth Jordan curves. Let E be the

Received January 20, 1975.

complement of $U_1 \cup U_2$ in the extended plane. Then E is compact in C, and thus

(3)
$$I(z) = \int_{E} \int \frac{d\xi d\eta}{|\zeta - z|}$$
, where $\zeta = \xi + i \eta$,

is uniformly bounded for z in the extended plane. Indeed, for $z_0 \neq \infty$, set

$$\zeta - z_0 = \rho e^{i\varphi}.$$

Then

$$I(z_0) = \int_E \int d\rho d\varphi,$$

and so $I(z_0)$ is bounded, for instance, by $2\pi d$, where d is the diameter of E. For $z_0 = \infty$, $I(z_0) = 0$.

We introduce now an auxiliary function $\Phi \in C^1(\mathbf{R}^2)$ with values in [0, 1] such that Φ is 1 on U_1 and Φ is 0 on U_2 . Then

$$\frac{\partial \Phi}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial \Phi}{\partial x} + i \frac{\partial \Phi}{\partial y} \right)$$

is uniformly bounded. Hence since (3) is also uniformly bounded, there is a constant a > 2 such that

(4)
$$\frac{1}{\pi} \int_{E} \int \left| \frac{\partial \Phi(\zeta)}{\partial \overline{\zeta}} \right| \frac{1}{|\zeta - z|} d\xi d\eta < a - 2,$$

for $z \in \mathbf{C}$.

We return now to our rational functions r_1 and r_2 and we put

$$q = r_1 - r_2.$$

By (1) we can find a neighbourhood U of K such that

$$|q(z)| < \epsilon, z \in \overline{U}.$$

We replace q by a function q_1 constructed as follows. First set

(5)
$$q_1 = q \text{ on } U_1 \cup U_2 \cup U.$$

Now extend q_1 to E so as to satisfy: q_1 is continuous on E and

(6)
$$|q_1(z)| < \epsilon, z \in E.$$

Set

(7)
$$g(z) = \frac{1}{\pi} \int_{E} \int \frac{q_1(\zeta)}{\zeta - z} \frac{\partial \Phi}{\partial \overline{\zeta}} d\xi d\eta.$$

From (4) and (6) we have

(8)
$$|g(z)| < (a-2)(a-2)\epsilon, z \in \mathbb{C}.$$

ALICE ROTH

Since g is a Cauchy integral, g is holomorphic outside of E. Consequently

(9)
$$f(z) = \Phi(z)q_1(z) + g(z), z \in \mathbf{C}$$

is holomorphic in U_2 (for $q_1(z) = \infty$, set $\Phi(z)q_1(z) = 0$). For $z \in U_1$,

 $f(z) = q_1(z) + g(z)$

is meromorphic and has the same poles as q_1 . To see that f is also holomorphic on U, we invoke the Pompeiu formula

$$\Phi(z) = - \frac{1}{\pi} \int_{E} \int \frac{\partial \Phi(\zeta)}{\partial \overline{\zeta}} \frac{1}{\zeta - z} d\xi d\eta, \quad z \in \mathbf{C}.$$

Hence,

$$f(z) = \frac{1}{\pi} \int_{E} \int \frac{\partial \Phi(\zeta)}{\partial \bar{\zeta}} \frac{q_1(\zeta) - q_1(z)}{\zeta - z} d\xi d\eta, \quad z \in \mathbf{C}, \quad q_1(z) \neq \infty.$$

For $z \in U$, $q_1 = q$ and

$$\frac{q_1(\zeta) - q_1(z)}{\zeta - z}$$

is holomorphic. Thus f is holomorphic in U, and hence f is meromorphic on $U_1 \cup U_2 \cup U$ with the same poles as q. By Runge's theorem there is a rational function r_3 for which

$$|r_3(z) - f(z)| < \epsilon, \quad z \in K_1 \cup K_2 \cup K.$$

Finally we put $r = r_2 + r_3$, and we have the following estimates: on $K_1 \cup K$

$$\begin{aligned} |r - r_1| &\leq |f - (r_1 - r_2)| + |r_3 - f| \\ &\leq |\Phi - 1| |q| + |g| + |r_3 - f| \\ &< \epsilon + (a - 2)\epsilon + \epsilon = a\epsilon; \end{aligned}$$

on $K_2 \cup K$

$$\begin{aligned} |r - r_2| &\leq |f| + |r_3 - f| \leq |\Phi| |q| + |g| + |r_3 - f| \\ &< \epsilon + (a - 2)\epsilon + \epsilon = a\epsilon. \end{aligned}$$

This completes the proof of Lemma 1.

Construction of the approximating function in Theorem I: Let $\{G_n\}$ be an exhaustion of G by domains with

 $\bar{G}_n \subset G_{n+1}$ and $\bigcup G_n = G$.

For each n = 1, 2, 3, ... we choose a positive number a_n associated with \overline{G}_n and $(\mathbf{C} \cup \infty) \setminus G_{n+1}$ in Lemma 1 (these sets replacing K_1 and K_2), so that

$$1 < a_n < a_{n+1}.$$

106

If ϵ is a given positive number we select the positive numbers $\epsilon_1, \epsilon_2, \epsilon_3 \dots$ so that

(10)
$$\epsilon_{n+1} < \epsilon_n$$
 and $\sum_{n=1}^{\infty} \epsilon_n < \frac{\epsilon}{2}$.

If condition (*) is fulfilled, there exist rational functions $\{q_n\}$ thus

(11)
$$|q_n(z) - f(z)| < \frac{\epsilon_n}{2a_n}, \quad z \in F_n = F \cap \overline{G}_{n+1}, \quad n = 1, 2, 3, \ldots$$

and therefore

(12)
$$|q_{n+1}(z) - q_n(z)| < \frac{\epsilon_n}{a_n}, z \in F_n, n = 1, 2, 3, \ldots$$

The functions q_1, q_2, q_3, \ldots converge to f on every F_n , but generally they don't converge on the domains G_n ; we need a second sequence $\{r_n\}$ of rational functions. We use Lemma 1, applying it to the functions q_n, q_{n+1} and to the sets \overline{G}_n , $(\mathbf{C} \cup \infty) \setminus G_{n+1}$ and F_n . For $n = 1, 2, 3, \ldots$ there exists a rational function r_n such that

(13)
$$|r_n(z) - q_n(z)| < \epsilon_n, \quad z \in \overline{G}_n \cup F_n,$$

(14)
$$|r_n(z) - q_{n+1}(z)| < \epsilon_n, \quad z \in (\mathbf{C} \cup \infty) \setminus G_{n+1}.$$

The inequalities (13) yield

$$\sum_{n}^{\infty} |r_{\nu}(z) - q_{\nu}(z)| < \sum_{n}^{\infty} \epsilon_{\nu}, z \in \overline{G}_{n}.$$

As $n \to \infty$, $\sum_{n=1}^{\infty} \epsilon_{\nu} \to 0$; thus $\sum_{n=1}^{\infty} (r_{\nu}(z) - q_{\nu}(z))$ converges uniformly to a holomorphic function on \bar{G}_{n} . Therefore

$$m(z) = q_1(z) + \sum_{1}^{\infty} ((r_r(z) - q_r(z)))$$

is holomorphic on G_n with the possible exception of a finite number of poles. Hence m(z) is meromorphic on $G = \bigcup G_n$.

From (11), (13) and (10) follows for $z \in F_1$

$$|m(z) - f(z)| \leq |q_1(z)| - f(z)| + \sum_{1}^{\infty} |r_{\nu}(z) - q_{\nu}(z)| < \frac{\epsilon_1}{2a_1} + \sum_{1}^{\infty} \epsilon_{\nu} < \epsilon.$$

From (11), (13), (14) and (10) and because

$$F_n \setminus F_{n-1} \subset (\mathbf{C} \cup \infty) \setminus G_k, \ k = 1, 2, \ldots n,$$

we have

$$|m(z) - f(z)| \leq \sum_{1}^{n-1} |r_{\nu}(z) - q_{\nu+1}(z)| + |q_n - f| + \sum_{n}^{\infty} |r_{\nu}(z) - q_{\nu}(z)|$$

$$< \sum_{1}^{n-1} \epsilon_{\nu} + \frac{\epsilon_n}{2a_n} + \sum_{n}^{\infty} \epsilon_{\nu} < \epsilon \quad \text{for } z \in F_n \setminus F_{n-1}, n = 2, 3, \dots$$

ALICE ROTH

Thus $|m(z) - f(z)| < \epsilon$ for $z \in F$; i.e. f can be approximated uniformly on F by meromorphic functions.

Remark. Condition (*) in Theorem I can be replaced by a simpler condition, namely that for each $z \in F$ there exists a closed disc D_z with center z such that

 $f_{|F \cap D_z} \in R(F \cap D_z).$

This is an immediate consequence of the Localization Theorem of Bishop [7, p. 97], which can be proved by applying Lemma 1.

2. We denote by A(F) the set of continuous functions from F to **C** whose restrictions to the interior F^0 are holomorphic. We seek to characterize those sets F having the property that *every* function $f, f \in A(F)$, can be uniformly approximated by functions in M(G).

THEOREM II. A necessary and sufficient condition in order that every function in A(F) can be approximated uniformly on F by functions in M(G) is that

 $(^{**}) \quad R(F \cap \overline{G}_1) = A(F \cap \overline{G}_1)$

for every domain G_1 , $\overline{G}_1 \subset G$.

By the Localization-Theorem of Bishop we may replace the closed domains G_1 by closed discs.

Theorem II was stated by Nersesian [4] and proved for the special case $G = \mathbf{C}$.

The sufficiency of condition (**) follows immediately from the proof of Theorem I. The construction we employed (and which we found before learning of [4]) to prove Theorem I is different from Nersesian's method. Perhaps his method (especially with the modifications necessary for applying it to general domains) is more complicated than our method. This may serve as a small justification for publishing the present work.

The proof that condition (**) is necessary is very simple in case F is nowhere dense $(F^0 = \emptyset)$ and hence A(F) = C(F): indeed any continuous function on $F \cap \overline{G}_1$ may be extended to a continuous function on all of F.

It seems that at the current state of the subject, the necessity of (**) in the case $F^0 \neq \emptyset$ can only be shown using the results of Vitushkin on continuous analytic capacity [7, p. 104].

3. The problem of characterizing a set F having the property, that every function in A(F) can be uniformly approximated by functions *holomorphic* on G was treated in a special case by [3] and [5] and solved completely by Arakeljan [1]: a necessary and sufficient condition on F is that $G^* \setminus F$ is connected and locally connected (G^* is the one-point compactification of G). In [6] we pointed out that Arakeljan's Theorem can be proved using Theorem II (at that time only a conjecture).

4. In order to treat *tangential approximations* the following lemma is useful. LEMMA 2. If condition (**) is satisfied and f, $h \in A(F)$, with

 $0 < |h(z)| < 1, z \in F$,

then there is an $m \in M(G)$, for which

 $|m(z) - f(z)| < |h(z)|, z \in F.$

Proof. Since $2h^{-1} \in A(F)$, there is by Theorem II a function $m_1, m_1 \in M(G)$:

$$\left|m_1(z)-\frac{2}{h(z)}\right| < 1, \quad z \in F.$$

Thus

$$|m_1(z)| > rac{2}{|h(z)|} - 1 > rac{1}{|h(z)|}, \ \ z \in F.$$

A further application of Theorem II yields the existence of a second function $m_2 \in M(G)$:

$$|m_2(z) - m_1(z)f(z)| < 1, z \in F.$$

Set

$$m = m_2/m_1;$$

then $m \in M(G)$ and

$$|m(z) - f(z)| < \frac{1}{|m_1(z)|} < |h(z)|, \quad z \in F.$$

The following Theorems III, IV and V are consequences of Theorem II and Lemma 2.

THEOREM III. If F is a proper closed subset of C satisfying condition (**) for every disc and $f \in A(F)$, then for every $\epsilon > 0$, there exists a function m meromorphic on C for which

$$|m(z) - f(z)| < \epsilon, \quad z \in F,$$

and moreover

 $\lim (m(z) - f(z)) = 0$

uniformly as $z \to \infty$ on F.

Proof. Choose $z_1, z_1 \in \mathbb{C} \setminus F$, $n \in \mathbb{N}$ and then η so that

 $0 < \eta < |z - z_1|^n \quad \text{for } z \in F.$

In Lemma 2 set

$$h(z) = \epsilon \eta (z - z_1)^{-n}.$$

The approximation of Theorem III is "best-possible" in some sense, [6, p. 164].

If $F^0 = \emptyset$, then A(F) = C(F) and so from Theorem II and Lemma 2 follows

THEOREM IV. Let N be a relatively closed nowhere dense subset of the domain G. Then the condition that

$$R(N_1) = C(N_1)$$

for every compact subset N_1 of N is necessary and sufficient in order that for every $f \in C(N)$, and for every $\epsilon(z) \in C(N)$, $\epsilon(z) > 0$, there is a function m meromorphic on G for which

 $|m(z) - f(z)| < \epsilon(z), \quad z \in N.$

Since the function $\epsilon(z)$ can tend arbitrarily fast to 0 as z approaches the boundary of G, we have a so called "*Carleman-approximation*". Theorem IV was proved in [6] by a different method.

A particularly useful auxiliary function h was introduced by Brown and Gauthier [2] for approximations by holomorphic functions. Namely h is a continuous function on F which is constant on every component of F^0 (and hence $h \in A(F)$). Such a function h allows the possibility of simultaneous uniform approximation on all of F and a Carleman-approximation on a certain subset of F. The following Theorem V contains both Theorem II as well as Theorem IV.

THEOREM V. Let F be a closed subset of the domain G and \hat{N} a closed subset of the nowhere dense set $N = F \setminus F^0$ (where "closed" means closed in G). Then condition (**) is necessary and sufficient in order that for every $f \in A(F)$, for every $\eta > 0$ and for every $\epsilon(z) \in C(\hat{N})$, $\epsilon(z) > 0$, there is a function $m \in M(G)$, for which

$$|m(z) - f(z)| < \eta, \quad z \in F,$$

 $|m(z) - f(z)| < \epsilon(z), \quad z \in \hat{N}.$

The necessity of condition (**) follows from Theorem II. The proof that (**) is sufficient follows from Theorem II and Lemma 2. We can suppose $\eta < 1$ and $\epsilon(z) < \eta$. Then we choose the auxiliary function h by setting $h_{|F^0} = \eta$, $h_{|\hat{N}} = \epsilon(z)$ and extend this function (by Tietze's theorem) to a function h continuous and positive on F and for which $h(z) \leq \eta$ for $z \in F$.

5. The function f of Theorems I–V is in A(F). Instead of A(F) we may consider a larger set of functions if we admit as approximating functions all functions in M(G) with or without poles on F. Then a necessary condition for f is that for every compact subset K of F the restriction $f_{|K}$ is the sum of a function in A(K) and a rational function. Let us denote by M(F) (generalizing the notation M(G)) a function with that property.

110

Theorem I is valid if we admit all functions of M(G) as approximating functions and replace the condition (*) by the condition that for every compact subset K of F the restriction $f_{|K}$ can be approximated uniformly by rational functions (with or without poles on K). The proof needs no modifications.

An immediate consequence is that in Theorems II-V we can suppose $f \in M(F)$.

Remark. The theorem of Mittag-Leffler (concerning the existence of a meromorphic function with given principal parts) follows easily from the modified Theorem II. Vice-versa: to see that in Theorems II-V we may suppose $f \in M(F)$, we can prove with Mittag-Leffler's theorem that such a function f is the sum of a function in A(F) and a function in M(G).

I am most grateful to Professor P. M. Gauthier for drawing my attention to Nersesian's paper [4] and for his very kind help with the English version of my paper.

References

- 1. N. U. Arakeljan, Approximations complexe et propriétés des fonctions analytiques, Actes Congrès Intern. Math., 2 (1970), 595-600.
- L. Brown and P. M. Gauthier, The local range set of a meromorphic function, Proc. Amer. Math. Soc. 41 (1973), 518-524.
- 3. S. N. Mergeljan, Uniform approximations to functions of a complex variable, Amer. Math. Soc. Translations, 3, p. 294-391.
- 4. A. H. Nersesian, On uniform and tangential approximation by meromorphic functions (Russian), Izv. Akad. Nauk. Arm. SSR, Ser. Math. VII, No. 6 (1972), 405-412.
- Alice Roth, Approximationseigenschaften und Strahlengrenzwerte meromorpher und ganzer Funktionen, Comment. Math. Helv., 11 (1938), 77-125.
- 6. Meromorphe Approximationen, Comment. Math. Helv. 48 (1973), 151-176.
- L. Zalcman, Analytic capacity and rational approximation (Springer-Verlag Berlin, Heidelberg, New York, 1968).

Willadingweg 34, CH-3006 Berne, Switzerland