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A GROUP THEORETIC APPROACH TO THE 
EQUATIONS OF PLASMA PHYSICS 

J E R R O L D E. M A R S D E N * 

ABSTRACT. This paper concerns the interaction between group 
theory and classical mechanics in general and with the application of 
this theory to plasma physics in particular. 

Mechanics has had a profound role in the historical development 
of mathematics. Leading original thinkers in pure mathematics such 
as Newton, Euler, Lagrange, Jacobi, Laplace, Cauchy, Gauss, 
Riemann, Poincaré, Hilbert, Birkhofï, Smale and Arnold were also 
great original thinkers in various facets of mechanics. The interac­
tion between mechanics and pure mathematics remains one of the 
most active and flourishing areas of current research. It is this flavor 
which I hope to convey in this lecture. 

Acknowledgements. Much of the work that I will describe below was done 
in collaboration with Alan Weinstein (see Marsden and Weinstein [1981]). A 
seminal paper of Morrison [1980] originally shown to us by Allan Kaufman 
was our starting point. Our ideas were developed in a series of lectures given 
by both of us to Kaufman's plasma physics-dynamics seminar early in 1981 at 
Berkeley. The participant's enthusiasm and encouragement were very impor­
tant. 

I thank the officers of the Canadian Mathematical Society for the opportun­
ity and honor to present these ideas in the Jeffrey-Williams lecture. 

I wish to dedicate this lecture to my undergraduate teachers from Toronto 
who had such a positive influence on my career, especially Professors Atkinson, 
Coxeter, Davis, Duff, Pillow, Rooney, Rund, Scherk, Scherk and Vanstone. 
It was through them that I first appreciated the fact that pure and applied 
mathematics have a magnificant intersection within mathematics. 

§1. Introduction. Commencing around 1750, Euler discovered and investi­
gated the basic equations governing two of the most important mechanical 
systems, namely the rigid body and a perfect incompressible fluid. He would 
have been pleased with the fundamental paper of Arnold [1966] which showed 
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that both of these sets of equations are of a special Hamiltonian type which is 
associated with a Lie group; in fact the group may be regarded as the 
configuration space of the system. For the rigid body the group is SO(3), the 
proper orthogonal transformations of Euclidean 3-space R3 and for a perfect 
incompressible fluid, the group is 2>vol, the group of volume preserving 
diffeomorphisms of a region in U2 or IR3. 

The paper of Ebin and Marsden [1970] showed how to put Arnold's ideas 
for a perfect fluid into a rigorous infinite dimensional context and showed that 
this procedure leads to new existence, and convergence theorems that are 
ultimately useful in numerical work (see Chorin et. al. [1978] and references 
therein). It was noted there that many of the results on 3 v o l extend to Sf, the 
group of canonical transformations of a given symplectic manifold i.e. a given 
phase space. 

Here we show that there is a fundamental system associated to 5̂  in the same 
way that the rigid body is associated with SO (3) and fluids are associated with 
®vol. This system consists of the Poisson-Vlasov equations for a collisionless 
plasma and its generalization, the Maxwell-Vlasov equation. These equations 
are as fundamental to the plasma community as the Navier-Stokes equations 
are to the fluids community. 

We list below some of the important mechanical systems that have as 
configuration spaces a Lie group; (some additional details are provided in the 
next section). 

1. 
2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

0. 

System 

free rigid body 
heavy top 
perfect incompressible fluid 

compressible fluid 

Korteweg de Vries Equation 

Toda lattice 

Liouville equation of any 
Hamiltonian system 
Heisenberg equation of quantum 
mechanics 
Lax equations for non-linear 
waves 
Poisson-Vlasov equations 

Group 

SO (3) = rotation group 
E(3) = Euclidean group 
^voi= volume preserving diffeo­

morphisms 
3 x ^ = semi-direct product of diffeo­

morphisms and functions 
$>3F = group of invertible Fourier In­

tegral operators 
H = invertible lower triangular mat­

rices 
if — canonical transformations 

%(3if), unitary group of complex Hil-
bert space 

% = unitary group 

5̂  = group of canonical transforma­
tions 

There are other basic systems in mechanics whose connection with a Lie 
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group is less direct. For these, there is a more general way to link Lie groups 
and mechanical systems via symmetry and reduction (Marsden and Weinstein 
[1974]). This procedure includes many additional interesting systems besides 
those already listed. A few are: 

System Group 

11. Maxwell's equations c§ = gauge group of electrodynamics 
12. Yang-Mill's equations S = automorphisms of a principle 

bundle 
13. Einstein's equation of General 2> = diffeomorphism group of space-

Relativity time 
14. Supergravity S = group of supersymmetry transfor­

mations. 

In the following section we shall explain the coadjoint orbit scheme which 
encompasses systems 1-10 and shall indicate how the Euler equations for a 
rigid body in system 1 and how systems 8 and 9 fit this scheme. Then we go on 
to explain how Maxwell's equations can be described in terms of reduction. 
Finally we describe system 10 and how it is coupled with Maxwell's equations 
to produce the Maxwell-Vlasov system. 

It will be necessary to assume some background in modern mechanics and 
Lie groups. See for example Arnold [1978] or Abraham and Marsden [1978]. 

§2. Coadjoint orbit structures. Let G be a Lie group and © its Lie algebra. 
Let ©* be the dual space of ©. Let JLLG©* denote a typical point. Let 
F:@*->1R be a smooth real-valued function defined on ©*. Define its func­
tional derivative ôF/ô^i :©*->© by 

where v is an arbitrary element of ©*, DF(fx) : ©* —» U is the (Fréchet) deriva­
tive of / at JUL, (, ) is the pairing between ©* and © and ôF/ô/tt is understood to 
be evaluated at JUL. 

Define a bracket on functions F, G by 

{{F,G}}(^) = - ( M , [ 
8F 8G1\ 
ôjLL ' ÔfX J / 

where [, ] denotes the Lie bracket of the Lie algebra ©. 
We call {{,}} the KAKS bracket after Kirillov, Arnold, Kostant and Souriau 

who used it in various forms in their work in representation theory, Hamilto-
nian systems on Lie groups and quantization. 

The KAKS bracket is clearly antisymmetric, is bilinear in F and G and is a 
derivation in F and G. Somewhat less obvious, but true, is Jacobi's identity. 
Thus, the KAKS bracket makes C°°(©*, R), the C°° real valued functions on ©* 
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into a Lie algebra. One says that ©* together with {{,}} forms a Poisson 
manifold; c i . Guillemin and Sternberg [1980]. 

If H : ©* —» R is a given (energy) function there is a unique vector field XH 

on ©* such that for any F e C°°(©*, R), 

D F ( ^ ) - X H ( ^ ) = {{F,H}} 

The left side is F = dF/df, the rate of change of F under the vector field XH. We 
call F = {{F, H}} the evolution equations determined by H in Poisson-bracket 
form, while fx=XH(|ui) are the KAKS evolution equations themselves. They 
are clearly equivalent descriptions. 

The above development may seem pretty far removed from the classical 

Poisson bracket n , , df d \ 

{f, 8} = .^ ^ ^ " d ^ â ^ J 

and Hamilton equations 

.t_dH i__?H 
q ~dPi'

 P ~ dq1' 

In fact, through reduction we can derive the KAKS Poisson structure {{,}} from 
the traditional Poisson brackets in a natural way. This can proceed via two 
equivalent routes: 

ROUTE 1. Regard ©* as TfG, the dual of the tangent space to G at the 
identity e e G. For F, G :©* -> R, extend F and G to functions /, g : T*G -> R 
by left translation. Then {/, g} is defined by the classical formula where (q\ p,) 
are cotangent bundle coordinates. Let {{F, G}} be {/, g} restricted to ®*. Then 
this yields the KAKS bracket. 

ROUTE 2. G acts on ©* by the co-adjoint action; i.e. the dual of the adjoint 
action. The latter is the linearization at the identity of the action of G on G by 
conjugation: hi->ghg_1. The orbits of the coadjoint action are always symplec-
tic manifolds. (This can be seen directly or by reducing T*G by the action of G 
by left translation). Define {{F, G}} at /x by restricting F and G to 6^, the orbit 
of JLL and then computing the symplectic Poisson bracket and evaluating at JLL. 
Again this gives the same KAKS bracket. 

We note that ©* itself need not be a symplectic manifold (it may be 
odd-dimensional) but it is foliated by symplectic manifolds (route 2) and is 
closely associated to the symplectic manifold T*G (route 1). 

An important property of KAKS systems is that they leave the coadjoint 
orbits invariant. This is implicit in route 2 above, but may also be checked 
directly. This fact is related to a conservation law in the sense of Noether 
reflecting the G-symmetry of the problem. 
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If G has a biinvariant inner product (, ) then the KAKS equations can be 
given a little more explicitly. In this case we can identify © and ©* via the 
Killing form (, ) and the evolution equations on ©* become evolution equations 
on ©. (It is not always advantageous to make this identification). Denoting 
elements of © by £, 8H/8i; becomes V€H, the ^-gradient of H, a vector field on 
© and the KAKS equations are easily seen to be equivalent to the following 
equations on ©: 

é = [£V,H] 

EXAMPLE 1 (The Rigid Body). Here we take G = SO(3) so that @, its Lie 
algebra, is identifiable with IR3 and the Lie bracket with the cross product. A 
point m e © * represents the angular momentum in "body coordinates". (See 
Abraham and Marsden [1978] or Arnold [1978] for the explanation of this 
terminology). For the moment we do not identify © and @*. The energy H is 
the kinetic energy of the body, a positive definite quadratic function of m. By 
choosing an appropriate orthonormal basis of U3 (and corresponding orthonor­
mal dual basis of R3*) we can assume H is diagonal: 

\lm\ m\ m|\ 
H{m)=2\T+T2

+Tj 
where I l 5 1 2 ,1 3 are positive constants, the moments of inertia. Let us work out 
the KAKS equations F = {{F, H}} in this case. Clearly 8F/8m is just the vector 
in U3 with components (dF/dml9 dF/dm2, dF/dm3). Thus 

{ { F , H } } ( m ) = - ( m , | ^ x | ^ \ 
\ dm dm/ 

the triple product. Choosing F(m) = m1, the equation F = {{F, H}} reads 

m j 

1 
nti 

m2 
0 
m2 

Wz 

0 
m3 

The equations for m2 and m3 are obtained by cyclic permutation. These are the 
famous Euler equations for a force-free rigid body. It is trivial to check that 
(d/df)(m? + m!+mi) = 0 i.e. ||m||2 is constant in time. The spheres ||m|| = 
constant are exactly the coadjoint orbits for SO(3). Thus SO(3)* is the union 
of these symplectic manifolds (plus the origin). Their preservation by the Euler 
equations corresponds to the conservation of angular momentum. There is a 
Killing form in the case, namely the standard inner product and £ = [£, V€H] 
yields the same Euler equations. 

m2m3 
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EXAMPLE 2 (The Heavy Top). The equations for a heavy top can also be 
written in KAKS form for the Euclidean group. Here E(3) = SO(3)xR3 , the 
semi-direct product of rotations and translations. Writing elements of the Lie 
algebra as paris (m, u), the Hamiltonian is 

TT \{m\ m\ mj\ 

One can easily check that the KAKS equations yield the correct equations for a 
heavy top (see Guillemin and Sternberg [1980] and Ratiu (1981]). In case 
Ii = I2 one has the Lagrange or symmetric top which has an additional S1 

symmetry. Using these geometric ideas, Holmes and Marsden [1981] showed 
that for certain Ix ^ I2, the dynamics of the heavy top is chaotic; i.e. contains 
irregular aperiodic orbits whose closure is a complex invariant set. Here is a 
good example where traditional methods of classical applied mathematics need 
geometric augmentation in the spirit of Poincaré. 

We refer to Arnold [1966], Abraham and Marsden [1978], Marsden, Ebin 
and Fischer [1972] and Marsden [1981] for the indication of how to similarly 
treat systems 3-6. In §3 we shall discuss 7 and 10. We now indicate how to 
treat 8 and 9 as they are amusing and perhaps not so well known. 

EXAMPLE 8 (Quantum Mechanics). Here °U(3€) is the unitary group of a 
complex Hilbert space Sif. The Schrodinger equation 

iip = Hopi/f 

where Ho p is a self adjoint operator is well-known to be Hamiltonian relative 
to the symplectic form co(i//, </>) = -Im(i/>, <j>) and the energy H(ifj) = è(ife Hopi/r) 
(see Marsden [1968] or Chernoff and Marsden [1974] for instance). 

The Heisenberg equations, equivalent to the Schrodinger equation, are: 

it = [T,Hop] 

where T is a self-adjoint operator and [,] is the commutator bracket. These are 
in KAKS form. Indeed, the Lie algebra ^ of %($€) consists of the skew adjoint 
operators; via the Hermitian inner product (A, B) = trace(AB*) we identify a 
and u*. The Hamiltonian is H(A) = (iHop, A), which is real and the KAKS 
bracket is 

{{F,H}}(A) = -(A,[^,iHop 

Thus, either directly or by our general remarks, the KAKS equations are 
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equivalent to 

À = i[Ho p ,A] 

But these are the Heisenberg equations with A = iT. The coadjoint orbits are 
the similarity classes {UAU'1 lae^Uffl)} and the fact that the evolution 
preserves these orbits is of course standard. (If we choose A to be i x 
projection onto a 1-dimensional subspace, its coadjoint orbit is just projective 
Hilbert space; the other orbits are also interesting symplectic manifolds). 

EXAMPLE 9. One can regard many Lax type equations that occur in non­
linear wave equations (Lax [1968]) as KAKS equations in a similar way. (For 
the specific example of the Cologero system, which can be dealt with by the 
more general reduction methods, see Marsden [1981, p. 40fï] and for the KdV 
equation, see Abraham and Marsden [1978, §5.5]) 

Let Sif be a real or complex Hilbert space (finite or infinite dimensional), % 
the unitary group and a its Lie algebra, the skew Hermitian matrices. Let 
L : a —» a be a given (non-linear) operator and consider the "Lax equation" 

X=[L(A),A] 

for A G ^ . This equation means that A evolves on a coadjoint orbit in ^ — ^*. 
Thus 

A(r)=l/(t)A(0)C7(t)"1 

for a unitary operator (7(f), so A(0) and A(f) are unitarily equivalent (i.e. on the 
same coadjoint orbit) and so the evolution is isospectral. It is easily checked, as 
in the previous example, that the equations Â =[L(A), A] are in KAKS form if 
and only if 

for some function H\a—>IR (with a and a* identified by the Killing form 
(A, B) = trace(AE*).) Thus the equations are Hamiltonian as a KAKS system 
or in the standard sense on each coadjoint orbit in a. 

§3. The Poisson-Vlasov equation as a KAKS system. The Poisson-Vlasov 
equation describes the evolution of a collisionless ionized plasma moving under 
the influence of self-induced electrostatic forces. When the electromagnetic 
field is dynamic, things are more interesting and these Maxwell-Vlasov equa­
tions are discussed later. The Poisson-Vlasov equation for a plasma moving in 
U3 is 

dt i=x V dxl mdxldv1/ 
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where <f)f is defined by Poisson's equation: 

A<f>f = - p f 

and pf is the charge determined by / : 

pf{x, t) = e\ f(x, v, t) dv 

Here f(x, v, t) represents the plasma density in position-velocity space at time 
t; e is the ion charge and m the ion mass. We are considering the motion of a 
cloud of charged ions of a single species for simplicity. The generalization to 
several species is routine. For e = 0 we get Liouville's equation for free 
particles in U3. 

The Hamiltonian for the Poisson-Vlasov equation is 

Hif) = y J M 2 / ( x , v, t) dx dv +\ | | |V^(x) | | 2 dx 

The Poisson-Vlasov equations can be recast in bracket form as 

F = {{F,H}} 
where 

{{F,G}W=\f{^,^}dxdv 

and {,} is the standard Poisson bracket for functions of x, v and 8F/8f here 
coincides with the functional derivative as used in physics and the calculus of 
variations. 

The bracket form of the Poisson-Vlasov equations can be checked directly 
but is unsatisfactory unless we understand how this bracket is related to 
symplectic geometry. We shall now show that in fact the bracket is a KAKS 
bracket for a Lie group. In what follows we choose natural units in which 
e — m = 1. Moreover, we shall identify velocity with momentum; hence we let 
U6 denote the usual position-momentum phase space with coordinates 
(JC1, x2, x3, p1? p2, p3) and the standard symplectic structure co = £ dx1 Adpt. Let 
Sf denote the group of canonical transformations of U6 (which satisfy certain 
growth conditions at infinity). The Lie algebra o of iP consists of the Hamilto­
nian vector fields on 1R6 (again with certain growth conditions). We shall 
identify elements of 6 with their generating functions, so that o consists of the 
C°° functions on IR6 and the (right) Lie algebra structure is given by [/, g] = 
~{f» g}> th e negative of the usual Poisson bracket on phase space. (This follows 
from Exercise 4.1 G and Corollary 3.3.18 of Abraham and Marsden [1978]). 

The dual space <F can be identified with the distribution densities on (R6 

(which satisfy certain decay conditions at infinity): the pairing between he<i 

https://doi.org/10.4153/CMB-1982-019-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-019-9


1982] EQUATIONS OF PLASMA PHYSICS 137 

and f e / is given by integration 

(Kf)=[hfdxdp. 

(The "density" is really f dxdp, but we denote it simply by /.) Now as for any 
Lie algebra, the dual space <? carries a natural Poisson structure. 

The general formula {{F, G}}(JUL) = — (JUL, T - , — ) becomes, in this case, 

{{F,G}}(f)=\f[ff,^]dxdp 

which is the bracket mentioned above. Thus indeed the Poisson-Vlasov equa­
tions can be put exactly into KAKS form. 

The preservation of coadjoint orbits is equivalent to the fact that / at time t 
is related to / at time t = 0 by composition with some canonical transformation. 
This is an important property of the Poisson-Vlasov equation. It can also be 
seen by writing the equation as a non-linear self-consistent Liouville system: 

at 

where {,} is the ordinary Poisson bracket in xp space and 

*( / )= ! IMP+<Mx) 
§4. Maxwell's equations. Before coupling the Vlasov equation to the elec­

tromagnetic field equations, we shall consider separately the Hamiltonian 
description of Maxwell's equations. The appropriate Poisson bracket for the 
electric (E) and magnetic (B) fields will be constructed by reduction (Marsden 
and Weinstein [1974]). 

As the configuration space for Maxwell's equations, we take the space 31 of 
vector fields A on R3. (These are the "vector potentials. In more general 
situations, one should replace 31 by the set of connections on a principal bundle 
over configuration space.) The corresponding phase space is then the cotangent 
bundle T*3t. Elements of T*3l may be identified with pairs (A, Y), where Y is 
a vector field density on U3. (As usual, we do not distinguish Y and Ydx.) The 
pairing between A's and Y's is given by integration, so that the canonical 
symplectic structure co on T*3l is given by 

co((A1? Yx\ (A2, Y2)) = f (Y2'A1-Y1- A2) dx 

with associated Poisson bracket 

r^ ^ f / S F S G 8F8G\J 
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With the Hamiltonian 

H(A, Y) = | [|Y|2 dx + | [|curl A\2 dx 

Hamilton's equations are easily computed to be 

— = -curl curl A and — = Y 
dt dt 

If we write B for curl A and E for - Y, the Hamiltonian becomes the usual field 
energy 

\\\E?dx+\\\B\2dx 

and so Hamilton's equations imply Maxwell's equations: 

dE dB 
— = curl B and — = — curl E 
dt dt 

The remaining two Maxwell equations will appear as a consequence of gauge 
invariance. The gauge group ® consists of real valued functions on IR3; the 
group operation is addition. An element if/ G G acts on 91 by the rule(1) 

A«-»A+Vi/f. 

This "translation" of A extends in the usual way to a canonical transformation 
("extended point transformation") of T*2l given by 

(A,Y)->(A+VifcY). 

Notice that the Hamiltonian H(A, Y) is invariant under these transforma­
tions. This means that we can use the gauge symmetries to reduce the degrees 
of freedom of our system. The action of ^ on T*2l has a corresponding 
conserved quantity, namely a map J : T*9l -* ©* where ©, the Lie algebra of % 
is identified with the real valued functions on IR3. The map / , called a 
momentum map, may be determined by a standard formula (Abraham and 
Marsden [1978, Corollary 4.2.11]): for <f>e®, 

(J(A, Y), c{>) = J ( Y • V<£) dx = - J (div Y)cf> dx 

Thus we may write 
J(A, Y) = -div Y. 

(1) Notice that we work directly with three dimensional fields. Four dimensionally, one has an 
extra "degree" of gauge freedom associated with the time derivative dt(f>. We have already 
eliminated this freedom and the corresponding non-dynamical field A 4 (whose conjugate momen­
tum vanishes). This is the standard Dirac procedure for a relativistic field theory such as Maxwell's 
equations. 
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If p is an element of ©* (i.e. p is a density on M3),J~1(p) = 
{(A, Y)e T*9l | div Y = -p}. In terms of E, the condition div Y = -p becomes 
the Maxwell equation div E = p, so we may interpret the elements of 51* as 
charge densities. 

By a general theorem on reduction (Marsden and Weinstein (1974]), the 
manifold J^^IG has a naturally induced symplectic structure. 

A little computation shows that the reduced manifold J_1(p)/(S can be 
identified with Max = {(E, B) | div E = p, div B =0}, and that the Poisson 
bracket induced on Max is given in terms of E and B by 

{F,G}=\{ — curl — - — - curl TTT ) dx 
ÔE 8B ÔE 

Maxwell's equations with an ambient charge density p are thus Hamilton's 
equations for 

H(E,B) = ̂ (\E\2 + \B\2)dx 

on the space Max, and can be written 

F = {F,H}. 

§5. The Maxwell-Vlasov equations. The Maxwell-Vlasov equations are: 

df df e / vxB\ df „ 
dt dx m \ C I dV 

l d B 1 1 7 

= —curl E 
c dt 

1 dE e f 
= curl B — vf(x, v, t) dv 

c dt c J 

divE = pf, where pf = e\ f(x, v, t) dv 

di\B=0 

(Letting c->o° leads to the Poisson-Vlasov equation). 
The Hamiltonian for the Maxwell-Vlasov system is 

H(/, E, B) = h \v\2f(x, v, t) dx dv + f ï |E(x , t)|2 + |JB(x, t)|2] dx 

Our goal is to understand the Hamiltonian structure of these equations. (As 
usual, we let e = m = c = 1). 

The Hamiltonian structure for the Maxwell-Vlasov system is very simple if 
we choose as our variables densities on (x, p) space (rather than (x, v) space) 
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and elements (A, Y) of T*2l. To avoid confusion with densities / on (x, v) 
space, we shall use the notation /mom for densities on (x, p) space. 

The Poisson structure on <**x T*2I is just the sum of those on <? and T*2l: 
for functions F and G of /mom, A, and Y, set 

rr- - „ , x f, f àF 8G I T , [(8F8G 8G 8F\ J 

and the Hamiltonian is just H(/ , E, B) written in terms of these variables. 
Using the classical relation p = v + A between momentum and velocity we get 

H( / m o m ,A ,Y) = ^ | p - A ( ^ ^ ^ 

One now computes easily that the evolution equations F = {{F, H}} for a 
— f)B 

function F o n / x T*2l are the Maxwell-Vlasov equations with — = -curl E 

dA 
replaced by — = Y. To get the Maxwell-Vlasov equations as written we must, 

dt 
as in the case of Maxwell's equations, reduce by the action of CS. 

The natural action of S on d* is defined by letting if/e^ act by the (linear) 
map 

/mom J morn *—V\fy 

where T_VI/, :M
6—*H36 is the "momentum translation map" defined by 

T_V^(X, p) = (x, p - Vi/f(x)). 

It is easy to verify that T_VI/, is a canonical transformation, so it preserves the 
ordinary Poisson bracket on U6. It follows that this action preserves the Poisson 
structure on o*. A simple calculation shows that it has a momentum map 
J : ** -+ ©* given by J(fmoJ = -J/mom(x, p) dp. 

Now we define the action of <S on the product d*xT*2l as follows: il/s^ 
maps 

( /mom, A , Y ) * - > ( / m o m ° T _ V * , A + Vlfc Y ) . 

This action leaves the Hamiltonian H invariant. 
The momentum map /:<3*xT*5l@* for this action is given by: 

HL n, A, Y) = - J /mom(x, p) dp - div Y. 

With this action we are ready to consider the reduced manifold (o* x T*?ï)0 = 
J_1(0)/% This space may be identified with the Maxwell-Vlasov phase space 

Mr=Uf,B,E)\ài\B=0 and d ivE = J /(*, u) du] 
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by associating to each (/mom, A, Y) in J 1(0) the triple (/, B, E)inMV where 

f(x, v) = /mom(x, v + A(x)), B = curl A, and E = - Y. 

By the general theory of reduction, MY inherits a Poisson structure from the 
one on 4*xT*2l. Since the Hamiltonian (H) is invariant under % it follows 
that the Maxwell-Vlasov equations are a Hamiltonian system on MY with 
respect to this structure. One can, in fact with a little labor compute the explicit 
form of the inherited Poisson structure in the variables (/, B, E). It is given by 
the (perhaps unexpectedly complex) formula 

f / 6 F . a / 5 G _ Ô G W 

J X8E dv Of 8E dv Of I 

[m (d 8F d 8G\ i , 
-\fB-{Vv^XVv^)dxdv 

+ 

+ 

The Maxwell-Vlasov equations can thus be written as 

F = {{F,H}} 

We know by general principles that the bracket {{,}} must satisfy Jacobi's 
identity. Indeed we obtained it by totally natural constructions. To verify 
Jacobi's identity by hand would be extremely tedious. In fact a first attempt at 
producing such a bracket was done by hand using brilliant guesswork by 
Morrison [1980]. However his bracket fails to satisfy Jacobi's identity (Weins-
tein and Morrison [1981]). 

Having a Hamiltonian structure for the Maxwell-Vlasov equations is of great 
interest to plasma physicists because 

(a) it enables them to begin to make use of powerful techniques of perturba­
tion theory for Hamiltonian systems 

(b) the relationship between the classical, quantum and semiclassical 
theories can be attacked in a useful context. 

(c) the relationship between the full theory and various Hamiltonian trunca­
tions (such as the three wave interaction model) should now be under­
standable. 

Similar Hamiltonian structures to these that we have found for plasmas can 
also be given for the equations of magnetohydrodynamics; cf. Morrison and 
Greene [1980]. 

Hopefully the situation described above reinforces the fact that current 
geometric methods in mechanics do have a role to play in concrete physical 
problems. 
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