MINIMAL LINKAGE AND THE GORENSTEIN LOCUS OF AN IDEAL

CRAIG HUNEKE* and BERND ULRICH*

Introduction

Let I be a Cohen-Macaulay ideal of grade $g>0$ in a local Gorenstein ring (R, m) with residue class field k. An R-ideal J is said to be linked to I with respect to the regular sequence $\underline{\alpha}=\alpha_{1}, \cdots, \alpha_{g} \subset I \cap J$ if $J=$ $(\underline{\alpha}): I$ and $I=(\underline{\alpha}): J$ ([6]). In this paper we are concerned with the following question: how big is $\operatorname{dim}_{k}((\underline{\alpha}, m J) / m J)$? Obviously this dimension is at most g, but it could be as small as 0 . If it is g then the link from J to I is called a minimal link, which is in most respects the desired type of link. The only general result known in this direction is that if I is Gorenstein, then $\operatorname{dim}_{k}((\underline{\alpha}, m J) / m J)=g$ unless both I and J are complete intersections (see [1], Proposition 5.2). We are able to generalize this fact to the case where $(R / I)_{p}$ is Gorenstein for all prime ideals p in R / I with $\operatorname{dim}(R / I)_{p} \leq 4$; however we have to assume that I is generically a complete intersection ideal, and that R is a complete intersection (Theorem 2.3). Without the assumption on R we prove that if I is generically a complete intersection, and if for a fixed integer r the type of $(R / I)_{p}$ is at most r for all prime ideals p in R / I with $\operatorname{dim}(R / I)_{p} \leq(r+1)^{2}$, then $\operatorname{dim}_{k}((\underline{\alpha}, m J / m J)) \geq g-r$ (Proposition 2.1). If $r=1$, i.e. if R / I is Gorenstein in codimension 4, then this estimate shows the dimension is at least $g-1$. Theorem 2.3 can also be interpreted to yield a strong upper bound for the codimension of the non-Gorenstein-locus of certain perfect ideals: Let R be a regular local ring. Let I be an R-ideal which is generically a complete intersection, and assume that I is in the even linkage class of a Gorenstein ideal (i.e., there exists a sequence of links $I \sim I_{1} \sim I_{2} \sim \cdots \sim I_{2 n}$ with $I_{2 n}$ a Gorenstein ideal); then I is a Gorenstein ideal provided that $(R / I)_{p}$ is Gorenstein for all prime ideals p of R / I with $\underline{\operatorname{dim}(R / I)_{p} \leq 4 \text { (Corollary 3.1). }}$

Received December 10, 1986.

* Partially supported by the NSF.

§1. General facts about linkage

In this section, we fix the notations we will be using throughout the paper and review some definitions and results from [4].

Let (R, m) be a local Noetherian ring, let I be an R-ideal, and M a finitely generated R-module. By $\nu(M)$ we denote the minimal number of generators of M, ht (I) is the height of I and $r(R)=\operatorname{dim}_{R / m}\left(\operatorname{Ext}_{R}^{d}(R / m, R)\right)$ stands for the type of R (if R is Cohen-Macaulay of dimension d). We say that I is Cohen-Macaulay or Gorenstein if the ring R / I has any of these properties. The ideal I is a complete intersection if I is generated by a regular sequence, I is called generically a complete intersection if I is unmixed and I_{p} is a complete intersection for all $p \in$ Ass (R / I), and I is an almost complete intersection if $\nu(I) \leq \operatorname{grade}(I)+1$. We say that R is a complete intersection if \hat{R} is a regular local ring modulo a complete intersection ideal. For an integer k, R satisfies $\left(R_{k}\right)$ if R_{p} is regular for all $p \in \operatorname{Spec}(R)$ with $\operatorname{dim} R_{p} \leq k, R$ is $\left(G_{k}\right)$ if R_{p} is Gorenstein for all $p \in \operatorname{Spec}(R)$ with $\operatorname{dim} R_{p} \leq k$, and I satisfies $\left(C I_{k}\right)$ if I_{p} is a complete intersection for all $p \in \operatorname{Spec}(R / I)$ with $\operatorname{dim}(R / I)_{p} \leq k$. For a matrix A with entries in $R, I_{t}(A)$ is the R-ideal generated by all $t \times t$ minors of A, and for a set of elements $\underline{f}=f_{1}, \cdots, f_{n} \subset R$ we will denote by (\underline{f}) the R-ideal generated by f_{1}, \cdots, f_{n} whereas $(\underline{f})^{t}$ stands for the transpose of the matrix $\left(f_{1} \cdots f_{n}\right)$. If X is a finite set of indeterminates we set $R(X)=R[X]_{m R[X]}$.

Definition 1.1 ([4]). Let (R, I) and (S, J) be pairs of Noetherian local rings R, S, and ideals $I \subset R, J \subset S$.
a) (S, J) is a deformation of (R, I) (with respect to \underline{a}) if there is a sequence $\underline{a} \subset S$ which is regular on S and S / J such that $(S /(\underline{a}),(J, \underline{a}) /(\underline{a}))$ $=(R, I)$.
b) (S, J) and (R, I) are equivalent if there are finite sets of variables X over S, and Z over R, and an isomorphism $\varphi: S[X] \sim R[Z]$ such that $\varphi(J S[X])=I R[Z]$.

Definition 1.2 ([6]). Let R be a local Cohen-Macaulay ring, and let I and J be two (proper) R-ideals, then I and J are said to be (algebraically) linked (with respect to $\underline{\alpha}$) (written $I \sim J$), if there exists a regular sequence $\underline{\alpha}=\alpha_{1}, \cdots, \alpha_{g} \subset I \cap J$ such that $J=(\underline{\alpha}): I$ and $I=(\underline{\alpha}): J$.

It is known that if R is a local Gorenstein ring, I an unmixed R ideal of grade g, and $\underline{\alpha}=\alpha_{1}, \cdots, \alpha_{g} \subset I$ a regular sequence with $(\underline{\alpha}) \neq I$, then $J=(\underline{\alpha}): I$ is linked to I ([6]). If moreover I is Cohen-Macaulay,
then J is Cohen-Macaulay, and $J /(\underline{\alpha})$ is the canonical module of R / I ([6]). Hence $\nu(J /(\underline{\alpha}))=r(R / I)$, and in particular, $\nu(J)=r(R / I)+g$ if and only if $\underline{\alpha}=\alpha_{1}, \cdots \alpha_{g}$ form part of a minimal generating set of J. In this case, we say that the link from J to I is minimal. Two R-ideals I and J are said to be in the same linkage class if there is a sequence of n links $I=I_{0} \sim I_{1} \sim \cdots \sim I_{n}=J$. If in addition n can be chosen to be even, then I and J are in the same even linkage class.

Definition 1.3 ([3], [4]). Let R be a local Gorenstein ring, let I be an unmixed R-ideal of grade g, fix a generating sequence $\underline{f}=f_{1}, \cdots, f_{n}$ of I, let $X=\left(X_{i j}\right)$ be a generic $g \times n$ matrix, let $S=R[X],\left(\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{g}\end{array}\right)=X\left(\begin{array}{c}f_{1} \\ \vdots \\ f_{n}\end{array}\right)$. Then $\underline{\alpha}=\alpha_{1}, \cdots, \alpha_{g} \subset I S$ is an S-regular sequence, and we call $L_{1}(\underline{f})=$ $(\underline{\alpha}) S: I S \subset S$ a first generic link of I.

In [4], 2.11, it is shown that up to equivalence in the sense of Definition 1.1 b , the pair ($S, L_{1}(\underline{f})$) only depends on I, but not on the chosen generating sequence \underline{f}. Hence we write $L_{1}(I)$ instead of $L_{1}(\underline{f})$. In [4], 2.13, we also remarked that if $L_{1}(I) \subset R[X]$ is a first generic link of I, and $p \in \operatorname{Spec}(R), I \subset p$, then $L_{1}(I) R_{p}[X]$ is a first generic link of I_{p}. We will use the following property of generic links.

Proposition 1.4 ([4]). Let (R, m) be a local Gorenstein ring, let I be a Cohen-Macaulay R-ideal, and let J be linked to I with respect to the regular sequence $\underline{\alpha}=\alpha_{1}, \cdots, \alpha_{g}$. Fix a generating sequence $\underline{f}=f_{1}, \cdots, f_{n}$ of I and a $g \times n$ matrix $C=\left(C_{i j}\right)$ with entries in R such that $(\underline{\alpha})^{t}=C(\underline{f})^{t}$. Let $L_{1}(\underline{f}) \subset R[X]$ be a first generic link as defined in 1.3, and consider $p=$ $\left(m, X_{i j}-C_{i j}\right) R[X] \in \operatorname{Spec}(R[X])$.

Then $\left(R[X]_{p}, L_{1}(\underline{f}) R[X]_{p}\right)$ is a deformation of (R, J).

§2. Minimal linkage

For the proof of the main result (Theorem 2.3) we need two propositions which might also be of independent interest.

Proposition 2.1. Let (R, m) be a local Gorenstein ring with residue class field k, let I be a Cohen-Macaulay R-ideal of grade g which is generically a complete intersection, and assume that there is an integer r such that $r\left((R / I)_{p}\right) \leq r$ for all $p \in \operatorname{Spec}(R / I)$ with $\operatorname{dim}(R / I)_{p} \leq(r+1)^{2}$. Let J be an R-ideal linked to I with respect to the regular sequence $\underline{\alpha}=\alpha_{1}, \cdots, \alpha_{g}$.

Then $\operatorname{dim}_{k}((\underline{\alpha}, m J) / m J) \geq g-r$.
Proof. Let $L_{1}(I) \subset R[X]$ be a generic link of I, then by Proposition 1.4, there exists $p \in \operatorname{Spec}(R[X])$ such that $\left(R[X]_{p}, L_{1}(I)_{p}\right)$ is a deformation of (R, J). Set $(\tilde{R}, \tilde{J})=\left(R[X]_{p}, L_{1}(I)_{p}\right)$ and let $\underline{\tilde{\alpha}}=\tilde{\alpha}_{1}, \cdots, \tilde{\alpha}_{g}$ be the \tilde{R} regular sequence defining the link $I \tilde{R} \sim \tilde{J}$. The \tilde{R}-ideal $I \tilde{R}$ has the same properties as $I, \nu(\tilde{J})=\nu(J)$, but since I is generically a complete intersection, and \tilde{J} is the localization of a first generic link of I we also know that $\tilde{\alpha}_{1}, \cdots, \tilde{\alpha}_{g}$ generate \tilde{J} generically ([3], 2.5). Moreover let \tilde{m} be the maximal ideal of \tilde{R}, then

$$
\begin{aligned}
\operatorname{dim}_{k}((\tilde{\alpha}, \tilde{m} \tilde{J}) / \tilde{m} J) & =\nu(J)-\nu(\tilde{J} /(\underline{\tilde{\alpha}})) \\
& =\nu(\tilde{J})-r(R / I R) \\
& =\nu(J)-r(R / I) \\
& =\nu(J)-\nu(J /(\underline{\alpha})) \\
& =\operatorname{dim}_{k}((\underline{\alpha}, m J) / m J) .
\end{aligned}
$$

Hence we do not change the assumptions or conclusions in the proposition if we replace $I, \underline{\alpha}, J$ by $I \tilde{R}, \underline{\tilde{\alpha}}, \tilde{J}$. However we may now assume that J is generically generated by $\alpha_{1}, \cdots, \alpha_{g}$.

Now let $t=\operatorname{dim}_{k}((\underline{\alpha}, m J) / m J)$. After extending the residue class field if needed and changing $\alpha_{1}, \cdots, \alpha_{g}$ by elementary transformations, we may assume that $\alpha_{1}, \cdots, \alpha_{t}$ form part of a minimal generating set of J and of J_{p} for all $p \in$ Ass (R / J). After factoring out $\alpha_{1}, \cdots, \alpha_{t}$ we are in the following situation: (R, m) is a local Gorenstein ring, I is a Cohen-Macaulay R-ideal, $r\left((R / I)_{p}\right) \leq r$ for all p with $\operatorname{dim}(R / I)_{p} \leq(r+1)^{2}, J$ is linked to I with respect to $\underline{\alpha}, J$ is generically a complete intersection, but moreover $\underline{\alpha} \subset m J$, and grade $J=g-t$. We need to prove that grade $J \leq r$, since then $t \geq g-r$. From now on we write again grade $J=g$, and we will show $g \leq r$. We may assume $g>0$.

Let $\underline{f}=f_{1}, \cdots, f_{n}$ be a generating set of J. Since $\underline{\alpha} \subset m J$, there exists a $g \times n$ matrix A with entries in m such that $(\underline{\alpha})^{t}=A(\underline{f})^{t}$. Let X be a generic $g \times n$ matrix, set $(\underline{\alpha})=X(\underline{f})^{t}$, consider the first generic link $L_{1}(J)$ $=L_{1}(\underline{f})=(\underline{\tilde{\alpha}}) R[X]: J R[X]$, and write $T=R[X]_{(m, X)}$. Because the entries of A are in m, it follows from Proposition 1.4 that $\left(T, L_{1}(\underline{f}) T\right)$ is a deformation of (R, I). Since R / I has the property that $r\left((R / I)_{p}\right) \leq r$ for all prime ideals p with $\operatorname{dim}(R / I)_{p} \leq(r+1)^{2}$, any deformation of R / I, in particular $T / L_{1}(\underline{f}) T$, has the same property (cf. [4], 2.3). But because the
locus $\left\{p \mid p \in \operatorname{Spec}(R[X]), \quad r\left(R[X] / L_{1}(\underline{f})_{p}\right) \geq r+1\right\}=\{p \mid p \in \operatorname{Spec}(R[X])$, $\left.\nu\left(J R[X] /(\tilde{\alpha})_{p}\right) \geq r+1\right\}$ is defined by a homogeneous ideal in $R[X]$, it even follows that $r\left(\left(R[X] / L_{1}(\underline{f})\right)_{p}\right) \leq r$ for all $p \in \operatorname{Spec}\left(R[X] / L_{1}(\underline{f})\right)$ with $\operatorname{dim}\left(R[X] / L_{1}(\underline{f})\right)_{p} \leq(r+1)^{2}$.

For $q \in \operatorname{Ass}(R / J)$ let $\underline{h}=h_{1}, \cdots, h_{g}$ be a minimal generating set of J_{q}, let Y be a generic $g \times g$ matrix, set $(\underline{\beta})^{t}=Y(\underline{h})^{t}$, and consider $L_{1}\left(J_{q}\right)=$ $L_{1}(\underline{h}) \subset R_{q}[Y]$. Then by [4], 2.13.b, $\left(R_{q}[Y], L_{1}(\underline{h})\right)$ is equivalent to the pair $\left(R_{q}[X], L_{1}(\underline{f}) R_{q}[X]\right)$, and hence also $R_{q}[Y] / L_{1}(\underline{h})$ has the property that $r\left(\left(R_{q}[Y] / L_{1}(\underline{h})\right)_{p}\right) \leq r$ for all prime ideals p with $\operatorname{dim}\left(R_{q}[Y] / L_{1}(\underline{h})\right)_{p} \leq$ $(r+1)^{2}$. Instead of J_{q} and R_{q} we write again J and R. We have to show that $g \leq r$.

Suppose that $g>r$. Then $p=\left(m, I_{g-r}(Y)\right) \in \operatorname{Spec}(R[Y])$, with $p \supset$ $(\underline{\beta}, \operatorname{det}(Y))=L_{1}(\underline{h})$, and $\operatorname{dim}\left(R[Y] / L_{1}(\underline{h})\right)_{p}=(r+1)^{2}$. However, $r(R[Y] /$ $\left.L_{1}(\underline{h})\right)_{p}=\nu\left((J R[Y] /(\underline{\beta}))_{p}\right)=r+1$, which is impossible by our assumptions. Therefore, $g \leq r$.

Proposition 2.2. Let R be a Noetherian local ring which is a complete intersection, let I be an unmixed R-ideal of height one, and assume that I_{p} is principal for all $p \in \operatorname{Spec}(R)$ with $\operatorname{dim} R_{p} \leq 3$.

Then I is a principal ideal.
Proof. By [2], Theorem 3.13, Exp. XI, any complete intersection of dimension at least 4 is parafactorial, i.e., the Picard group of its punctured spectrum is trivial.

Now assume I is not principal and localize at a minimal prime p such that I_{p} is not princiral. Then R_{p} is a complete intersection of dimension ≥ 4 (by assumption) and I_{p} represents an element in Pic (U) where $U=$ $\operatorname{Spec}\left(R_{p}\right)-\left\{p_{p}\right\}$. Since R_{p} is parafactorial this element is trivial. Hence there is an element of $a \in R$ such that $(a)_{q}=I_{q}$ for all $q_{p} \neq p_{p}$. This implies that $(a)_{p}: I_{p}$ is p-primary which is impossible or else $I_{p}=(a)_{p}$ since I is unmixed.

Theorem 2.3. Let R be a Noetherian local ring which is a complete intersection, let I be a Cohen-Macaulay R-ideal of grade g, and assume that (R, I) has a deformation (\tilde{R}, \tilde{I}) where \tilde{I} is generically a complete intersection and \tilde{R} / \tilde{I} satisfies $\left(G_{4}\right)$. Let $\underline{\alpha}=\alpha_{1}, \cdots, \alpha_{g} \subset I$ be a regular sequence with $(\underline{\alpha}) \neq I$, and set $J=(\underline{\alpha}): I$.

Then either $\underline{\alpha}$ form part of a minimal generating set of J, or both I and J are complete intersections.

Proof. By [4], 2.16, there exists an \tilde{R}-ideal \tilde{J} linked to \tilde{I} with respect to a regular sequence $\underline{\tilde{\alpha}}$ such that (\tilde{R}, \tilde{J}) is a deformation of (R, J). As in the proof of Proposition 2.1 one sees that $\underline{\alpha}$ is part of a minimal generating set of J if and only if $\underline{\underline{\alpha}}$ is part of a minimal generating set of \tilde{J}. Hence we may replace $I, \underline{\alpha}, J$, by $\tilde{I}, \tilde{\underline{\alpha}}, \tilde{J}$ and thus assume that I is generically a complete intersection, and R / I satisfies $\left(G_{4}\right)$.

Then we may apply Proposition 2.1 with $r=1$, and we obtain $\operatorname{dim}_{k}((\underline{\alpha}, m J) / m J) \geq g-1$. After extending the residue class field of R if needed we may assume that $\alpha_{1}, \cdots, \alpha_{g-1}$ form part of a minimal generating set of J. Hence by factoring out ($\alpha_{1}, \cdots, \alpha_{g-1}$) we do not change the assumptions and conclusion of the theorem (except possibly the assumption that I is generically a complete intersection, which is irrelevant for the remainder of this proof).

Hence from now on $g=1$, and $\alpha_{1}=\alpha$. Let m be the maximal ideal of R. Assuming that $\alpha \subset m J$ we will show that J is principal. Then also I is principal since $g=1$. Let $\underline{f}=f_{1}, \cdots, f_{n}$ be a generating set of J, then $\alpha=\sum_{i=1}^{n} C_{i} f_{i}$ with $C_{i} \in m$. For variables $X=X_{1}, \cdots, X_{n}$ set $\tilde{\alpha}=$ $\sum_{i=1}^{n} X_{i} f_{i} \in R[X]$ and consider the first generic link $L_{1}(J)=L_{1}(\underline{f})=\tilde{\alpha} R[X]$: $J R[X]$. Since $C_{i} \in m,\left(R[X]_{(m, X)}, L_{1}(\underline{f}) R[X]_{(m, X)}\right)$ is a deformation of (R, I), and it follows as in the proof of Proposition 2.1 that $R[X] / L_{1}(\underline{f})$ satisfies $\left(G_{4}\right)$.

Suppose that J is not principal, then by Proposition 2.2 there exists a prime ideal $p \supset J$ with $\operatorname{dim} R_{p} \leq 3$ such that J_{p} is not principal. On the other hand, R / I being $\left(G_{4}\right)$ it follows that I_{p} is either Gorenstein or the unit ideal, and hence $\nu\left(J_{p}\right) \leq g+1=2$. Thus $\nu\left(J_{p}\right)=2$, since J_{p} is not principal. Moreover, any generic link of J_{p} is equivalent (in the sense of Definition 1.1b) to a localization of a generic link of J, and hence also satisfies $\left(G_{4}\right)$. Therefore localizing at p we may assume that $\operatorname{dim} R \leq 3$, and $\nu(J)=2$. Let $J=\left(h_{1}, h_{2}\right), \beta=Y_{1} h_{1}+Y_{2} h_{2} \in R\left[Y_{1}, Y_{2}\right]=S$, and $L_{1}(J)=$ $L_{1}\left(h_{1}, h_{2}\right)=\beta S$: JS. Then $\operatorname{dim} S / L_{1}(J) \leq 4$, and since $S / L_{1}(J)$ is $\left(G_{4}\right)$, it follows that $S / L_{1}(J)$ is Gorenstein. Therefore

$$
\nu\left((J S / \beta S)_{\left\langle m, Y_{1}, Y_{2}\right)}\right)=r\left(\left(S / L_{1}(J)\right)_{\left(m, Y_{1}, Y_{2}\right)}\right)=1
$$

which is impossible, since $\beta \in\left(Y_{1}, Y_{2}\right) J$ and therefore

$$
\nu\left((J S / \beta S)_{\left(m, Y_{1}, Y_{2}\right)}\right)=\nu(J)=2
$$

§3. Applications

The following corollary generalizes a result from [4] which states that if I is an ideal in a regular local ring R such that I is in the linkage class of a complete intersection and R / I satisfies $\left(G_{4}\right)$, then I is Gorenstein.

Corollary 3.1. Let R be a regular local ring, let I be a perfect R ideal which is generically a complete intersection, and assume that R / I satisfies $\left(G_{4}\right)$.

Then for any R-ideal J in the even linkage class of $I, r(R / J) \geq r(R / I)$. In particular if I is in the even linkage class of a Gorenstein ideal, then I is Gorenstein.

Proof. Assume that there is a sequence of links $I=I_{0} \sim I_{1} \sim \cdots \sim$ $I_{2 n}=J$. We will prove by induction on n that $r(R / J) \geq r(R / I)$. Let $n=1$. We may suppose that I is not a complete intersection. Let $\underline{\alpha}=$ $\alpha_{1}, \cdots, \alpha_{g}$ be the regular sequence defining the link $I \sim I_{1}$. By Theorem 2.3, $\underline{\alpha}$ is part of a minimal generating set of I_{1}, and hence $\nu\left(I_{1}\right)=\nu\left(I_{1} /(\underline{\alpha})\right)$ $+g=r(R / I)+g . \quad$ Let $\underline{\beta}=\beta_{1}, \cdots, \beta_{g}$ be the regular sequence giving the link $I_{1} \sim J$. Then $\nu\left(I_{1}\right) \leq \nu\left(I_{1} /(\beta)\right)+g=r(R / J)+g$. The above inequations now imply $r(R / J) \geq r(R / I)$. Now let $n \geq 2$. In [4], 2.17 we showed that in some local ring $S=R(X)$, which is obtained from R by a purely transcendental extension of the residue class field, one can find a sequence of links $I S=J_{0} \sim J_{1} \sim \cdots \sim J_{2 n}$ such that $S / J_{2 n-2}$ is generically a complete intersection and satisfies $\left(G_{4}\right)$ (since R / I has these properties), and moreover $r\left(S / J_{2 n}\right) \leq r(R / J)$. Then by induction hypothesis, applied to $I S$ and $J_{2 n-2}, \quad r(R / I)=r(S / I S) \leq r\left(S / J_{2 n-2}\right)$ and $r\left(S / J_{2 n-2}\right) \leq r\left(S / J_{2_{n}}\right)$. Combining the above inequalities we obtain $r(R / I) \leq r(R / J)$.

Let R be a regular local ring with residue class field k, and let I be an R-ideal. Consider the graded algebra Λ. $=\operatorname{Tor}^{R}(R / I, k)$. We are interested in the condition $\Lambda_{1}^{2}=0$, which means that in a minimal free R resolution of R / I, none of the Koszul relations on I can occur among the minimal generators of the first syzygy module of I. It is well-known that $\Lambda_{1}^{2}=0$ if I is a Gorenstein ideal of grade 3, but not a complete intersection ([1]). The next corollary generalizes this result:

Corollary 3.2. Let R be a regular local ring, let I be a perfect R ideal of grade 3, which is not a complete intersection, and assume that I is generically a complete intersection and R / I satisfies $\left(G_{4}\right)$.

Then $\Lambda_{1}^{2}=0$.

Proof. Let m be the maximal ideal of R, and let $F: 0 \rightarrow F_{3} \xrightarrow{\varphi_{3}} F_{2}$ $\xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0} \rightarrow R / I \rightarrow 0$ be a minimal free R-resolution of R / I. We choose bases $F_{2}=\oplus R d_{i}, F_{1}=\oplus \operatorname{Re}_{i}$, and set $f_{i}=\varphi_{1}\left(e_{i}\right)$.

Suppose that $\Lambda_{1}^{2} \neq 0$. Then we may assume that $\varphi_{2}\left(d_{1}\right)=f_{2} e_{1}-f_{1} e_{2}$. It is clear that ht $\left(f_{1} R+f_{2} R\right)=2$, since otherwise $f_{1}=a b_{1}$ and $f_{2}=a b_{2}$ with $0 \neq a \in m, b_{1} \in R, b_{2} \in R$, and hence $\varphi_{2}\left(d_{1}\right)=a\left(b_{2} e_{1}-b_{1} e_{2}\right)$ with $b_{2} e_{1}-$ $b_{1} e_{2} \in \operatorname{ker} \varphi_{1}$ which is a contradiction to the minimality of F. Because ht $\left(f_{1} R+f_{2} R\right)=2$, we may complete f_{1}, f_{2} to a regular sequence $\underline{f}=f_{1}, f_{2}, f_{3}$ $\subset I$. Let K. $=K(\underline{f}, R)=\Lambda\left(R g_{1} \oplus R g_{2} \oplus R g_{3}\right)$ be the Koszul complex, and $u .: K . \rightarrow F$. a morphism of complexes with $u_{0}=\mathrm{id}_{R}$. We may choose $u_{2}\left(g_{1} \wedge g_{2}\right)=-d_{1}$.

Set $J=(\underline{f}): I$. Since the R-dual (denoted by $—^{*}$) of the mapping cone of u. yields a resolution of R / J ([6]), we obtain the following presentation of J :

$$
K_{1}^{*} \oplus F_{2}^{*} \xrightarrow{\left(\begin{array}{cc}
\psi_{2}^{*} & 0 \\
u_{2}^{*} & \varphi_{3}^{*}
\end{array}\right)} K_{2}^{*} \oplus F_{3}^{*} \longrightarrow J \longrightarrow 0
$$

Since $u_{2}\left(g_{1} \wedge g_{2}\right)=-d_{1}$ and hence $u_{2}^{*}\left(d_{1}^{*}\right) \notin m K_{2}^{*}$, it follows that $\nu(J)<$ $\operatorname{rank}\left(K_{2}^{*} \oplus F_{3}^{*}\right)=3+r(R / I)$. Thus f_{1}, f_{2}, f_{3} cannot be part of a minimal generating set of J. This is a contradiction to Theorem 2.3.

References

[1] D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math., 99 (1977), 447-485.
[2] A. Grothendieck, Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux (SGA II), Exposé XIV, Advanced Studies in Mathematics, Vol. II (1968), North Holland Publishing Co., Amsterdam.
[3] C. Huneke and B. Ulrich, Divisor class groups and deformations, Amer. J. Math., 107 (1985), 1265-1303.
[4] --, The structure of linkage, Ann. of Math., 126 (1987), 277-334.
[5] ——, Algebraic linkage, to appear, Duke J. Math.
[6] C. Peskine and L. Szpiro, Liaison des variétés algébriques, Invent. Math., 26 (1974), 271-302.
C. Huneke

Department of Mathematics
Purdue University
West Lafayette, IN 47907
B. Ulrich

Department of Mathematics
Michigan State University
East Lansing, MI 48824

