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Universality of stretching separation
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We develop a model to predict the fragmentation limit of drops colliding off-centre. The
prediction is excellent over a wide range of liquid properties and it can be used without
adjusting any parameter. The so-called stretching separation is attributed to the extension
of the merged drop above a critical aspect ratio of 3.25. The evolution of this aspect ratio
is influenced by the liquid viscosity and can be interpreted via an energy balance. This
approach is then adapted to drop–jet collisions, which we model as consecutive drop–drop
collisions. The fragmentation criterion is similar to that observed for drop–drop collisions,
while the evolution of the stretched jet aspect ratio is modified to account for the different
flow fields and geometry.
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1. Introduction

Collisions of two or more droplets of one single liquid in a gaseous environment is a
common phenomenon whose importance motivated many theoretical (Roisman 2009;
Roisman, Berberović & Tropea 2009), numerical (Sun et al. 2015; Li 2016; Moqaddam,
Chikatamarla & Karlin 2016; Huang, Pan & Josserand 2019) and experimental (Brenn,
Valkovska & Danov 2001; Brenn & Kolobaric 2006; Pan, Chou & Tseng 2009) studies.
Collisions may cause droplets to permanently coalesce and trigger rainfall (Jayaratne &
Mason 1964). They may also lead to fragmentation and therefore to the formation of drops
with different sizes and trajectories. These phenomena also occur in industrial processes,
which produce or employ drops, such as coating, injection, cooling,. . . (Brenn, Durst &
Tropea 1996). The consequences depend on the application, but can be severe. It may
alter the delivery of active ingredients from spray-dried particles or modify the intake
of pesticide sprayed onto crops. Thus, if not controlled, the collision outcomes must
at least be predicted. Results across multiple studies reveal that coalescence, bouncing,
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reflexive and stretching separations are the four main outcomes of drop–drop (D–D)
collisions. Which outcome is obtained depends on the collision parameters and on the
liquid drop behaviour characterized by the drop Ohnesorge number Ohd = μd/

√
ρdσdDd,

which compares the relative importance of the capillary to the viscous contribution. Here,
μd, ρd, σd and Dd are the drop liquid viscosity, density, surface tension and the drop
diameter, respectively. Note that Ohd is independent from U, the relative drop velocity.
Classically, regime maps are represented for a fixed Ohd using the dimensionless impact
parameter X, which quantifies the collision eccentricity, and the drop Weber number
Wed = ρdDdU2/σd, which represents the ratio of inertia over capillarity (Ashgriz & Poo
1990; Jiang, Umemura & Law 1992; Qian & Law 1997; Saroka & Ashgriz 2015).

This work focuses on off-centre drop collisions, more precisely on the stretching
separation causing the fragmentation of the otherwise permanently merged drop. Despite
case-to-case parameters adjustment, the existing models have limited validity ranges
(Gotaas et al. 2007; Rabe, Malet & Feuillebois 2010; Finotello et al. 2017; Pan et al. 2019).
More recently, Al-Dirawi et al. (2021) proposed a new model free of adjustable parameters,
but its derivation is empirical and its applicability limited to 0.02 < Ohd < 0.14. We
propose a physical analysis and establish a unique, general and robust model predicting
the stretching separation for D–D collisions. It is valid at least for 0.008 < Ohd < 0.325,
i.e. over the entire experimentally screened domain. We additionally extend the concept
of stretching separation to drops colliding with a continuous jet. These collisions, also
called in-air microfluidics, create well-defined liquid structures (Planchette, Hinterbichler
& Brenn 2017a), which can be solidified into fibres or capsules with high precision
and throughput (Visser et al. 2018). Yet, studies on drop–jet (D–J) collisions remain
rather rare. Chen, Chiu & Lin (2006) investigated the out-of-plane collisions of water
drops with a water jet, followed by Planchette et al. (2017a, 2018), who worked with
immiscible liquid pairs on in-plane collisions. In this case, the outcomes were classified
according to the fragmentation of either the drops, the jet, both phases or none. While
the drop fragmentation limit has been recently well studied (Baumgartner et al. 2020a;
Baumgartner, Brenn & Planchette 2020b), that of the jet remains poorly explained. We
show that the fragmentation of the jet is caused by its excessive stretching and can be
predicted by considering the D–J collisions as a succession of off-centre D–D collisions.
The article is organized as follows. In the next section, the experimental set-up and
problem parameters are presented. Section 3 focuses first on the D–D collisions and then
on the D–J collisions. The article ends with the conclusions.

2. Experimental set-up and problem parameters

All D–D and D–J collisions are carried out with the same set-up depicted in figure 1(a).
Here and thereafter, subscript d corresponds to drop liquid properties and parameters while
j refers to those of the jet. For D–D collisions, two droplet generators (Brenn et al. 1996) are
excited with the same frequency fd (5 kHz < fd < 24 kHz), while for D–J collisions, only
one (DG1) is activated. An LED stroboscope (illumination) is synchronized with fd so that
each picture consists of hundreds of superimposed collisions illuminated by short flashes
of approximately 100 ns each. The liquids are supplied with two independent pressurized
tanks. Two cameras record the collisions in front view (Cam1, observation of the drop and
jet deformation, resolution up to 4 μm per pixel) and orthogonal view (Cam2, in-plane
alignment of the trajectories with microtraverses).

Figure 1(b,c) shows the problem parameters associated with D–D and D–J collisions,
respectively. All geometrical parameters are extracted from recorded pictures with
the public-domain software ImageJ. Here Dd and Dj stand for the drop and jet
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Figure 1. (a) Experimental set-up and problem parameters for (b) D–D and (c) D–J collisions.

diameter, respectively. For D–D collisions, Ld,1 and Ld,2 correspond to the distance
between two consecutive drops of each stream. The droplet velocities are given by
ud,i = Ld,i fd. They vary between 3 m s−1 and 13 m s−1 and provide the relative impact
velocity U = ud,2 − ud,1, which ranges from 1.9 m s−1 to 5.4 m s−1. Practically, we
use three liquids: water (W, ρ = 995 kg m−3, μ = 0.98 mPa s, σ = 72.5 mN m−1), an
aqueous glycerol solution (G, ρ = 1125 kg m−3, μ = 5.1 mPa s, σ = 68.0 mN m−1) and
one silicone oil (SO, ρ = 949 kg m−3, μ = 18.5 mPa s, σ = 20.5 mN m−1) and vary the
drop diameter between 175 μm and 367 μm , covering 0.008 < Ohd < 0.325 with 15 <

Wed < 265.
For D–J collisions, we further introduce the spatial period of the jet Lj = |uj|/fd, where

uj is the flow-rate equivalent jet velocity (3.5 m s−1 < |uj| < 11.5 m s−1). It is deduced
from the measured mass flow rate knowing the liquid density and jet section. The relative
impact velocity U = ud − uj varies between 3 m s−1 and 8 m s−1 and is adjusted to be
perpendicular to the jet axis. More precisely, its component parallel to the jet axis obeys
U‖ < 0.1U. There, the drops are always made of the aqueous glycerol solution, while
the jet consists of silicone oils. Their density and surface tension are almost constant
(845 < ρ < 949 kg m−3, 17 < σ < 20.5 mN m−1) while their viscosity varies between
1.4 mPa s and 18.5 mPa s. With an interfacial tension of 32 ± 3 mN m−1, the jet always
totally wets the drops. The jet diameter is equal to 280 ± 10 μm, resulting in jet Ohnesorge
numbers 0.02 < Ohj = μj/

√
ρjDjσj < 0.25. The droplet diameter varies between 190 μm

and 370 μm, leading to diameter ratios 0.7 < Δ = Dd/Dj < 1.3. Further information can
also be found in Baumgartner et al. (2020a,b).

3. Discussion

While different in nature, D–D and D–J collisions clearly show similarities, encouraging
the build of some analogy between the two collision processes, see figure 2(a–d). Before
doing so, let us focus on D–D collisions. Our model is based on two ingredients: (i) a
fragmentation criterion, which corresponds to a critical value of Ψd = max[Hd(t)/Dd],
the maximum dimensionless drop extension (see figure 2a,b) and (ii) a function, which
describes the variations of Ψd with the liquid properties and collision parameters.

First, Hd(t)/Dd is measured for several instants after the collision and fitted with a
third-order polynomial to obtain Ψd, its maximum value with a typical measurement
uncertainty of less than 3 %, see figure 2(e). Note that the deformation undergone by drops
colliding off-centre is not an axisymmetric lamella, as seen for head-on collisions. Thus,
Hd, the maximal extension is the end-to-end length of a stretched entity and not a maximal
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Figure 2. (a–d) Drop and jet trajectories go from left to right. The D–D collision in (a) coalescence (Dd =
341 μm, X = 0.41, Wed = 31.5, Ohd = 0.033) and (b) stretching separation (Dd = 340 μm, X = 0.61, Wed =
31.3, Ohd = 0.033). The D–J collision in (c) drops-in-jet (Dd = 275 μm, X̃ = 1.64, Wed = 30, Ohj = 0.246)
and (d) capsules (Dd = 292 μm, X̃ = 1.86, Wed = 48, Ohj = 0.246). (e) Measured temporal evolution of
Hd/Dd (symbols) and its fit (dashed line) providing its maximum, Ψd . Collision eccentricity for ( f ) D–D
collisions, X = x/Dd , and (g) D–J collisions, X̃ = 2x̃/Dj.

diameter. We verify that the separation threshold corresponds to a constant critical value
of Ψd of 3.25 (dashed line in figure 3a), in agreement with the numerical results of Saroka
& Ashgriz (2015) and the recent experimental findings of Al-Dirawi et al. (2021). This
provides the fragmentation criterion (i). Note that this value remarkably close to π, the
theoretical one (Rayleigh 1892), is obtained by normalizing the critical extension with
the initial drop diameter, as done by Saroka & Ashgriz (2015); Al-Dirawi et al. (2021).
Assuming a cylindrical shape and using volume conservation leads to a critical value of
more than 5, well above the classical result of Plateau–Rayleigh.

We then derive the evolution of Ψd with the liquid properties and collision parameters,
i.e the second ingredient of our approach. We consider a purely geometric contribution
Ψd|Wed≈0 and an inertial one Ψd|Wed /= 0. The relative velocity U is projected parallel
(Uho) and normally (U s) to the line connecting the two drop centres at contact (see
figure 2f ). It shows how the merged drop is elongated along U s in the absence of inertia.
This elongation contributes to Ψd in the form of a purely geometric term Ψd|Wed≈0 =
Hd|Wed≈0/Dd, the normalized length of the red segment in figure 2( f ). The latter is a
function of the dimensionless impact parameter, X = x/Dd, with x, the projection normal
to U of the drop-centre-to-drop-centre segment at contact. Geometric considerations
give Ψd|Wed≈0 = (X + 1)/

√
1 − X2, which can be linearized for 0.3 < X < 0.8 into

Ψd|Wed≈0 ≈ 2.7X + 0.5. The inertial contribution is obtained by considering that some
of the initial kinetic energy (πρdDd

3U2/24) is converted into surface energy of the
stretched drop (≈ σdπHdDd) providing at first order Ψd|Wed /= 0 ≈ f (X, Ohd)Wed/24 with
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Figure 3. D–D collisions: (a) Ψd as a function of Wed for Ohd = 0.033 and different X. Coalescence (full
symbols) and separation (empty symbols). (b) sd = ∂Ψd/∂Wed from (a). Inset: log(sd/X) against log(Ohd)

for all experiments (Ohd = 0.008, 0.033, 0.325). (c) Experiments vs model – (3.2). Main graph: our data
(Ohd = 0.008, 0.033, 0.325); inset: data of Al-Dirawi et al. (2021) (0.021 ≤ Ohd ≤ 0.214, 0.24 < X < 0.55
and 30 ≤ Wed ≤ 130).

f (X, Ohd) a function that accounts for the ‘relevant inertia’. Here the relevant inertia
causes the merged drop to stretch. Obviously, it corresponds to the inertia of the almost
unaffected drop portions that continue on their initial trajectories, see not hatched portions
in figure 2( f ). Compared with the drops’ inertia, that of the almost unaffected portions
must be reduced to account for their actual mass (or volume). Neglecting strong distortion,
each portion volume is given by V = (3X2 − 2X3)Vd with Vd the volume of one drop.
The first inertia correction therefore corresponds to a factor V/Vd = (3X2 − 2X3), which
gives after linearization V/Vd ≈ (1.4X − 0.2) and thus a linear variation of f (X, Ohd)

with X. This scaling (Ψd|Wed /= 0 ∝ XWed) is specific to off-centre collisions and cannot
be extrapolated to head-on impacts. For X � 0.3, an axisymmetric lamella forms, whose
maximal diameter scales as

√
Wed (Wildeman et al. 2016; Planchette et al. 2017b). To go

further, the viscous losses, i.e. the dependency with Ohd, must be estimated.
Analytically establishing the quantitative expression of this second correction is rather

complex and we decide here to use the numerical findings of Finotello et al. (2017).
The computed normalized remaining energy is replotted as a function of X and Ohd, see
Appendix. It provides f (X, Ohd) ≈ 0.31XOh−0.18, in agreement with the expected linear
variation of f with X. Consequently, we obtain Ψd|Wed /= 0 ≈ (0.31/24)Oh−0.18

d Wed and
thus the overall theoretical deformation:

Ψd,th = αd,thOhmth
d XWed + βd,thX + γd,th. (3.1)

The constants βd,th = 2.7 and γd,th = 0.5 come from Ψd|Wed≈0, and αd,th = 0.31/24 ≈
0.013 and mth = −0.18 originate from Ψd|Wed /= 0 and thus from the estimation of the
relevant inertia. Due to the uncertainty of the computed findings, the approximation
caused by linearization and the crude estimation of the stretched drop surface energy,
we do not expect αd,th and mth to be quantitatively well predicted. We nevertheless
anticipate a qualitative agreement of (3.1), which we probe by plotting the experimental
data Ψd as a function of Wed for different X. While these curves are obtained for
all experiments (0.008 < Ohd < 0.325), only those corresponding to Ohd = 0.033 are
shown in figure 3(a). Note that the line corresponding to Ψd = 3.25 separates well the
coalescence (full symbols) from the separation (empty symbols). In agreement with (3.1),
Ψd increases linearly with Wed. Saroka & Ashgriz (2015), who numerically studied water
drop collisions, reported similar variations. Further, for a given Ohd and fixed X, the
curve slopes sd are linear in X (figure 3b) as expected by (3.1) (first term). Repeating
the experiments with three liquids and thus three Ohd, we find that ad = sd/X is equal to
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0.078 for W (Ohd = 0.008), 0.066 for G (Ohd = 0.033) and 0.047 for SO (Ohd = 0.325),
and thus decreases with increasing Ohd. The scaling ad ∝ Ohd

−0.14 (see dashed line in the
insert of figure 3b) is reasonably well captured by (3.1), which predicts ad ∝ Ohd

−0.18.
To obtain a quantitative agreement, the experimental results Ψd are fitted by the model

equation Ψd,mod = αd,modOhmmod
d XWed + βd,modX + γd,mod. There, mmod and αd,mod are

only adjusted once, while βd,mod and γd,mod are taken equal to their theoretical values,
βd,th and γd,th, see figure 3(c). We obtain an excellent prediction with

Ψd,mod = 0.041Oh−0.128
d XWed + 2.7X + 0.5. (3.2)

The discrepancy between mth and mmod (28 %) could originate from the integration by
Finotello et al. (2017) of the losses over the whole process instead of the first instants,
see Appendix for details. The fit also provides αd,mod = 0.041, while the theory gives
αd,th = 0.013. The difference (factor 3) can be explained by the crude estimation of the
stretched drop surface. All constants being the same, at least for 0.008 < Ohd < 0.325,
(3.2) constitutes a model which is valid over a very wide domain without the need for
any adjustment. The agreement is also excellent while using the data of Al-Dirawi et al.
(2021) (inset of figure 3c). This indeed indicates that the stretching separation is not purely
inertial as previously reported by Al-Dirawi et al. (2021). In fact, the authors probed fewer
values of Wed over a smaller range of Ohd, which did not allow to identify the variations
of ∂Ψd/∂X with Ohd.

We then predict the separation threshold in the form of an (X, Wed) relation by fixing in
(3.2) Ψd,mod to its critical value of 3.25. The results are compared to those of the literature,
see figure 5(a–c). First of all, for all considered Ohd, the predicted thresholds (continuous
lines) perfectly match the experimental ones (symbols). We further observed a very good
agreement to previously proposed models, which involved adjusted parameters while being
limited to given values or narrow ranges of Ohd (Ashgriz & Poo 1990; Jiang et al. 1992;
Gotaas et al. 2007; Finotello et al. 2017). We recall that with our approach no parameter is
adjusted to cover collisions with 0.008 < Ohd < 0.325.

Let us now apply these results to D–J collisions. In former studies (Planchette et al.
2018; Baumgartner et al. 2020a,b), the spatial period of the jet Lj was normalized by Dj
and used to build a pseudo-Rayleigh criterion. A critical value of 2 was found to roughly
describe the jet fragmentation threshold in the limit of moderate jet viscosity. Here, the
analogy with D–D collisions requires the introduction of a new parameter to quantify
the eccentricity of the successive collisions. As sketched in figure 2(g), these collisions
involve a drop and the jet portions found before and after this drop (lighter grey). Note
that the jet portion directly impacted by the drop (hatched) is associated with the drop to
form a compound drop. Thus, the distance between the centre of mass of the compound
drop and that of the jet portions found before or after is given by x̃ = (Lj + Dd)/4. This
distance is counted twice since each compound drop interacts with two such jet sections.
Using Dj for normalization, the equivalent impact parameter reads X̃ = (Lj + Dd)/(2Dj).

We record several D–J collisions and define, similarly to Hd(t)/Dd, the dimensionless
extension of the jet Hj(t)/Dj, which is measured perpendicularly to the final D–J
compound trajectory (figure 2c,d). Its temporal evolution is fitted by a third-order
polynomial providing its maximum value Ψj = max(Hj(t)/Dj). The procedure and
accuracy is similar to that of D–D collisions, see figure 2(e).

We first confirm that the jet fragmentation corresponds to a critical value of Ψj, see
figure 4(a). Interestingly, this critical value is 3.0, thus remarkably close to that found for
the D–D stretching separation and underlines the relevance of our analogy. We then plot
for different X̃, the evolution of Ψj with Wed and evidence a linear dependency similar to
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Figure 4. D–J collisions: (a) Ψj against Wed for different X̃, Ohj = 0.246 and Δ = 1.0. Coalescence (full
symbols) and separation (empty symbols); (b) sj = ∂Ψj/∂Wed against X̃ from (a); (c) experiments vs model
(3.3) with 0.021 < Ohj < 0.25 and 0.7 < Δ < 1.3.

Ψd for D–D collisions. The curve slopes, sj, are again linear in X̃ (figure 4b) and increase
with Ohj. For D–J collisions, the relevant Ohnesorge number is that of the jet liquid, since
the viscous losses mainly take place in the interstitial jet portions, which are the most
stretched. We therefore propose to describe the jet stretching as

Ψj,mod = αjOhn
j X̃Wed + βjOhn

j X̃ + γj. (3.3)

Here again, αj, βj and γj are constants. The first term accounts for the drop inertia reduced
by viscous losses taking place in the jet liquid only. The last two terms correspond to
geometrical effects. As shown in figure 4(c), the agreement is again very good. The fit
provides −0.10 for the exponent n, close to −0.128 found for mmod and therefore supports
the assumption that the viscosity (of drop and jet) plays, despite different geometries, a
similar role in both processes (D–D and D–J collisions, respectively). Here αj, βj and γj are
found to be +0.0066, +3.98 and −5.85, respectively. The slight deviation observed for D–J
could have several origins. First of all, the system centre of mass is approximated by that of
the jet, which slightly affects the measurement of the collision inertia. Second, immiscible
liquids are used, which modify the flow field and thus the viscous losses. Due to the lack of
existing data, (3.3) could not yet be tested against results obtained with miscible liquids. It
should definitively be done in future investigations. Finally and despite its similarities, the
process itself is different. For D–J collisions, the system is continuous, and mainly shear
occurs between the colliding elements. For D–D, the drop pairs constitute a close system,
which can rotate around their centre of mass, consuming part of the available inertia.

To explain why, in contrast to Ψd|Wed≈0, Ψj|Wed→0 = βjOhn
j X̃ + γj is a function of Ohj,

it is useful to recall that Ohnesorge numbers can be seen as the ratio of a bulk motion time

scale, tμ = μjDj/σj (Stone & Leal 1989), and an interfacial time scale, tσ =
√

ρjDj
3/σj

(Rayleigh 1892). At intermediate time scales, when Ψj is measured, the morphology of the
compound jet depends on their relative kinetics and therefore on the jet liquid properties
via its Ohnesorge number. For high Ohj, tμ > tσ , the capillary effects are fast enough to
significantly flatten the outer jet surface, leading to small Ψj|Wed→0. The contrary happens
for small Ohj. We also verify that increasing Lj or Dd as well as decreasing Dj (thus
increasing X̃) leads – as expected – to greater Ψj|Wed→0.

Note that given the definition of X̃ and the value of βj, γj must be negative to represent
separated successive and not overlapping drop collisions. We verify that Ψj|Wej→0 > 1 in
all experiments.
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Figure 5. (a–c) The D–D collisions: separation transition for Ohd = 0.008 (a), Ohd = 0.033 (b) and Ohd =
0.325 (c) with coalescence (circles) and separation (stars). Solid lines, (3.2) with Ψd,mod = 3.25; dashed
lines, Jiang et al. (1992); dash-double-dotted lines, Finotello et al. (2017); dotted line, Ashgriz & Poo (1990);
dot-dashed line, Gotaas et al. (2007). (d–f ) The D–J collisions: transition between continuous (circles) and
fragmented jet (stars) for Ohj = 0.021 (d), Ohj = 0.073 (e) and Ohj = 0.246 ( f ). Solid lines: (3.3) with
Ψj,mod = 3.0. Dashed line (e): former criterion Lj/Dj = 2.

As for D–D collisions, fixing Ψj,mod to 3.0 in (3.3) enables the prediction of the
transition between continuous (circles) and fragmented jet (diamonds), see solid lines
in figure 5(d–f ). The agreement between the model (solid lines) and the experiments
(symbols) is very good, significantly better than with the former criterion of Lj/Dj ≈ 2.0
(horizontal dashed line). It is valid over a wide range of Ohj (0.021 < Ohj < 0.246) and
for different drop and jet diameters (0.7 < Δ < 1.3) without adjusting any parameter.

4. Conclusions

In conclusion, we have investigated off-centred D–D and D–J collisions and found a
universal model for the transition between coalescence and fragmentation caused by
stretching separation. Our approach is based on (i) a simple transition criterion based on
a critical drop or jet extension of 3.25 or 3.0, and (ii) the evolution of this drop or jet
extension with the liquid properties and collision parameters. In contrast to other models
of D–D collisions, our model remains valid for a wide range of Ohnesorge numbers – at
least over 0.008 < Ohd < 0.325 – without adjusting any parameter. For D–J collisions,
our model is valid at least for 0.02 < Ohj < 0.25 and 0.7 < Δ < 1.3 with a precision
going far beyond the existing approach based on a critical Lj/Dj. The similarities between
the collision morphologies, the fragmentation criterion (Ψd = 3.25 and Ψj = 3.0) and the
evolution of the maximum drop or jet extension (linear in Wed, linear in X or X̃ and
modulated by Oh to the power of m or n) underline the universality of our approach and
of the so-called stretching separation. It could certainly be successfully applied to further
situations, such as miscible D–J collisions and beyond.
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Appendix. Viscous losses

To estimate the viscous losses taking place in the first part of D–D collisions, we make
use of the numerical results of Finotello et al. (2017). More precisely, we replot the
data of their figure 9. In its original form, it represents the variations of the dissipated
energy DE over the total initial energy TE (approximated by the initial kinetic energy) as
a function of the impact parameter X for different capillary numbers Ca = μdU/σd and
Weber numbers: X ∈ [0.3, 0.8] and Ohd = Cad/

√
Wed ∈ [0.01, 0.20]. From these results,

we derive the normalized remaining energy (1 − DE/TE), which we plot as a function
of X and a power of Ohd (see figure 6). The linear increase with X is expected since
the region of high dissipation rate grows linearly for decreasing X, see Finotello et al.
(2017). We further choose to use Ohd as it is commonly employed to weight the relative
importance of viscosity and capillarity, the inertia being here indirectly accounted for
via the normalization with the total initial energy, which is approximated by the initial
kinetic energy. By doing so, the best fit reveals that the remaining energy, which is left for
stretching the ligament between the drops, scales as (1 − DE/TE) ∝ XOh−0.18

d . It is worth
noting that Finotello et al. consider the duration of the entire collision process. For low Ohd
(Ohd ≈ 0.02, see figure 5(a) of Finotello et al. 2017), up to 23 % of the calculated losses
arise after Ψd has been reached. For larger Ohd (Ohd ≈ 0.1, see figure 5(b) of Finotello
et al. 2017), these subsequent losses are more limited, in the range of 6 %. This may lead
to an overestimation of the viscous losses in the case of small Ohd and could explain why
in our model, which considers only the first phase of the collision until Ψd is reached, an
exponent of −0.128 in (3.2) provides a better agreement than the value of −0.18.

Finally, extrapolating this scaling to head-on collisions shows that approximately 25 %
of the initial energy remains. While in reasonable agreement with the 35 % found
by Planchette et al. (2017b), the comparison is questionable. Off-centre and head-on
collisions give rise to different deformation and flow fields, which call for separate
modelling. With Eμ, the viscous losses until maximal extension, and Ek, the initial kinetic
energy, we have Eμ ≈ 0.65Ek for X ≈ 0 and Eμ ≈ (0.75 − 0.31XOhd

−0.18)Ek for 0.3 � X.
How to connect these scalings remains an open question.
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