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Burns-Krantz rigidity in non-smooth
domains
Włodzimierz Zwonek

Abstract. Motivated by recent papers [11] and [19] we prove a boundary Schwarz lemma (Burns-
Krantz rigidity type theorem) for non-smooth boundary points of the polydisc and symmetrized
bidisc. Basic tool in the proofs is the phenomenon of invariance of complex geodesics (and their left
inverses) being somehow regular at the boundary point under the mapping satisfying the property
as in the Burns-Krantz rigidity theorem that lets the problem reduce to one dimensional problem.
Additionally, we make a discussion on bounded symmetric domains and suggest a way to prove the
Burns-Krantz rigidity type theorem in these domains that however cannot be applied for all bounded
symmetric domains.

1 Burns-Krantz rigidity property—an introduction

Consider the following general problem. Let D be a domain in C
n and p ∈ ∂D.

Consider a holomorphic mapping F ∶ D → D that satisfies the property F(z) = z +
o(∣∣z − p∣∣3), z ∈ D—in such a situation we say that F satisfies the Burns-Krantz
condition at the boundary point p. We want to get Burns-Krantz rigidity type theorem
for the pair (D, p)—in other words under which assumptions on D and p one may
conclude that F satisfying the Burns-Krantz condition is the identity. Though there
are results on the similar property with the exponent other than 3 we restrict our
interest only to this special situation. Let us call the property for (D, p) as the
Burns-Krantz rigidity property (by default with the exponent 3). In our considerations
we focus on Lempert domains (that is taut and such that the Lempert theorem
holds).

We start with some general observation that we then apply in concrete situations. It
is also worth mentioning that the interest of the author in the non-smooth case arose
after the author has learnt about the results in [11] and [19] where the Burns-Krantz
rigidity type theorem was proven among others for smooth boundary points of the
polydisc and bounded symmetric domains.

The original paper of Burns-Krantz appeared in 1994 (see [7]) and the Burns-
Krantz rigidity property was proven for D being a strongly pseudoconvex domain
and arbitrary boundary point p. Note that at the time of appearance the result was new
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2 W. Zwonek

even in dimension one and the disc. Later a number of more general results appeared.
In our presentation we may find some resemblance to ideas that can be found in [13]
and many subsequent papers where the theory of Lempert was used (see e.g., [17, 18]).
However, unlike the many existing papers we omit the assumption of smoothness
of the domain. Instead we concentrate on the regularity assumption of the complex
geodesics and left inverses that are guaranteed by the Lempert theorem for sufficiently
regular domains (like strongly (linearly) convex ones)—though these properties often
hold without the assumption of smoothness of domains. This lets us work in the non-
smooth convex setting (more generally Lempert domains) and conclude the Burns-
Krantz rigidity property for important domains, like the polydisc (and some bounded
symmetric domains) and the symmetrized bidisc. Let us underline that though the
method developed by us may also be applied in smooth case we restrict ourselves
mostly to the non-smooth case as this seems to give new results.

Rough idea of our method is to associate with the given complex geodesic the
family of its left inverses and then apply the one-dimensional Burns-Krantz rigidity
theorem for the disc to conclude that the complex geodesic under the mappings
satisfying the Burns-Krantz condition preserves the complex geodesicity and the
family of left inverses for complex geodesics.

As a good source for many results in the direction and an updated survey of
the known results (in smooth convex case) and potential open problems we recall
the paper of Zimmer [21]. As to basics on the theory of holomorphically invariant
functions and Lempert theory we refer the readers to [15].

1.1 Invariance of complex geodesics under maps satisfying the Burns-Krantz
condition

Recall that a domain D ⊂ Cn is called a Lempert domain if D is taut and the Lempert
theorem holds on D (see [17, 18]). This may also be formulated so that through
any distinct points of D there is a complex geodesic passing through them. The
holomorphic mapping f ∶ D→ D is called a complex geodesic if there is a holomorphic
function G ∶ D → D such that G ○ f is the identity (in some situations we may only
assume G ○ f to be an automorphism ofD). The function G is called of a left inverse for
f. By the Lempert theorem (see [17, 18]) strongly linearly convex or bounded convex
domains are Lempert domains. We also know that the symmetrized bidisc and the
tetrablock are Lempert domains (see [4, 9, 10]).

Consider a complex geodesic f ∶ D→ D that is Lipschitz continuous at 1, i.e., f
extends continuously to 1 with f (1) = p and for an open neighborhood U of 1 the
mapping f is Lipschitz continuous on a set U ∩ (D ∪ {1}). Consider also a left inverse
G ∶ D → D for f that is Lipschitz continuous at p. Then G( f (λ)) = λ, λ ∈ D (and then
G(p) = 1).

As already announced we formulate a result that instead of the regularity assump-
tion of the domain lets us work with regular (Lipschitz) complex geodesics and left
inverses.

One should mention that the idea of the proof of Proposition 1.1 may be essentially
found in the proof of Theorem 2.5 in [13] (compare also [14, Corollary 2]).
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Burns-Krantz rigidity in non-smooth domains 3

Proposition 1.1 Let D be a domain in C
n , p ∈ ∂D and let F ∶ D → D be holomorphic

that satisfies the property F(z) = z + o(∣∣z − p∣∣3). Assume that f ∶ D→ D is a complex
geodesic that is Lipschitz continuous at 1 and f (1) = p and let G ∶ D → D be a left inverse
to f that is Lipschitz continuous at p. Then G is a left inverse to F ○ f ; in particular, F ○ f
is a complex geodesic.

Proof By the assumptions for λ ∈ D close to one we have

G(F( f (λ))) − λ = G(F( f (λ))) −G( f (λ)) = O(F( f (λ)) − f (λ))
= o(∣∣ f (λ) − p∣∣3) = o(∣∣ f (λ) − f (1)∣∣3) = o(∣λ − 1∣3).(1.1)

It is sufficient to apply the Burns-Krantz rigidity theorem for the disc to get the
conclusion. ∎

Remark 1.2 Note that the above proposition leads in a natural way to a slice rigidity
property as defined and discussed in [6]. Roughly speaking under which assumptions
on the domain a holomorphic mapping preserving Kobayashi isometrically complex
geodesics from a complete foliation of the domain with the common boundary point
must be a biholomorphism.

It also should be remarked that the case of strongly linearly convex domains lets
the existence of smooth complex geodesics joining boundary points and providing
the existence of left inverses as proven by Lempert—as the “regular” left inverse means
also that it assumes the values at ∂D only along the boundary of the complex geodesic
f (∂D) (see e.g., [8, 17]). That kind of property gives in such a situation that F is the
identity when restricted to the image of complex geodesics with the given boundary
point. We shall however be interested in applying that method in the cases where no
such regularity behaviour is guaranteed by Lempert proofs.

We apply the result presented in Proposition 1.1 in two cases. First we use it in
the basic case of the polydisc (that admits quite few left inverses) and then in the
case of the symmetrized bidisc (that also has a relatively small (in some sense) and
well understood family of left inverses). In the case of the symmetrized bidisc a key
role is played by the understanding of (non)-uniqueness of left inverses of complex
geodesics (that problem was studied in detail in [16]). We also remark that a possible
application may go far beyond the examples we study. In particular, a research may be
continued to employ results on (uniqueness and regularity) of left inverses not only
in the symmetrized bidisc but in a wider class of domains (like the tetrablock). This
is also tempting to apply in the future the developed method while dealing with the
Burns-Krantz rigidity property for a wider class of domains.

2 Polydisc

We start with the proof of the Burns-Krantz rigidity property for the polydisc.

Remark 2.1 In the proofs below, we shall make repeatedly use of the following
property that may be proven directly or is implicitly mentioned in [16, Theorem 4.1]
or [2]. Consider, the complex geodesic
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4 W. Zwonek

D ∋ λ → (λ, a2(λ), . . . , an(λ)) ∈ Dn ,(2.1)

where a2 , . . . , an are holomorphic self-mappings of D that are not automorphisms.
Then the complex geodesic has exactly one, uniquely determined left inverse which
is the projection on the first coordinate.

Theorem 2.2 The Burns-Krantz rigidity theorem holds for the polydisc Dn and any
boundary point p ∈ ∂Dn .

Remark 2.3 Recall that the results of [11] imply the above theorem for smooth
boundary points p. Actually, in our proof we rely on Proposition 1.1 in non-smooth
points that combined with results from [11] gives a complete proof.

Proof Let F ∶ Dn → D
n be a holomorphic mapping satisfying the assumption

F(z) = z + o(∣∣z − p∣∣3) where p is a boundary point of Dn . Without loss of generality
we may assume that ∣p j ∣ = 1, j = 1, . . . , k, ∣p j ∣ < 1, j = k + 1, . . . , n where 1 ≤ k ≤ n.

First we prove that F j(z) = z j , j = 1, . . . , k.
Certainly, it is sufficient to prove that F1(z) = z1.
Consider the (many) holomorphic mappings a j ∶ D→ D, j = 2, . . . , n extending

holomorphically through 1 such that a j(1) = p j and a j is not an automorphism of D,
j = 2, . . . , n. It is elementary to see that for the fixed element λ ∈ D the family of all
values of {(a2(λ), . . . , an(λ))} over all such a j ’s is Dn−1.

The mapping f ∶ D ∋ λ → (λ, a2(λ), . . . , an(λ)) ∈ Dn is a complex geodesic with
the (uniquely determined) left inverse z1 and by Proposition 1.1 the composition
F ○ f must be a complex geodesic with the same left inverse. In other words
F1(λ, a2(λ), . . . , an(λ)) = λ for all λ ∈ D and all possible functions a j as determined
above. This gives that F1(z) = z1 as claimed.

In the case k = n the above finishes the proof. Assume then that 1 ≤ k < n.
Consider the mapping

G ∶ Dn−k+1 ∋ (z1 , zk+1 , . . . , zn) ↦ F(1,k+1, . . . ,n)(z1 , . . . , z1 , zk+1 , . . . , zn) ∈ Dn−k+1 .
(2.2)

Note that G satisfies the assumption of the Burns-Krantz theorem at the smooth
boundary point (p1 , pk+1 , . . . , pn) from ∂Dn−k+1. By a result from [11] we get that
G is the identity. To finish the proof we need to conclude that F is the identity, too.

In other words it is sufficient to show that the following Claim holds.

Claim Let H ∶ Dn → D be a holomorphic function such that H(z1 , . . . , z1 , zn) = zn
for all (z1 , zn) ∈ D2. Then H(z) = zn , z ∈ Dn .

Take arbitrary point z = (z1 , z2 , . . . , zn) ∈ Dn . Fix α, β ∈ D. It follows from one-
dimensional interpolation problem that one may find distinct numbers vn , wn ∈ D
sufficiently close to distinct boundary points of ∂D (or the ones with big enough
Poincaré distance) and holomorphic mappings a j ∶ D→ D, j = 1, . . . , n − 1 with
a j(vn) = α, a j(wn) = β and a j(zn) = z j , j = 1, . . . , n − 1. Consider the holomorphic
function
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Burns-Krantz rigidity in non-smooth domains 5

D ∋ g ∶ λ → H(a1(λ), . . . , an−1(λ), λ) ∈ D.

As g(vn) = H(α, . . . , α, vn) = vn and g(wn) = H(β, . . . , β, wn) = wn , we get by the
Schwarz lemma that g(λ) = λ, λ ∈ D. In particular, H(z) = g(zn) = zn . ∎

3 The symmetrized bidisc

We continue applying our method to get the property in one more special domain.
The symmetrized bidisc defined as

G2 ∶= {(λ1 + λ2 , λ1 λ2) ∶ λ1 , λ2 ∈ D}(3.1)

has proven to be an essential example in the Lempert theory. It is a Lempert domain
that is not biholomorphic to a convex domain (see [3, 4], and [9]). Moreover, it has
some interesting properties that will play a role in the application of the method
introduced earlier while proving the Burns-Krantz property; namely, all complex
geodesics of G2 extend holomorphically through the boundary (compare the formu-
las for complex geodesics in G2—[5] and [20]). Moreover, a complete description of
the uniqueness property of left inverses for complex geodesics in G2 is known. The
left inverses are also regular (but only to some extent)—that would be made clearer
later which would make possible to make use of Proposition 1.1. A good example of
the universal Carathéodory set in the symmetrized bidisc is a class of functions of the
form:

Ψω(s, p) ∶= 2p − ωs
2 − ωs

, (s, p) ∈ G2 , ω ∈ D.(3.2)

Recall that the universal Carathéodory set is a family of functions that could replace
the class of all bounded by one holomorphic functions in the definition of the
Carathéodory distance or in the case of Lempert domains it may be understood as
the family of functions out of which one may find for any complex geodesic in the
domain a left inverse.

The minimal Carathéodory universal set for the symmetrized bidisc exists and
consists of functions Ψω , ∣ω∣ = 1 (see [2]).

Note also that the functions Ψω extend holomorphically through all the boundary
points of G2 with the exception for ∣ω∣ = 1. Namely, in this case the function Ψω does
not extend even continuously through one boundary point (2ω, ω2).

Let us also draw attention to another special property that differs the symmetrized
bidisc from the bidisc. The boundaries of all complex geodesics of the symmetrized
bidisc are lying in the Shilov boundary of G2—recall that the Shilov boundary of G2
is {(λ1 + λ2 , λ1 λ2) ∶ λ1 , λ2 ∈ ∂D}. In other words no other element of the topological
boundary may be joint by a geodesic with the interior point. This is the reason why
our method of proving the Burns-Krantz rigidity property may work only for points
from the Shilov boundary of the symmetrized bidisc.

We prove the following.

Theorem 3.1 The Burns-Krantz rigidity property holds for (G2 , w) for any w from the
Shilov boundary of G2.
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6 W. Zwonek

Before we go into the proof let us make remarks how we apply our method
while showing the Burns-Krantz rigidity property at Shilov boundary points of G2.
Recall that in the paper [16] a complete description of uniqueness property of left
inverses in the symmetrized bidisc is given; additionally, in the case of the non-
uniqueness a description of left inverses of the form Ψω is found. Recall also that the
left inverses may be meant to be understood as functions up to a composition with
an automorphism of the unit disc, i.e., the composition of the left inverse with the
complex geodesic equals the identity up to an automorphism of the unit disc.

While proving the theorem we may consider only points from the Shilov boundary
of the form (1 + ω, ω) (with ∣ω∣ = 1)—the consideration of such points does not
restrict the generality of our proof.

The rough idea of the proof is the following. The complex geodesics touching the
boundary at the point (1 + ω, ω), ∣ω∣ = 1 are mapped by the mapping F satisfying the
Burns-Krantz condition at (1 + ω, ω) to complex geodesics having the left inverses as
the original one (with possibly new ones). This is a general idea that encounters an
obstacle as the existing left inverse may not satisfy the assumption of Proposition 1.1.
That obstacle turns up in some cases and is overcome suitably.

Remark 3.2 A general idea of the proof relies on comparing sets of left inverses of
the form Ψω that are related to the given complex geodesic inG2. Below we summarize
the results of [16] (Theorem 5.4 and remarks before it) which comprise the results
focusing mainly to the complex geodesics we shall be interested in.

A very special complex geodesic in the symmetrized bidisc is the royal geodesic
(and its image is called the royal variety)

D ∋ λ → (2λ, λ2) ∈ G2 .(3.3)

Then all the functions Ψω , ∣ω∣ = 1, are its left inverses. Moreover, the royal geodesic is
the only one having as left inverses Ψω ’s, ∣ω∣ = 1 and such that no Ψω (with ∣ω∣ < 1) is
its left inverse.

For all β ∈ D the mappings

D ∋→ (β + βλ, λ) ∈ G2(3.4)

are so called flat geodesics (see [1])—the flat geodesics are generated by geodesics
of the form (0, λ) = −π(−

√
λ,
√

λ) as considered in [20] and then composed with
automorphisms of the symmetrized bidisc. All functions Ψω , ∣ω∣ ≤ 1 are left inverses
of all flat geodesics.

We also need to know that the complex geodesics intersecting the royal variety at
exactly one point and not being the flat geodesics have exactly one left inverse (being
a function Ψω).

In our proof we shall also be interested in complex geodesics passing through (0, 0)
and touching the boundary at (2, 1). By the description of complex geodesics they
must be of the following form (up to a composition with an automorphism of the
unit disc)—use for instance Theorem 1 and Remark afterwards in [20]:

ft(λ) ∶= (2λ 1 − t
1 − tλ

, λ λ − t
1 − tλ

) , t ∈ (0, 1), λ ∈ D.(3.5)

Downloaded from https://www.cambridge.org/core. 17 Jul 2025 at 00:32:07, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Burns-Krantz rigidity in non-smooth domains 7

One may easily verify that −Ψ1( ft(λ)) = λ, t ∈ (0, 1), λ ∈ D. As already mentioned Ψ1
is the only left inverse for all ft , t ∈ (0, 1).

It should also be remarked that there is one more class of complex geodesics: the
ones omitting the royal variety. Though they will not be so essential in the proof we
shall use the fact that no more than two different Ψω ’s (with both ∣ω∣ = 1) are left
inverses of such geodesics.

Proof of Theorem 3.1 As already mentioned we lose no generality assuming that
the boundary point is (1 + ω, ω), ∣ω∣ = 1. Let F ∶ G2 → G2 be a holomorphic mapping
satisfying the Burns-Krantz condition at (1 + ω, ω) ∈ ∂G2.

At first we consider ω ≠ 1. For β ∈ D such that β + βω = 1 + ω (there are “many”
such β’s) consider the function:

gβ ∶ D ∋ λ → F2(β + βλ, λ) ∈ D.(3.6)

Actually, we may exactly determine what “many” β’s as described above means. They
are of the form 1 + r

√
−ω where

√
−ω is one of possible roots and r are either positive

or negative real numbers with arbitrary small absolute value (so that ∣1 + r
√
−ω∣ < 1).

Assumption on F implies that

F(β + βλ, λ) = (β + βλ, λ) + o(∣∣(β + βλ − (1 + ω), λ − ω)∣∣3)
= (β + βλ, λ) + o(∣λ − ω∣3).(3.7)

In particular, gβ satisfies the Burns-Krantz property at ω which implies that gβ is the
identity. Thus F2(β + βλ, λ) = λ for all λ ∈ D and β from a “big” set (depending on ω).
The identity principle gives F2(s, p) = p, (s, p) ∈ G2. To finish the proof we need to
verify that F1(s, p) = s, (s, p) ∈ G2. We proceed as follows. By comparing left inverses
to complex geodesics given in Remark 3.2 and applying Proposition 1.1 we get that
for any β ∈ D the equality F1(β + βλ, λ) = γ + γλ holds for any λ ∈ D where γ + γω =
1 + ω for some γ ∈ D. From the formula above we get that γ + γλ = F1(β + βλ, λ) =
β + βλ + o((λ − ω)3) which gives that γ = β or F1(β + βλ, λ) = β + βλ, λ ∈ D and β
from the “big” set. Then the identity principle easily finishes the proof.

Consider now the Shilov boundary point (2, 1). Recall that the royal geodesic
D ∋ λ → (2λ, λ2) ∈ G2 is the geodesic for which all the functions Ψω , ∣ω∣ = 1 are left
inverses. By Proposition 1.1 we get consequently that F(2λ, λ2) is a geodesic with
all functions Ψω , ∣ω∣ = 1, ω ≠ 1 being its left inverse. As F(2λ, λ2) → (2, 1) as λ → 1
and no flat geodesic “touches” the boundary point (2, 1) we get by Remark 3.2 that
F leaves the royal geodesic invariant so F(2λ, λ2) = (2λ, λ2), λ ∈ D. In particular,
F(0, 0) = (0, 0). We shall look now at the transformation of other complex geodesics
joining (0, 0) with (2, 1) under the mapping F. We cannot apply directly Proposition
1.1 as the only (in the case the complex geodesic passing through the origin is neither
the royal nor the flat geodesic) left inverse Ψ1 does not extend continuously through
(2, 1). However, we apply the idea presented in that proposition directly to see that for
such complex geodesics f (with f (0) = (0, 0), f (1) = (2, 1)) the transformation F ○ f
will also be a geodesic with the same left inverse Ψ1 and then F ○ f would equal f after
taking into account some more information.
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8 W. Zwonek

Recall that the complex geodesics under consideration are of the form

ft(λ) ∶= (2λ 1 − t
1 − tλ

, λ λ − t
1 − tλ

) , t ∈ (0, 1), λ ∈ D.(3.8)

We also have −Ψ1( ft(λ)) = λ, λ ∈ D, t ∈ (0, 1). We look at the function D ∋ λ →
−Ψ1(F( ft(λ))). By the calculations we get that the last expression near 1 behaves like

λ + o((λ − 1)2).(3.9)

Since −Ψ1(F( ft(0))) = 0 we get by [13, Lemma 2.1] that −Ψ1(F( ft(λ))) = λ, λ ∈ D.
This means that F ○ ft is a complex geodesic fs for some s ∈ [0, 1] (for s = 0 we have a
royal geodesic and s = 1 a flat geodesic).

Calculating directly we also get that f ′t (1) = 2/(1 − t)(1, 1).
The assumption on F easily implies that the derivatives at 1 of ft and fs must be

equal so t = s, which gives F( ft(λ)) = ft(λ), t ∈ (0, 1), λ ∈ D.
The identity principle implies that F is the identity. ∎

4 Bounded symmetric domains—discussion

It is quite natural to proceed further with more general non-smooth domains, a good
source of examples would be bounded symmetric domains in its Harish–Chandra
realization. We show below a natural attitude to that problem that however cannot
be applied in full generality (for all bounded symmetric domains). To do it, we make
use of the polydisc theorem that reduces the problem to the case of the polydisc. We
follow the idea presented in the proof of Lemma 3.1 of [19].

Remark 4.1 Fix a boundary point p of the bounded symmetric domain D ⊂ Cn . For
any point z ∈ D consider a Lipschitz continuous complex geodesic f joining z and p.
The fact that there are such geodesics follows from the symmetry of the domain: the
domain is balanced and convex and the involutive automorphisms extend holomor-
phically through the boundary. By the polydisc theorem, we find an r-dimensional
polydisc P (r is the rank of the domain D) embedded in D with the graph of the
geodesic f lying in P. Taking the automorphism of D we may assume that P is
D

r × {0}n−r , z = 0 and the orthogonal projection maps D to P. Additionally, f (λ) =
(λ, f2(λ), . . . , fr(λ), 0, . . . , 0), λ ∈ D with f j ∶ D→ D being holomorphic, Lipschitz
continuous at 1, f j(0) = 0, j = 2, . . . , r.

Let π be the projection of Cn onto C
r × {0}n−r .

Let us make the following additional assumption

all the boundary points of D except for the ones in ∂P are mapped to P.(4.1)

By Theorem 2.2 applied to P ∋ w → π ○ F(w) ∈ P, we know that π(F(w)) = w
or F( f (λ)) = (λ, f2(λ), . . . , fn(λ)), where new holomorphic functions fr+1 , . . . , fn ∶
D→ D appear. Now the assumption (4.1) on D implies that limλ→∂D f j(λ) = 0, j =
r + 1, . . . , n which implies fr+1 ≡ . . . ≡ fn ≡ 0 and consequently shows that F when
restricted to the graph f is the identity so F(0) = 0. As the point z ∈ D that we started
with was arbitrary this finishes the proof.
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Burns-Krantz rigidity in non-smooth domains 9

Remark 4.2 Note that we cannot hope the above assumption (4.1) to hold in all
bounded symetric domains. Let Ω(n) be a Cartan domain of the first type In ,n . Its
rank is n. Then the projection

Ω(n) ∋ A→ (a11 , . . . , ann) ∈ Dn(4.2)

does not satisfy assumption (4.1) for n ≥ 3 though the condition is satisfied for n = 2.

5 Concluding remarks, possible area of future research, and some
open problems

We presented approach to the study of the Burns-Krantz type rigidity theorem in
Lempert domains without the smoothness assumption of the domain which may lead
to the further research.

Note that though the problem for the polydisc has been solved it is interesting
whether we could use the above developed method also to smooth boundary points
of the polydisc so that we would not refer to other papers.

A limitation on the case of the symmetrized bidisc only to points from its Shilov
boundary (in other words non-smooth ones) depended on a very specific boundary
behavior of complex geodesics. This is however natural to pose the question whether
the Burns-Krantz rigidity theorem holds also for smooth boundary points of the
symmetrized bidisc.

A quite natural challenge would be to see whether the Burns-Krantz rigidity
property may be generalized to the symmetrized polydisc. Note that the method we
make use of is not applicable in that situation as the higher dimensional symmetrized
polydisc is not a Lempert domain.

That would also be interesting to give more examples of new examples of domains
with the Burns-Krantz rigidity property; especially possibly utilizing the above men-
tioned method. More concretely, what about the tetrablock or its higher dimensional
generalization that is a domain Ln (see [12])?
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