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Weak Arithmetic Equivalence

Guillermo Mantilla-Soler

Abstract. Inspired by the invariant of a number field given by its zeta function, we define the notion
of weak arithmetic equivalence and show that under certain ramification hypotheses this equivalence
determines the local root numbers of the number field. This is analogous to a result of Rohrlich on the
local root numbers of a rational elliptic curve. Additionally, we prove that for tame non-totally real
number fields, the integral trace form is invariant under arithmetic equivalence.

1 Introduction

One of the most fundamental arithmetical invariants of a number field is its De-
dekind zeta function. It is well known that pairs of number fields with the same
zeta function, arithmetically equivalent number fields, share many arithmetic invari-
ants including the discriminant, unit group, signature, the product of class number
times regulator, and some others (see [6, III, §1]). A classic result of R. Perlis (see
[14, Corollary to Theorem 1]) states that any two arithmetically equivalent number
fields have isometric rational trace forms. Since the rational trace form per se is not
of an arithmetic nature, we are interested to see how arithmetic equivalence relates to
the arithmetic version of the trace form i.e., the integral trace form. We have studied
this briefly in the past (see [9, §2]) and have seen that in order to obtain any implica-
tion along the lines of Perlis, we must avoid number fields with wild ramification. In
this paper, we study this relation in detail. For example we show that any two tame
arithmetically equivalent number fields that are ramified at infinity always have iso-
metric integral trace forms. Furthermore, we define a “finite” version of arithmetic
equivalence and we show that under restricted conditions, such an invariant deter-
mines the integral trace form. We also exhibit a relation between our newly defined
invariant and the local root numbers associated with the number field in question
(see Theorem 2.22). This last point of view is analogous to a result of Rohrlich that
shows that the bad part of the L-function of a semistable elliptic curve determines its
local root numbers (see Theorem 2.24).

1.1 Motivation and Results

To understand the motivation behind our definitions, it is important to review Perlis’
result on the rational trace form. Let K be a number field of degree n, and let sn be the
symmetric group in n symbols. The Dedekind zeta function ζK is the L-function of an
Artin representation ρK of GQ , namely the representation obtained by composing the
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permutation representation πK : GQ → sn and the natural inclusion j : sn → GLn(C).
Since we are interested in the equivalence class of the representation ρK , we think of
it as an element in H1(Q,GLn(C)), and the same for πK . The natural inclusion

ι : sn → On(Q)

induces a map of pointed sets

ι∗ : H1(Q, sn)→ H1(Q,On).

Since H1(Q,On) classifies isometry classes of non-degenerate rational quadratic
forms of dimension n, there exists a quadratic form corresponding to ι∗(πK ). Perlis’
realization(see [14, Lemma 1.b]) is that such a form is precisely the rational trace form
i.e., the rational quadratic form associated with the bilinear pairing

K × K → Q,
(x, y) 7→ trK/Q (xy).

The above result can be interpreted as a relation between the rational trace form
of the field K and the representation ρK . Presumably such a relation led Perlis to the
following theorem.

Theorem 1.1 (Perlis) Let K and L be arithmetically equivalent number fields. Then
K and L have isometric rational trace forms.

The main ideas behind Perlis’ proof of the above are the following. Using for-
mulas of Serre for the local Hasse invariants of the trace form, Perlis shows that for
every prime p the local p-Hasse invariant of the trace form ι∗(πK ) can be written in
terms of the p-local Stiefel–Whitney class of the representation ρK . Moreover, due
to a formula of Deligne, such numbers can be written in terms of local root num-
bers of the representations ρK and det(ρK ) (see §2 for details). By evaluating ρK at
complex conjugation, it can be seen that the signature of ι∗(πK ) is determined by the
representation ρK . It follows, thanks to the Hasse principle, that the isometry class
of the rational trace ι∗(πK ) is completely determined by the representation ρK . On
the other hand, by the Chebotarev density theorem, the representation ρK is com-
pletely determined by ζK . In particular, two number fields with the same Dedekind
zeta function share their rational trace.

1.1.1 Main Results

Recall that the integral trace form over K is the integral quadratic form, denoted by
qK , that is obtained by restricting the rational trace form to the maximal order OK .
From an arithmetic point of view, the integral trace form is a better invariant than
the rational trace form. One can see, for example, that the rational trace form does
not even determine the discriminant of the number field: any Z/3Z-extension of Q
has rational trace isometric to 〈1, 1, 1〉 (for a more general situation see [2, Corol-
lary I.6.5]). On the other hand, the integral trace can characterize the field in some
non-trivial cases (see [8]). It is natural then to wonder whether or not arithmeti-
cal equivalence implies equality between integral traces. An immediate observation
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that one can make from Perlis’ work is that to ensure an isometry between the ra-
tional traces of two number fields, it is not necessary to have equality between their
Dedekind zeta functions, but only local information at finitely many places. With
this observation in mind, we set course to find out if knowing the local root numbers
is sufficient to determine the integral trace form. Explicitly, we prove the following
theorem.

Theorem (cf. Theorem 2.9) Let K, L be two non-totally real tamely ramified number
fields of the same discriminant and signature. Then the integral trace forms of K and L
are isometric if and only if the p-local root numbers of ρK and ρL coincide for every odd
prime p that divides disc(K).

Since the Dedekind zeta function ζK determines the discriminant and the signa-
ture of the field K (see [15]), Theorem 2.9 gives a two-fold generalization of [14,
Corollary 1]:

(a) On one hand, the conclusion of having isometric integral traces is stronger than
having isometric rational traces.

Example 1.2 Let K, L be two Galois cubic fields with different discriminants
(take for instance the two cubic fields of discriminant 49 and 81, respectively).
As pointed out before, we have that qK ⊗ Q ∼= qL ⊗ Q ∼= 〈1, 1, 1〉, but clearly
qK 6∼= qL.

(b) On the other hand, the hypothesis of having the same local root numbers is
weaker than that of having the same Dedekind zeta functions.

Example 1.3 Take any two non-isomorphic tame Galois cubic fields of the
same discriminant (take for instance the two cubic fields of discriminant 8281 =
72 · 132). Since their integral traces are isomorphic (see [8, Theorem 3.1]) it
follows from Theorem 2.9 that they have the same root numbers at every prime.
However, by Lemma 2.18, they do not have the same zeta function.

We must, however, impose some necessary ramification restrictions so that the anal-
ogy is still valid in the integral case (see Remark 2.11).

Theorem (cf. Theorem 2.10) Let K, L be two non-totally real tamely ramified arith-
metically equivalent number fields. Then the integral trace forms qK and qL are isomet-
ric.

An interpretation of Theorem 2.9 is that in order to know the integral trace you
only need local information from the Dedekind zeta function at the “bad” places.
Since the zeta function is a product of local L-functions, it is natural to wonder how
those local factors, at the ramified places, influence the behavior of the integral trace.
Inspired by this, we define the notion of weak arithmetic equivalence and show that
indeed the integral trace is determined by local L-functions for a large family of num-
ber fields.
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Definition (cf. Definition 2.12) Let K, L be two number fields. We say that K and
L are weakly arithmetically equivalent if and only if

• a prime p ramifies in K if and only if p ramifies in L;
• Lp(s, ρK ) = Lp(s, ρL) for p ∈ {p : p | disc(K)} ∪ {∞}.

Theorem (cf. Theorem 2.19) Let K, L be two weakly arithmetically equivalent num-
ber fields that are tame and non-totally real. Suppose that any of the following is satisfied:

(i) K and L have degree at most 3;
(ii) K has fundamental discriminant;1

(iii) K and L are Galois over Q .

Then the integral trace forms of K and L are isometric.

Remark 1.4 See Question 2.21 and the remark after it for further thoughts on
Theorem 2.19.

2 Local Zeta Functions and Root Numbers

2.1 Background

We start by recalling briefly how the Dedekind zeta function of a number field can be
seen as the Artin L-function of a representation of the absolute Galois group GQ . See
[13, 17] for details and unexplained terminology.

2.1.1 Dedekind Zeta and Artin Representations

Let L be a number field with Galois closure L̃. Let G(L) := Gal(L̃/Q) and H(L) :=
Gal(L̃/L). By composing the natural map GQ → G(L) with the natural action
G(L)→ Sym(G(L)/H(L)), one gets a permutation representation

πL ∈ H1(GQ , Sdeg(L)) i.e., πL = InfGQ

G(L)

(
IndG(L)

H(L) 1
)
.

Simply put, this is the natural action of GQ on the embeddings of L into L̃. The usual
inclusions

Sdeg(L) ↪→ Odeg(L)(C) ↪→ GLdeg(L)(C),

together with πL, yield an Artin representation ρL ∈ H1
cont(GQ ,GLdeg(L)(C)). By the

induction property of Artin L-functions, the Dedekind zeta function ζL(s) of L is
nothing other than the Artin L-function L(s, ρL) associated with ρL. The function
L(s, ρL) is defined as a product of local functions Lp(s, ρL) for each finite prime p,
where the local parts are defined by restricting ρL to a decomposition subgroup GQp .
By looking at the usual Euler product of ζL(s), we see that the local factors are given
by

Lp(s, ρL) =
g∏

i=1

( 1

1− (p−s) fi

)
,

where g is the number of primes in L lying over p and the fi ’s are the residue degrees
of a rational prime p in its decomposition in L.

1Recall that a discriminant is called fundamental if it is the discriminant of a quadratic field.
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Complete L-function and root numbers Given an Artin representation ρ with Ar-
tin L-function L(s, ρ), its complete L-function Λ(s, ρ) is defined as

Λ(s, ρ) := A(ρ)s/2L∞(s, ρ)L(s, ρ),

where A(ρ) is a positive integer divisible only by the finite primes at which ρ ramifies,
and L∞(s, ρ) is a Gamma factor that depends on the value of ρ at complex conjuga-
tion. The complete L-function satisfies a functional equation:

Λ(s, ρ) = W (ρ)Λ(1− s, ρ∨),

where ρ∨ is the contragradient representation and W (ρ) is a complex number called
the root number of ρ. Due to a result of Deligne (see [3] and [20, §3]), root numbers
can be written as the product of the so called local root numbers

W (ρ) =
∏
p

W p(ρ).

The local root numbers W p(ρ) are complex numbers of norm 1, and W p(ρ) = 1
whenever ρ is unramified at p.

In the case of the permutation representation ρL, A(ρL) is equal to |Disc(L)|.
Moreover, since ρL is an orthogonal representation, it is a result of Fröhlich and
Queyrut (see [20, §3 Corollary 1]) that W (ρL) = 1. The local infinite factor of ρL

is given by

L∞(s, ρL) := Γr1
R (s)Γr2

C (s),

where r1 (resp. r2) is the number of real (resp complex) embeddings of L,

ΓR = (π)−s/2Γ
( s

2

)
and ΓC = 2(2π)−sΓ(s),

and Γ(s) is the usual Gamma function. We call the local root numbers W p(ρL) the
root numbers of the number field L.

2.1.2 Root Numbers and the Trace

The connection between root numbers W p(ρL) of ρL and the trace form trL/Q (x2) was
first realized by Perlis by relating the results of Serre on Stiefel–Whitney invariants of
the representation ρL and those of Deligne on normalized root numbers.

Second Stiefel–Whitney invariant and local root numbers Let L be a degree n
number field of discriminant d. The second Stiefel–Whitney invariant w2(L) of L,
or of ρL, is a 2-torsion element in the Brauer group of Q defined as follows. Recall
the standard presentation of the symmetric group sn:〈

t1, . . . , tn−1 : t2
i = 1 for 1 ≤ i ≤ n− 1, (titi+1)3 = 1 for 1 ≤ i ≤ n− 2,

[ti , t j] = 1 for 2 ≤ |i − j|
〉
.

Let s̃n be the±1 central extension of sn defined by〈
s1, . . . , sn−1,w : s2

i = w2 = 1 for 1 ≤ i ≤ n− 1, (sisi+1)3 = 1 for 1 ≤ i ≤ n− 2,

[si ,w] = 1 for 1 ≤ i ≤ n− 1, [si , s j] = w for 2 ≤ |i − j|
〉
,
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where

1 −→ 〈w〉 −→s̃n −→ sn −→ 1

si 7−→ ti .

The extension s̃n → sn defines an element `2 ∈ H2(sn,±1). By pulling back

πL : GQ → sn to π∗L : H2(sn,±1)→ H2(GQ ,±1),

one obtains the second Stiefel–Whitney invariant w2(L) = π∗L (`2). The local p-part
w2(L)p of w2(L) is the element of the Brauer group of Br2(Qp) obtained from w2(L)
via restriction.

Theorem 2.1 (Serre) Keeping the notation as the above, for all finite p,

w2(L)p = hp(qL)(2, d)p,

where hp(qL) and ( · , · )p denote the local p Hasse–Witt invariant of the trace form and
the Hasse symbol, respectively.

Proof See [18, Théorème 1].

Theorem 2.2 (Deligne) Keeping the notation as the above, for all finite p,

w2(L)p =
W p(ρL)

W p(det(ρL))
.

Proof See [20, §3 Theorem 3].

An immediate consequence of Deligne’s and Serre’s theorems is a formula relating
the Hasse invariant of the trace form and the root numbers.

Corollary 2.3

hp(qL) = (2, d)p
W p(ρL)

W p(det(ρL))
.

2.1.3 Background on the Integral Trace

The following facts about the integral trace form will be useful in proving our main
results. We included them here for the reader’s convenience.

The genus The following Jordan decomposition of the local integral trace, for tame
extensions, has been obtained by Erez, Morales, and Perlis. For details, references,
and proofs, see [11].

Theorem 2.4 ([11, Theorem 0.1]) Let K be a degree n number field and let p be an
odd prime that is at worst tamely ramified in K. Then there exist α, β ∈ Z∗p, and an
integer 0 < f ≤ n, such that

qK ⊗ Zp
∼= 〈1, . . . , 1, α〉︸ ︷︷ ︸

f

⊕
〈p〉 ⊗ 〈1, . . . , 1, β〉︸ ︷︷ ︸

n− f

.
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Corollary 2.5 Let K, L be two tamely ramified number fields of the same discriminant
and signature. Then the integral trace forms qK and qL are in the same genus if and only
if hp(qK ) = hp(qL) for every odd prime p.

Proof If qK and qL are in the same genus, then clearly they have the same local
symbols at every prime. Conversely, let p be an odd prime and suppose that hp(qK ) =
hp(qL). Thanks to Theorem 2.4 we can apply [10, Lemma 2.1] to the forms qK ⊗ Zp,
qL ⊗ Zp and conclude that

qK ⊗ Zp
∼= qL ⊗ Zp.

Since qK ⊗ Z2
∼= qL ⊗ Z2 (see [10, Proposition 2.7]), and the fields have the same

signature, the result follows.

The spinor genus For details, references, and proofs about the spinor genus of the
integral trace, see [12].

Theorem 2.6 ([12, Theorem 2.12]) Let K be a number field of degree at least 3. Then
the genus of integral trace form qK contains only one spinor genus.

The main application of the spinor genus is that it gives a way to determine when
two number fields with ramification at infinity have isometric integral traces.

Proposition 2.7 Let K, L be two non-totally real number fields. Then the forms qK

and qL are in the same spinor genus if and only if they are isometric.

Proof Since the discriminant and degree of a number field are invariants of the
spinor (resp. isometry) class of its integral trace form, we may assume that both fields
have degree n ≥ 3. Since the fields are non-totally real, the forms qK and qL are
indefinite and of dimension at least 3. By Eichler’s Theorem (see [4]) the spinor class
and isometry class coincide for indefinite forms of dimension bigger than 2, hence
the result.

2.2 From Root Numbers to the Integral Trace

We now have all we need to give proofs of Theorems 2.9 and 2.10.

Lemma 2.8 Let K, L be number fields of the same discriminant. Then for all primes p,

W p(det(ρK )) = W p(det(ρL)).

Proof Since ρK is an orthogonal representation, the one dimensional representation

det(ρK )→ ±1

factors through an injective morphism

δ : Gal(Q(
√

d)/Q)→ ±1,

where d ∈ Q∗/(Q∗)2 depends on K. Hence, if σ ∈ GQ , we have that det(ρK )(σ) =

(σ(
√

d))/
√

d. On the other hand, a calculation shows that d = disc(K) (see for
example [14, p. 427, second paragraph]). Since K and L have the same discriminant,
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the representations det(ρK ) and det(ρL) coincide; hence so do their root numbers.

Theorem 2.9 Let K, L be two tamely ramified number fields of the same discriminant
and signature. Then the integral trace forms qK and qL are in the same spinor genus if
and only if W p(ρK ) = W p(ρL) for every odd prime p that divides disc(K). In particular,
for a tame non-totally real number field, the integral trace form is completely determined
by the local root numbers of the field.

Proof We may assume that the fields have degree at least 3. Thanks to Corollary 2.3
and Lemma 2.8, we have that for a prime p

W p(ρK ) = W p(ρL) if and only if hp(qK ) = hp(qL).

On the other hand, it follows from Theorem 2.6 and Corollary 2.5 that the forms qK

and qL are in the same spinor genus if and only if hp(qK ) = hp(qL) for every odd
prime p. Since hp(qK ) = hp(qL) = 1 for unramified primes, the result follows. The
last assertion in the theorem follows from Proposition 2.7.

As an immediate consequence of Theorem 2.9, we obtain a generalization of Perlis’
result [14, Corollary 1] to the integral trace.

Theorem 2.10 Let K, L be two non-totally real tamely ramified arithmetically equiv-
alent number fields. Then the integral trace forms qK and qL are isometric.

Proof Since arithmetically equivalent number fields share discriminants, signa-
tures, and local root numbers, the result follows from Theorem 2.9 and Proposition
2.7.

Remark 2.11 In contrast to Perlis’ result on the rational trace, arithmetic equiv-
alence does not imply isometry between integral traces. In fact, as the following
examples show, the ramification conditions imposed on the above theorem are not
only sufficient but also necessary. Example 2.3 of [9] shows that the tameness con-
dition in Theorem 2.10 is necessary. On the other hand, if F and L are the number
fields defined by the polynomials

pF = x7 − 2x6 − 47x5 + 25x4 + 755x3 + 496x2 − 3782x − 5217,

pL = x7 − 2x6 − 47x5 − 8x4 + 480x3 + 793x2 + 233x + 19,

it can be shown, as in the proof of [9, Proposition 2.7], that F and L are non-
isomorphic arithmetically equivalent number fields. Furthermore, they are totally
real, and their common discriminant is equal to 52 · 116 · 194, hence they are tamely
ramified. A calculation in MAGMA shows that their integral traces are not equiva-
lent. This example shows that the condition at infinity in Theorem 2.10 is necessary.

2.3 Weak Arithmetic Equivalence

After generalizing Perlis’ work on arithmetic equivalence to the integral trace form,
we are ready to go further by using weak arithmetic equivalence. To make statements
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about prime decomposition as general as possible (see for example [10, Remark 2.6]),
we use Conway’s notation (p = −1) for the prime at infinity ([1, Chapter 15, §4]).

Definition 2.12 Let K, L be two number fields. We say that K and L are weakly
arithmetically equivalent if and only if

• A prime p ramifies in K if and only if p ramifies in L;
• Lp(s, ρK ) = Lp(s, ρL) for p ∈ {p : p | disc(K)} ∪ {−1}.

Remark 2.13 The second condition above should be interpreted as an equality
between Lp-factors at every ramified prime. Of course there are fields in which
p = −1 does not ramify, but in such cases L−1(s, ρK ) = L−1(s, ρL) is equivalent
to [K : Q] = [L : Q]. Hence an equivalent statement to Definition 2.12 is that K and
L have same degree, same ramified primes and same local p-factors at such a primes.

Recall that the decomposition type of a rational prime p in a number field K is the
sequence ( f1, . . . , fg) consisting of the residue degrees fi of the primes in K lying over
p written in increasing order: f1 ≤ · · · ≤ fg .

Lemma 2.14 Let K, L be number fields and let SK,L be the set of primes p that are
ramified in either K or L. Then K and L are weakly arithmetically equivalent if and only
if K and L have the same degree and for all p ∈ SK,L ∪ {−1}, we have that p has the
same decomposition type in K and L.

Proof This is a simple argument that can be found in the proof vi)⇒ ii) of [6, III,
§1 Theorem 1.3].

We denote by gK
p the number of primes in K lying above p. Additionally, we denote

by f K
p the sum of the residue degrees of primes in K above p.

Corollary 2.15 Let K and L be weakly arithmetically equivalent number fields. Sup-
pose that both fields are tame. Then they have the same discriminant.

Proof Thanks to Lemma 2.14 we know that [L : Q] = [K : Q] and that f K
p = f L

p for
every prime p. Since both extensions are tame, we have by [19, III, Proposition 13]
that

disc(K) =
∏
p

p[K : Q]− f K
p =

∏
p

p[L : Q]− f L
p = disc(L).

Recall that a number field L is called arithmetically solitary or solitary if one has
that K is isomorphic to L for any number field K arithmetically equivalent to L .

Remark 2.16 The notion of weak arithmetic equivalence is quite less restrictive
than that of arithmetic equivalence. For instance, there exist pairs of non-isomorphic
weakly arithmetically equivalent number fields that are one of the following:

(a) Galois extensions of Q ,
(b) number fields with fundamental discriminant,
(c) number fields of degree smaller than 7.
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Example 2.17 The following polynomials, found by using [5], define pairs of non-
isomorphic weakly arithmetically equivalent number fields satisfying, respectively,
conditions (a), (b), and (c) in the above remark.

(a) The polynomials x7 − 609x5 − 2233x4 + 36743x3 + 62118x2 − 576520x + 3625
and x7−609x5−2233x4 + 48111x3−40194x2−87696x + 77517 define two non-
isomorphic Galois extensions, with Galois group Z/7Z, that are weakly arith-
metically equivalent.

(b) The polynomials x6−14x4−5x3 +52x2 +33x−24 and x6−3x5−17x4−x3 +37x2 +
27x + 5 define two non-isomorphic weakly arithmetically equivalent number
fields with fundamental discriminant equal to 725517561 = 3 ∗ 241839187.

(c) The polynomials x3−8x−15 and x3 +10x−1 define two non-isomorphic weakly
arithmetically equivalent cubic fields.

In contrast, for arithmetic equivalence we have the following lemma.

Lemma 2.18 Let L be a number field satisfying either (a), (b), or (c) of the above
remark. Then L is solitary.

Proof Items (a) and (c) are part of [6, III, §1 Theorem 1.16]. Item (b) follows from
[7, Theorem 1] and [6, III, §1 Theorem 1.16.c].

We now show that weak arithmetical equivalence determines the integral trace
form for a large family of number fields.

Theorem 2.19 Let K, L be two weakly arithmetically equivalent number fields that
are tame and non-totally real. Suppose that any of the following is satisfied:

(i) K and L have degree at most 3;
(ii) K has fundamental discriminant;
(iii) K and L are Galois over Q .

Then the integral trace forms qK and qL are isometric.

Proof Part (i) follows from Corollary 2.15 and [10, Theorem 3.3]. Thanks to
Lemma 2.14, we have that gK

p = gL
p for all ramified prime p, hence (ii) follows from

[10, Theorem 2.15]. If both fields are Galois, then not only every ramified prime p
has the same decomposition type in both fields, but it also has the same ramification
index. This follows, since both fields have the same degree and discriminant (see
Corollary 2.15). Hence, part (iii) follows from [10, Proposition 2.14].

Remark 2.20 Notice that under the restrictions imposed, Theorem 2.19 gives a
positve answer to the following natural question.

Question 2.21 Let K, L be two weakly arithmetically equivalent number fields that
are tame and non-totally real. Are the integral trace forms qK and qL isometric?

If we remove the signature condition in Theorem 2.19, we cannot assure the exis-
tence of an isometry between the integral traces. However, by the same argument in

https://doi.org/10.4153/CMB-2014-036-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-036-7


Weak Arithmetic Equivalence 125

the above proof, one sees that qK and qL belong to the same spinor genus. In partic-
ular, thanks to Theorem 2.9, we have that K and L have the same local root numbers.
Hence, we have the following theorem.

Theorem 2.22 Let K, L be two tame weakly arithmetically equivalent number fields.
Suppose that any of the following is satisfied:

(i) K and L have degree at most 3;
(ii) K has fundamental discriminant;
(iii) K and L are Galois over Q .

Then K and L have the same local root numbers at every p.

Notice that Question 2.21 can be stated in terms of the local behavior of the Artin
L-function L(s, ρL) and without any reference to the trace form. Explicitly, thanks
to Theorem 2.9, Question 2.21 is equivalent to asking whether or not the equality
at all ramified primes p between Lp(s, ρK ) = Lp(s, ρL) implies equality between the
local root numbers of ρK and ρL for any pair of number fields K, L that are tame and
non-totally real. Since the signature condition we imposed on the number fields is
only necessary to get isometry between the integral traces, and not only to get local
isometry, we can omit that hypothesis and formulate 2.21 in slightly in more general
terms.

Question 2.23 Let K, L be two tame weakly arithmetically equivalent number fields.
Does it follow that K and L have the same local root numbers at every prime p?

Elliptic curves A natural analog to the Dedekind zeta function L(s,K) of a num-
ber field is the L-function L(s, E) of a rational elliptic curve. Using the `-adic Tate
module, for some prime `, one sees that L(s, E) is the Artin L-function of a Z`-repre-
sentation of GQ . The notion of arithmetic equivalence in this context is equivalent to
the one of isogeny class, thanks to Falting’s isogeny theorem. Since this equivalence is
quite restrictive, it seems interesting to see what kind of invariants of an elliptic curve
are determined by the analog notion of weak arithmetic equivalence. In particular,
it is natural to ask if the analog to Question 2.23 is valid in this context. It turns out
that for semistable elliptic curves this is the case.

Theorem 2.24 (Rohrlich) Let E/Q , E′/Q be two semistable elliptic curves with bad
ramification at the same primes. Suppose that for every bad prime p, the local Hasse–
Weil functions of E and E′ coincide: Lp(s, E) = Lp(s, E′). Then for every prime p, E and
E′ have the same local root numbers: W p(E) = W p(E′).

Proof This follows immediately from Rohrlich’s formula for local root numbers
[16, Proposition 3].

In our analogy between rational elliptic curves and number fields, the conductor
plays the role of the discriminant. Henceforth, we can think of semistability for an
elliptic curve as the analog, for a number field, of having square free discriminant.
Keeping in mind this analogy, we see that Theorem 2.22(ii) is the number theoretic
version of Rohrlich’s theorem. The following shows, as in the case of elliptic curves,
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that the hypothesis of having square free (conductor/discriminant) cannot be re-
moved from Theorem 2.22. In particular, the following gives a negative answer to
Questions 2.21 and 2.23.

Lemma 2.25 Let K and L be the number fields defined by x4 − x3 + 4x2 + 68x + 152
and x4 − 15x2 − 21x + 121, respectively. Then K and L are tame non-totally real
weakly arithmetically equivalent number fields with different root numbers at p = 7
and p = 43.

Proof The fields K and L have signature (0, 2) and discriminant d = (7 ·13 ·43)2. In
particular, K and L are tame. Let S = {7, 13, 43}. The following table contains, for
each prime p in S, its decomposition type ( f1, . . . , fg), and respective ramification
indices (e1, . . . , eg), in the fields K and L.

p 7 13 43

K (1, 1) (1, 3) (1, 1) (2, 2) (1, 1) (2, 2)

L (1, 1) (2, 2) (1, 1) (1, 3) (1, 1) (1, 3)

It follows from Lemma 2.14 that K and L are weakly arithmetically equivalent. Using
the decomposition given in [11, Theorem 0.1], or by direct computation, we see that

qK ⊗ Z7
∼= 〈1, 3, 7, 21〉, qL ⊗ Z7

∼= 〈1, 1, 7, 7〉,
qK ⊗ Z43

∼= 〈1, 1, 43, 43〉, qL ⊗ Z43
∼= 〈1, 3, 43, 129〉.

In particular,

h7(qK ) = 1 6= −1 = h7(qL) and h43(qK ) = −1 6= 1 = h43(qL).

Therefore, arguing as in the first part of the proof of Theorem 2.9, we see that

W p(ρK ) 6= W p(ρL)

for p = 7, 43.
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