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Abstract

The conditional least-squares estimators of the variances are studied for a critical
branching process with immigration that allows the offspring distributions to have infinite
fourth moments. We derive different forms of limiting distributions for these estimators
when the offspring distributions have regularly varying tails with index α. In particular,
in the case in which 2 < α < 8

3 , the normalizing factor of the estimator for the offspring
variance is smaller than

√
n, which is different from that of Winnicki (1991).
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1. Introduction

Let {ξk,j : k, j = 1, 2, . . . } and {ηk : k = 1, 2, . . . } be two independent families of indepen-
dent and identically distributed (i.i.d.) random variables taking values in N := {0, 1, 2, . . . }.
A Galton–Watson branching process with immigration (GWI process) {Xk : k = 1, 2, . . . } is
defined inductively by

X0 = 0, Xk =
Xk−1∑
j=1

ξk,j + ηk, k ≥ 1. (1.1)

Intuitively, the distribution of ξk,j is called the offspring distribution and the distribution of ηk

is called the immigration distribution. Let g(·) and h(·) be the generating functions of ξk,j and
ηk , respectively. It is easy to see that {Xk} is a discrete-time Markov chain with values in N

and one-step transition matrix P(i, j) given by

∞∑
j=0

P(i, j)sj = g(s)ih(s), i ∈ N, 0 ≤ s ≤ 1.

Let m = E[ξk,j ], σ 2 = var[ξk,j ], λ = E[ηk], and γ 2 = var[ηk]. The cases m > 1, m = 1, and
m < 1 are respectively referred to as supercritical, critical, and subcritical.
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The estimation problem for the variances σ 2 and γ 2 in the GWI process has been extensively
studied; see [7], [18], and the references therein. A natural method is the conditional least-
squares estimator (CLSE) in the sense of Klimko and Nelson [11] or Winnicki [18]. Winnicki
also examined the asymptotic properties of the estimators for the variances under the conditions
that E[ξ4

1,1] < ∞ and E[η4
1] < ∞. He showed that the CLSE of the offspring variance is

consistent only if m ≤ 1. In the subcritical case, the CLSE is asymptotically normal with the
normalizing factors n1/2, while in the critical case the CLSE is not asymptotically normal but
it has another limit law with the normalizing factor n1/2. The limit law is expressed in terms
of a Brownian motion and the limit process resulting from the weak convergence of rescaled
GWI processes.

In this paper we consider a similar estimation problem in a critical GWI process, and
derive the asymptotic distributions of the estimators without assuming that E[ξ4

1,1] < ∞ and
E[η4

1] < ∞. We restrict our attention to the critical case, since in this case the asymptotic
behavior of the CLSE is closely related to some limit theorems of the GWI processes, and is
of special interest in considering the limit theorems in a heavy-tailed setting allowing finite
variances but infinite fourth moments. Throughout the paper, we assume that the {ξk,j } have
regularly varying tails. Specifically,

P(ξ1,1 > x) ∼ x−αL(x) as x → ∞ for α > 2, (1.2)

where L(x) is a positive function slowly varying at ∞. Note that if 2 < α < 4, E[ξ4
1,1] = ∞

and E[ξ2+δ
1,1 ] < ∞ for 0 < δ < α − 2. We refer the reader to [3, pp. 330–337] for a systematic

study of distributions with regularly varying tails.
Our main result (Theorem 2.2) shows that if 2 < α < 8

3 , the CLSE of the offspring variance
has a limit law with normalizing factor smaller than n1/2, and if α > 8

3 , the normalizing factor
is n1/2. When α = 8

3 , the normalizing factor depends on the behavior of the slowly varying
part L(·). It is also interesting to note that, when 2 < α ≤ 8

3 , the form of the limit law for the
CLSE may involve an (α/2)-stable process and the limit process of the rescaled GWI processes.
This is different from that of [18].

The remainder of this paper is organized as follows. In Section 2 we give the main
limit theorem, and then the asymptotic estimates for the variances of the GWI process as
an application of our limit theorem. Section 3 is devoted to the proofs of the above results.

Notation. Let R+ = [0, ∞). We respectively denote by ‘
p−→’ and ‘

d−→’ the convergence of
random variables in probability and convergence in distribution, we denote by ‘

w−→’ the weak
convergence in Skorokhod space. We also use the convention that

∫ t

r
= − ∫ r

t
= ∫

(r,t] and∫∞
r

= ∫
(r,∞)

for r ≤ t ∈ R.

2. Estimators and limit theorems

Consider the GWI process given in (1.1). For k ≥ 0, let Fk denote the σ -algebra generated
by {Xj : j = 0, 1, . . . , k}. Let Uk = Xk − mXk−1 − λ, and let Vk = U2

k − σ 2Xk−1 − γ 2.
Then Vk is a martingale difference with respect to Fk . We treat

U2
k = σ 2Xk−1 + γ 2 + Vk, k = 1, 2, . . . , n, (2.1)

as a stochastic regression equation with unknown coefficients σ 2 and γ 2 and an ‘error’ term Vk .
If the means m and λ are known, the CLSE (σ̂ 2

n , γ̂ 2
n ) of (σ 2, γ 2) resulting from (2.1) is

σ̂ 2
n =

∑n
k=1 U2

k (Xk−1 − X̄∗
n)∑n

k=1(Xk−1 − X̄∗
n)

2
, γ̂ 2

n =
n∑

k=1

U2
k

n
− σ̂ 2

n X̄∗
n, (2.2)
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where X̄∗
n = (1/n)

∑n
k=1 Xk−1. If m and λ are unknown, we get (σ̄ 2

n , γ̄ 2
n ) by using Ûk =

Xk − m̂nXk−1 − λ̂n instead of Uk in (2.2), where (m̂n, λ̂n) are the CLSE of (m, λ) given in [17].
To obtain the asymptotic behavior of (σ̂ 2

n , γ̂ 2
n ) or (σ̄ 2

n , γ̄ 2
n ) in the critical case, as in [18], we

need to establish some weak convergence results for the processes that allow the offspring
distributions to have infinite fourth moments. Now introduce the sequences

Yn(t) = X([nt])
n

and Vn(t) =
[nt]∑
k=1

Vk

for t ≥ 0, where [nt] denotes the integer part of nt . Wei and Winnicki [16] gave the following
limit theorem for the sequence Yn(·), where the limit process is a continuous-state branching
process with immigration (CBI process). See [13] for the result in generality. Also, see [10]
for a complete characterization of the class of CBI processes.

Proposition 2.1. ([16].) Suppose that m = 1, σ 2 < ∞, and γ 2 < ∞. Then Yn(·) converges
in distribution on D([0, ∞), R+) to a CBI process defined by

Y (t) = λt +
∫ t

0
σ
√

Y (s) dW(s), (2.3)

where W(·) is a one-dimensional Brownian motion.

It follows from (1.2) that P(ξ1,1 > x) ∼ P(|ξ1,1 − 1| > x) as x → ∞. So we can find a
sequence of positive constants {an} such that

n2 P(|ξ1,1 − 1| > an) → 1 as n → ∞. (2.4)

Then we have an ∼ (n2L(an))
1/α . In fact, an may be defined as inf{x : P(|ξ1,1 − 1| > x) ≤

n−2}. In other words, an = n2/αL∗(n) for some slowly varying function L∗(x). Recall that
W(t) is a Brownian motion. Let B(t) be another Brownian motion. For 2 < α < 4, let Sα/2(t)

be a spectrally positive (α/2)-stable Lévy process with exponent

θ 	→ α

2

∫ ∞

0
(eiθu − 1 − iθu)

1

uα/2+1 du. (2.5)

Suppose that W(t), B(t), and Sα/2(t) are independent of each other. We have the following
theorem.

Theorem 2.1. Assume that m = 1, γ 2 < ∞, and condition (1.2) is satisfied.

(i) If α ∈ (2, 8
3 ) or if α = 8

3 and L(an) → ∞, then (Yn(·), Vn(·)/a2
n)

w−→ (Y (·), V (·)) on
D([0, ∞), R+ × R) as n → ∞, where Y (·) is defined by (2.3) and V (·) is defined by

V (t) =
∫ t

0
Y 2/α(s) dSα/2(s). (2.6)

(ii) If α = 8
3 and L(an) ∼ c for some c > 0, then (Yn(·), Vn(·)/n3/2)

w−→ (Y (·), V (·)) on
D([0, ∞), R+ × R) as n → ∞, where Y (·) is defined by (2.3) and V (·) is defined by

V (t) =
∫ t

0

√
2σ 2Y (s) dB(s) +

∫ t

0
(cY (s))2/α dSα/2(s). (2.7)
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(iii) If α ∈ ( 8
3 , ∞) or if α = 8

3 and L(an) → 0, then (Yn(·), Vn(·)/n3/2)
w−→ (Y (·), V (·)) on

D([0, ∞), R+ × R) as n → ∞, where Y (·) is defined by (2.3) and V (·) is defined by

V (t) =
∫ t

0

√
2σ 2Y (s) dB(s). (2.8)

Remark 2.1. Compared with Lemma 2.8 of [18], Theorem 2.1 shows that there might be a
heavy-tailed effect on the limit behavior of Vn(·) when E[ξ4

1,1] = ∞. In fact, we decompose
Vn(·) into three parts: Vn(·) = ∑3

j=1 Vj,n(·) (see (3.1), below). If α ∈ (2, 8
3 ), the limit behavior

of Vn(·) is governed by V1,n(·), in which (ξk,j − 1)2 is in the domain of attraction of a stable
law with exponent α/2. If α ∈ ( 8

3 , ∞), the limit behavior of Vn(·) is governed by V2,n(·) which
follows, in some sense, from the martingale central limit theorem as in [18, Lemma 2.4]. In the
case in which α = 8

3 , the behavior of Vn(·) involves the ‘mixing’ effects of V1,n(·) and V2,n(·).
As an application of Theorem 2.1, our main result is as follows.

Theorem 2.2. Suppose that the conditions of Theorem 2.1 are satisfied with λ > 0. Then there
exist sequences of positive constants, {bn} and {cn}, such that

(
bn(σ̂

2
n − σ 2)

cn(γ̂
2
n − γ 2)

)
d−→

⎛
⎜⎜⎜⎜⎜⎝

∫ 1
0 Y (t) dV (t) − V (1)

∫ 1
0 Y (t) dt∫ 1

0 Y 2(t) dt − (
∫ 1

0 Y (t) dt)2

V (1)
∫ 1

0 Y 2(t) dt − ∫ 1
0 Y (t) dt

∫ 1
0 Y (t) dV (t)∫ 1

0 Y 2(t) dt − (
∫ 1

0 Y (t) dt)2

⎞
⎟⎟⎟⎟⎟⎠ , (2.9)

where Y (·) is defined by (2.3), and bn, cn, and V (·), depending on the tail index α, are given
as follows.

(i) In the case of Theorem 2.1(i), bn = n2/a2
n, cn = n/a2

n, and V (·) is defined by (2.6).

(ii) In the case of Theorem 2.1(ii), bn = √
n, cn = 1/

√
n, and V (·) is defined by (2.7).

(iii) In the case of Theorem 2.1(iii), bn = √
n, cn = 1/

√
n, and V (·) is defined by (2.8).

Furthermore, (2.9) still holds if σ̂ 2
n and γ̂ 2

n are replaced by σ̄ 2
n and γ̄ 2

n , respectively.

Remark 2.2. Let N(0, 1) be a unit normal distribution, and let Sα/2(1, β, 0) be an (α/2)-stable
distribution with exponent

θ 	→ exp

(
−|θ |α/2

(
1 − iβ(sgn θ) tan

πα

4

))
,

where β ∈ [−1, 1], and

sgn θ =

⎧⎪⎨
⎪⎩

1 if θ > 0,

0 if θ = 0,

−1 if θ < 0,

in the sense of [14, pp. 5 and 9]. Using this notation, the distribution of Sα/2(t) is (Aα/2t)
2/α

× Sα/2(1, 1, 0) for t > 0, where Aα/2 = π/(2�(α/2) sin(πα/4)). By direct calculation we
can show that the limiting random variable of bn(σ̂

2
n − σ 2) has the distribution of a mixture

κ1Sα/2(1, 1, 0) + κ2Sα/2(1, −1, 0),

c2/ακ1Sα/2(1, 1, 0) + c2/ακ2Sα/2(1, −1, 0) + κ3N(0, 1), or κ3N(0, 1),
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respectively according to whether the range of α is as in case (i), (ii), or (iii) of Theorem 2.1,
where

κ1 = (Aα/2
∫ 1

0 1[0,∞)((Y (t) − ∫ 1
0 Y (s) ds)Y (t)(Y (t) − ∫ 1

0 Y (s) ds)α/2 dt)2/α∫ 1
0 Y 2(t) dt − (

∫ 1
0 Y (t) dt)2

,

κ2 = (Aα/2
∫ 1

0 1(−∞,0)((Y (t) − ∫ 1
0 Y (s) ds)Y (t)(

∫ 1
0 Y (s) ds − Y (t))α/2 dt)2/α∫ 1

0 Y 2(t) dt − (
∫ 1

0 Y (t) dt)2
,

and

κ3 =
√

2σ 2(
∫ 1

0 Y 2(t)(Y (t) − ∫ 1
0 Y (s) ds)2 dt)1/2∫ 1

0 Y 2(t) dt − (
∫ 1

0 Y (t) dt)2
.

It is clear that, for any K ≥ 0, P(Y (s) = Kfor all s ∈ [0, 1]) = 0. Then P(κ1 + κ2 = 0) = 0,
P(κ3 = 0) = 0, and σ̂n is consistent. On the other hand, the limiting random variable of
cn(γ̂

2
n − γ 2) has a similar form and we have |γ̂ 2

n − γ 2| p−→ ∞, i.e. γ̂ 2
n is not a consistent

estimator.

3. Proofs of the main results

Let F̄n be the σ -field generated by {X0, ξk,j , ηk : 1 ≤ k ≤ n, j ≥ 1}. Recall that Vn(t) =∑[nt]
k=1 Vk . By (1.1), Vn(t) can be rewritten in the following form:

Vn(t) =
[nt]∑
k=1

Xk−1∑
j=1

[(ξk,j − 1)2 − σ 2] + 2
[nt]∑
k=1

Xk−1∑
j=2

j−1∑
l=1

(ξk,j − 1)(ξk,l − 1)

+
(

2
[nt]∑
k=1

Xk−1∑
j=1

(ξk,j − 1)(ηk − λ) +
[nt]∑
k=1

[(ηk − λ)2 − γ 2]
)

= V1,n(t) + V2,n(t) + V3,n(t). (3.1)

To prove Theorem 2.1, it suffices to study the limit behavior of (V1,n(·), V2,n(·), V3,n(·)). The
following lemma tells us that V3,n(·), after rescaling, can be negligible.

Lemma 3.1. Assume that m = 1, σ 2 < ∞, and γ 2 < ∞. For d > 1, V3,n(·)/nd p−→ 0 in the
topology of D([0, ∞), R).

Proof. Note that

E

[Xk−1∑
j=1

(ξk,j − 1)(ηk − λ)

∣∣∣∣ F̄ k − 1

]
= 0 and

n∑
k=1

Xk−1∑
j=1

(ξk,j − 1)(ηk − λ)

is a martingale with respect to F̄n. Then, for any T > 0, we have

E

[
sup

0≤t≤T

(
1

nd

[nt]∑
k=1

Xk−1∑
j=1

(ξk,j − 1)(ηk − λ)

)2]
≤ n2σ 2γ 2

n2d

∫ T

0
E[Yn(s)] ds,

E

[
sup

0≤t≤T

∣∣∣∣ 1

nd

[nt]∑
k=1

[(ηk − λ)2 − γ 2]
∣∣∣∣
]

≤ 2nγ 2T

nd
.

Since d > 1 and
∫ t

0 E[Yn(s)] ds → 1
2λt2 as n → ∞, we have Lemma 3.1.
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Now we concentrate on V1,n(·) and V2,n(·). For simplicity, let ζk,j = ξk,j − 1. Inspired by
the method of Samorodnitsky et al. [15], for any fixed ε > 0, we introduce a family of random
variables {ζ̄k,j : k, j = 1, 2, . . . } defined by

ζ̄k,j =
{

ζk,j if |ζk,j | ≤ anε,

ζ̃k,j if |ζk,j | > anε,
(3.2)

where {ζ̃k,j : k, j = 1, 2, . . . } is the family of i.i.d. random variables with a common distribution
P(ζk,j ∈ · | |ζk,j | ≤ anε), and independent of {ξk,j } and {ηk}. Set

vε
1,n(k) =

Xk−1∑
j=1

(ζ 2
k,j 1{|ζk,j |>anε} − E[ζ 2

k,j 1{|ζk,j |>anε}]),

vε
2,n(k) = 2

Xk−1∑
j=2

j−1∑
l=1

(ζ̄k,j − E[ζ̄k,j ])(ζ̄k,l − E[ζ̄k,l]).

Let V ε
i,n(t) = ∑[nt]

k=1 vε
i,n(k), i = 1, 2. Let Zε

n(t) = (Yn(t), V
ε
1,n(t)/a

2
n, V

ε
2,n(t)/n3/2). We first

consider the weak convergence for Zε
n(·). We need the following four lemmas.

Lemma 3.2. Assume that m = 1, γ 2 < ∞, and condition (1.2) is satisfied. We have, for t ≥ 0,

lim sup
n→∞

E
[

sup
0≤s≤t

Y 2
n (s)

]
≤ (λσ 2 + 2λ2)t2, (3.3)

lim sup
n→∞

(
1

a2
n

E[|V ε
1,n(t)|] + 1

n3 E[(V ε
2,n(t))

2]
)

≤ α

α − 2
ε2−αλt2 + (λσ 6 + 2σ 4λ2)t3. (3.4)

Proof. Note that X[nt] = ∑[nt]
k=1[

∑Xk−1
j=1 ζk,j + (ηk − λ)] + λ[nt]. By applying Doob’s

inequality to the martingale term we have

E
[

sup
0≤s≤t

Y 2
n (s)

]
≤ 2 E

[
1

n2

[nt]∑
k=1

(Xk−1∑
j=1

[ζk,j + (ηk − λ)]
)2]

+ 2λ2t2

≤ 2σ 2
∫ t

0
E[Yn(s)] ds + γ 2t

n
+ 2λ2t2.

Since
∫ t

0 E[Yn(s)] ds → 1
2λt2 as n → ∞, (3.3) holds. We also have

1

a2
n

E[|V ε
1,n(t)|] ≤ 1

a2
n

[nt]∑
k=1

E

[Xk−1∑
j=1

(ζ 2
k,j 1{|ζk,j |>anε} + E[ζ 2

k,j 1{|ζk,j |>anε}])
]

≤ 2n2

a2
n

E[ζ 2
1,1 1{|ζ1,1|>anε}]

∫ t

0
E[Yn(s)] ds, (3.5)

1

n3 E[(V ε
2,n(t))

2] = 2(var ζ̄1,1)
2

n3

[nt]∑
k=1

E[Xk−1(Xk−1 − 1)]

≤ 2 E2[ζ̄ 2
1,1]

∫ t

0
E[Y 2

n (s)] ds. (3.6)
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By (1.2) and Karamata’s theorem,

E[ζ 2
1,1 1{|ζ1,1|>anε}] ∼ α

α − 2

a2
n

n2 ε2−α.

Note that E[ζ̄ 2
1,1] → σ 2 and

∫ t

0 E[Y 2
n (s)] ds → ∫ t

0 ( 1
2λσ 2 + λ2)s2 ds as n → ∞. Then (3.4)

holds.

Lemma 3.3. Under the conditions of Lemma 3.2, for fixed ε > 0, the sequence Zε
n(·) is tight

in D([0, ∞), R+ × R
2).

Proof. By Lemma 3.2, (V ε
1,n(t)/a

2
n, V

ε
2,n(t)/n3/2) is a tight sequence of random vectors

for every t ≥ 0. Note that C(t) := lim supn→∞ E[sup0≤s≤t Y 2
n (s)] + 1 is a locally bounded

function of t ≥ 0. Now let {τn} be a sequence of stopping times bounded by T , and let {δn} be
a sequence of positive constants such that δn → 0 as n → ∞. We obtain, as in the calculations
in (3.5) and (3.6), for sufficiently large n,

1

a2
n

E[|V ε
1,n(τn + δn) − V ε

1,n(τn)|] ≤ 2n2

a2
n

E[ζ 2
1,1 1{|ζ1,1|>anε}]

×
∫ ([nδn]+1)/n

0
E

[
Yn

( [nτn] + [ns]
n

)]
ds

≤
(

2α

α − 2
ε2−α + 1

)∫ δn+1/n

0
C1/2(T + s) ds,

1

n3 E[(V ε
2,n(τn + δn) − V ε

2,n(τn))
2] ≤ 2(σ 2 + 1)2

∫ δn+1/n

0
C(T + s) ds.

Then (V ε
1,n(·)/a2

n, V
ε
2,n(·)/n3/2) is tight in D([0, ∞), R

2) by the criterion of Aldous [1]. By
Proposition 2.1, Yn(·) is C∗-tight. Then it follows from [9, Corollary 3.33, p. 317] that Zε

n(·)
is tight in D([0, ∞), R+ × R

2).

Lemma 3.4. Assume that the conditions of Lemma 3.2 are satisfied. Then, for fixed ε > 0,

1

n3

[nt]∑
k=1

E[(vε
2,n(k))2 1{|vε

2,n(k)|>εn3/2} | Fk−1] p−→ 0 as n → ∞

for all ε > 0 and t ≥ 0.

Proof. By (3.2), {ζ̄k,j } is a family of i.i.d.random variables. Fix k. Since σ(ζ̄k,j : j =
1, 2, . . . ) is independent of Fk−1, we have E[|vε

2,n(k)|2+δ | Fk−1] = 22+δ�(Xk−1) almost
surely (a.s.) for 0 < δ < α − 2, where

�(m) = E

[∣∣∣∣
m∑

j=2

j−1∑
l=1

(ζ̄k,j − E[ζ̄k,j ])(ζ̄k,l − E[ζ̄k,l])
∣∣∣∣
2+δ]

, m = 2, 3, . . . .

Still with k fixed, we note that
∑m

l=1(ζ̄k,l − E[ζ̄k,l]) is an F̄ k
m-martingale, where

F̄ k
m = σ(ζ̄k,1, ζ̄k,2, . . . , ζ̄k,m).
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Then, by Burkholder’s inequality (see [6, p. 23]) and Minkowski’s inequality,

E

[∣∣∣∣
j−1∑
l=1

(ζ̄k,l − E[ζ̄k,l])
∣∣∣∣
2+δ]

≤ C1 E

[∣∣∣∣
j−1∑
l=1

(ζ̄k,l − E[ζ̄k,l])2
∣∣∣∣
(2+δ)/2]

≤ C1

(j−1∑
l=1

E2/(2+δ)[|ζ̄k,l − E[ζ̄k,l]|2+δ]
)(2+δ)/2

, (3.7)

where C1 is a positive constant depending only on δ. Let σ̄2+δ = E[(ξ1,1 + 2)2+δ]. We have
E[|ζ̄1,1 − E[ζ̄1,1]|2+δ] ≤ 2σ̄2+δ for large enough n. Also, note that

Tk(m) =
m∑

j=2

j−1∑
l=1

(ζ̄k,j − E[ζ̄k,j ])(ζ̄k,l − E[ζ̄k,l])

is a martingale with respect to F̄ k
m for fixed k. By Burkholder’s inequality, Minkowski’s

inequality, and (3.7), we have

�(m) ≤ C2 E

[∣∣∣∣
m∑

j=2

(ζ̄k,j − E[ζ̄k,j ])2
(j−1∑

l=1

(ζ̄k,l − E[ζ̄k,l])
)2∣∣∣∣

(2+δ)/2]

≤ C2

( m∑
j=2

E2/(2+δ)[|ζ̄k,j − E[ζ̄k,j ]|2+δ] E2/(2+δ)

[∣∣∣∣
j−1∑
l=1

(ζ̄k,l − E[ζ̄k,l])
∣∣∣∣
2+δ])(2+δ)/2

≤ C1C2

( m∑
j=2

(j − 1) E4/(2+δ)[|ζ̄k,j − E[ζ̄k,j ]|2+δ]
)(2+δ)/2

≤ 4C1C2σ̄
2
2+δm

2+δ,

where C2 is a positive constant depending only on δ. Then

1

n3

[nt]∑
k=1

E[(vε
2,n(k))2 1{|vε

2,n(k)|>εn3/2} | Fk−1] ≤ 1

nδ/2εδ
(24+δC1C2σ̄

2
2+δ)

∫ t

0
Y 2+δ

n (s) ds,

which converges in probability to 0 by Proposition 2.1 and the continuous mapping theorem
(see [2, Theorem 2.7]).

By Lemma 3.3, for any fixed ε > 0, let Zε(·) = (Y ε(·), V1,ε(·), V2,ε(·)) be any limit point
of Zε

n(·). Without loss of generality, by Skorokhod’s theorem, we can assume that on some
Skorokhod space (�ε, F ε, F ε

t , Pε), Zε
n(·) a.s.−→ Zε(·) in the topology of D([0, ∞), R+ × R

2).

Lemma 3.5. Assume that the conditions of Lemma 3.2 are satisfied. For any fixed ε > 0 and
θ = (θ1, θ2, θ3) ∈ R

3,

L(t) = ei〈θ,Zε(t)〉 − 1 −
∫ t

0
ei〈θ,Zε(s)〉A(Y ε(s)) ds

is a complex-valued local F ε
t -martingale. Here i2 = −1, 〈·, ·〉 is the inner product of R

3, and

A(y) = iλθ1 − 1

2
σ 2θ2

1 y − σ 4θ2
3 y2 + α

2
y

∫ ∞

ε2
(eiθ2u − 1 − iθ2u)

1

uα/2+1 du.
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Proof. For any b > 1, define the stopping times

τb = inf{t ≥ 0 : ‖Zε(t)‖ ≥ b or ‖Zε(t−)‖ ≥ b},
τ b
n = inf{t ≥ 0 : ‖Zε

n(t)‖ ≥ b or ‖Zε
n(t−)‖ ≥ b}.

Let Zb,ε(t) = Zε(t ∧ τb) and Z
b,ε
n (t) = Zε

n(t ∧ τb
n ). It follows from [9, Proposition 2.11,

p. 305] that, for all but countably many b,

τb
n

a.s.−→ τb in R and Zb,ε
n (·) a.s.−→ Zb,ε(·) (3.8)

in the topology of D([0, ∞), R+ × R
2). Define τb

n (t) = τb
n ∧ t and τb(t) = τb ∧ t . We claim

that
τb
n (·) a.s.−→ τb(·) in C([0, ∞), R+) as n → ∞. (3.9)

In fact, since 0 ≤ τb
n (t+ε)−τb

n (t) ≤ ε for any t ≥ 0, the criterion ofAldous [1] yields tightness
for {τb

n (·), n ≥ 1}. Let F̂ n
k = σ(Zε

n(j/n) : j = 0, 1, . . . , k). Note that {Zε
n(k/n) : k ≥ 1} is a

time-homogeneous Markov chain. Then

Ln(t) = ei〈θ,Zε
n(t)〉 − 1

−
[nt]∑
k=1

ei〈θ,Zε
n((k−1)/n)〉

(
E

[
exp

(
i

〈
θ, Zε

n

(
k

n

)
− Zε

n

(
k − 1

n

)〉) ∣∣∣∣ F̂ n
k−1

]
− 1

)

is a complex-valued martingale. Let un(k) = ∑Xk−1
j=1 (ζ̄k,j − E[ζ̄k,j ]). Then

E

[
exp

(
i

〈
θ, Zε

n

(
k

n

)
− Zε

n

(
k − 1

n

)〉) ∣∣∣∣ F n
k−1

]
− 1

=
(

E

[
exp

(
i

(
θ1

un(k)

n
+ θ1

ηk

n
+ θ2

vε
1,n(k)

a2
n

+ θ3
vε

2,n(k)

n3/2

)) ∣∣∣∣ Xk−1

]
− 1

)

+ E

[
exp

(
i

(
θ1

un(k)

n
+ θ1

ηk

n
+ θ2

vε
1,n(k)

a2
n

+ θ3
vε

2,n(k)

n3/2

))

×
(

exp

(
iθ1

(Xk−1∑
j=1

ζk,j − ζ̄k,j + E[ζ̄k,j ]
n

))
− 1

) ∣∣∣∣ Xk−1

]

= In(k) + Jn(k).

By (3.2), for fixed k, if Xk−1 is known then vε
1,n(k), ηk , and (un(k), vε

2,n(k)) are independent
of each other. On the other hand,

E

[
θ1

un(k)

n
+ θ3

vε
2,n(k)

n3/2

∣∣∣∣ Xk−1

]
= 0.

Then

In(k) = E

[
exp

(
iθ1

ηk

n

)]
E

[
exp

(
iθ1

un(k)

n
+ iθ3

vε
2,n(k)

n3/2

) ∣∣∣∣ Xk−1

]

× E

[
exp

(
iθ2

vε
1,n(k)

a2
n

) ∣∣∣∣ Xk−1

]
− 1

= I1,n(k) + I2,n(k),
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where

I0,n(k) = E

[
exp

(
iθ1

ηk

n

)]
E

[
exp

(
iθ2

vε
1,n(k)

a2
n

) ∣∣∣∣ Xk−1

]
,

I1,n(k) = I0,n(k) E

[
1 − 1

2

(
θ1

un(k)

n
+ θ3

vε
2,n(k)

n3/2

)2 ∣∣∣∣ Xk−1

]
− 1,

I2,n(k) = I0,n(k) E

[
exp

(
iθ1

un(k)

n
+ iθ3

vε
2,n(k)

n3/2

)
− 1

+ 1

2

(
θ1

un(k)

n
+ θ3

vε
2,n(k)

n3/2

)2 ∣∣∣∣ Xk−1

]
.

It follows from (2.4) that n2 P(|ζ1,1| > anx) → x−α for x > 0 and α > 2. Moreover, for
any K > 0, n2 E[(ζ1,1/an)

2 1{|ζ1,1|>anK}] → (α/(α − 2))K2−α . Let µn be the distribution of
ζ1,1/an. We have, as n → ∞,

n2
∫

|u|>ε

(eiθ2u
2 − 1 − iθ2u

2)µn(du) → α

∫ ∞

ε

(eiθ2u
2 − 1 − iθ2u

2)
1

uα+1 du. (3.10)

The right-hand side is equal to

α

2

∫ ∞

ε2
(eiθ2u − 1 − iθ2u)

1

uα/2+1 du.

Let νn be the distribution of η1/n. We have

I0,n(k) = E

[
exp

(
iθ1

ηk

n

)](
E

[
exp

(
iθ2

(
ζ1,1

an

)2

1{|ζ1,1|>anε}
)])Xk−1

× exp

(
−iθ2Xk−1 E

[(
ζ1,1

an

)2

1{|ζ1,1|>anε}
])

= exp

(
iθ1

λ

n
+ Xk−1

∫
|u|>ε

(eiθ2u
2 − 1 − iθ2u

2)µn(du) + Xk−1�1,n + �2,n

)
, (3.11)

where

�1,n =
∞∑

j=2

(−1)j−1

j

(∫
|u|>ε

(eiθ2u
2 − 1)µn(du)

)j

�2,n =
∫

(eiθ1u − 1 − iθ1u)νn(du) +
∞∑

j=2

(−1)j−1

j

(∫
(eiθ1u − 1)νn(du)

)j

.

Note that n2|�1,n| ≤ n2(
∫
|u|>ε

(eiθ2u
2 − 1)µn(du))2 → 0 and |�2,n| ≤ θ2

1 (2λ2 +γ 2)/n2. Also,

E

[
1

2

(
θ1

un(k)

n
+ θ3

vε
2,n(k)

n3/2

)2 ∣∣∣∣ Xk−1

]

= θ2
1

2n2 var(ζ̄1,1)Xk−1 + θ2
3

n3 (var(ζ̄1,1))
2(X2

k−1 − Xk−1). (3.12)
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By (3.10), (3.11), and (3.12), if Xk−1/n ≤ b then I1,n(k) = An(Xk−1/n), where

An(y) = i
θ1λ

n
− θ2

1

2n
var(ζ̄1,1)y − θ2

3

n
(var(ζ̄1,1))

2y

(
y − 1

n

)

+ ny

∫
|u|>ε

(eiθ2u
2 − 1 − iθ2u

2)µn(du) + κn(y) (3.13)

for 0 ≤ y ≤ b. Here κn(y) is some complex-valued function satisfying sup0≤y≤b |κn(y)| ≤
Cbo(1/n) for some constant Cb depending on b. It is not hard to show that nAn(y) → A(y)

uniformly on y ∈ [0, b] for fixed θ . Recall that Yb
n (t) = Yn(t∧τb

n ). By (3.8) and [5, Problem 26,
p. 153], we obtain∫ t

0
exp(i〈θ, Zε,b

n (t−)〉)nAn(Y
b
n (s)) ds

a.s.−→
∫ t

0
exp(i〈θ, Zε,b(s)〉)A(Y b(s)) ds

in the topology of C([0, ∞), C). Note that [nt]/n → t in C([0, ∞), R+). By (3.9), [5,
Problem 13, p. 151], and [9, Proposition 1.23], we have∫ [n(t∧τb

n )]/n

0
exp(i〈θ, Zε,b

n (t)〉)nAn(Y
b
n (s)) ds

a.s.−→
∫ t∧τb

0
exp(i〈θ, Zε,b(s)〉)A(Y b(s)) ds

in the topology of C([0, ∞), C). For any ε > 0,

|I2,n(k)| ≤ ε

6

(
θ2

1

n2 var(ζ̄1,1)Xk−1 + 2θ2
3

n3 (var(ζ̄1,1))
2(X2

k−1 − Xk−1)

)

+ 4θ2
1

n2 E[(un(k))2 1{|θ1un(k)|>εn/2}] + 4θ2
3

n3 E[(vε
2(k))2 1{|θ3v

ε
2(k)|>εn3/2/2}].

Without loss of generality, assume that θ1, θ3 > 0. As in the proof of Lemma 3.4, we have, for
0 < δ < α − 2,

E[|un(k)|2+δ] ≤ 2Cσ̄2+δX
(2+δ)/2
k−1 , (3.14)

where C is a constant depending on δ. Since ε is arbitrary, it follows from (3.14) and Lemma 3.4
that

[n(t∧τb
n )]∑

k=1

exp

(
i

〈
θ, Zε

n

(
k − 1

n

)〉)
I2,n(k)

p−→ 0

in C([0, ∞), C). For large enough n,

|Jn(k)| ≤ Xk−1

n
|θ1|( E[|ζ1,1| 1{|ζ1,1|>anε}] + 2 E[|ζ1,1|] P(|ζ1,1| > anε)

+ 2|E[ζ1,1 1{|ζ1,1|≤anε}]|).
Note that E[ζ1,1] = 0, so we have

|E[ζ1,1 1{|ζ1,1|≤anε}]| = |E[ζ1,1 1{|ζ1,1|>anε}]| ≤ E[|ζ1,1| 1{|ζ1,1|>anε}] ∼ α

(α − 1)εα−1

an

n2

and an/n → 0 for α > 2. Then

[n(t∧τb
n )]∑

k=1

exp

(
i

〈
θ, Zε

n

(
k − 1

n

)〉)
Jn(k)

a.s.−→ 0 in C([0, ∞), C).
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Thus, we have Ln(t ∧ τb
n )

a.s.−→ L(t ∧ τb) in D([0, ∞), C) (passing to a subsequence if neces-
sary). For almost all t ≥ 0, Ln(t ∧ τb

n )
a.s.−→ L(t ∧ τb) in C. Fix T > 0 arbitrarily. It is not

hard to see that there exists a constant K such that |Ln(t ∧ τb
n )| ≤ K for large enough n and

any t ≤ T . Then, for almost all t ≤ T , Ln(t ∧ τb
n )

L1→ L(t ∧ τb) as n → ∞. Since L(t ∧ τb)

is right continuous and bounded for t ≤ T , L(t ∧ τb) is a martingale. Note that τb → ∞ as
b → ∞, so L(t) is a local martingale.

Proposition 3.1. Assume that the conditions of Lemma 3.2 are satisfied. For any fixed ε > 0,
Zε

n(·) converges in distribution on D([0, ∞), R+ × R
2) to the process Zε(·) defined by

Y ε(t) = λt +
∫ t

0
σ
√

Y ε(s) dWε(s), V2,ε(t) =
∫ t

0

√
2σ 2Y ε(s) dBε(s), (3.15)

V1,ε(t) =
∫ t

0

∫ ∞

ε2

∫ Y ε(s)

0
uÑε(ds, du, dς), (3.16)

where Wε(t) and Bε(t) are Brownian motions, and Nε(ds, du, dς) is a Poisson random mea-
sure on (0, ∞)×R+×(0, ∞) with intensity (α/2) dsu−α/2−1 du dς . Here Wε, Bε, and Nε are
independent of each other and Ñε(ds, du, dς) = Nε(ds, du, dς) − (α/2) dsu−α/2−1 du dς .

Proof. It follows from Lemma 3.5 and [9, Theorem 2.42, p. 86] that Zε(·) is a semimartingale
and it admits the canonical representation

Y ε(t) = λt + Y ε
c (t), V2,ε = V c

2,ε, V1,ε =
∫ t

0

∫
R+

uJ̃ ε(ds, du),

with (Y ε
c (t), V c

2,ε(t)) a vector of two continuous local martingales with quadratic covariation
process (

∫ t

0 cij (s) ds)2
i,j=1, where c11(s) = σ 2Y ε(s), c12(s) ≡ 0, and c22(s) = 2σ 4(Y ε(s))2,

and J ε(dt, du) is an integer-valued random measure on (0, ∞) × R+ with compensator
Ĵ ε(dt, du) = (α/2)Y ε(t) dt 1(ε2,∞)(u)u−α/2−1 du. Let ρ(du, dς) = (α/2)u−α/2−1 du dς .
Since (α/2)u−α/2−1 du is supported by (0, ∞), we can check that, for any (a, b) ⊂ (0, ∞),

α

2
Y ε(t)

∫ b∧ε2

a∧ε2
u−α/2−1 du = ρ({u : θ̃ (t, u, ς) ∈ (a, b)}),

where θ̃ (t, u, ς) = u 1(ε2,∞)(u) 1(0,Y ε(t)](ς). By Ikeda and Watanabe [8, pp. 84 and 93],
there exists a standard extension of the original probability space supporting two independent
Brownian motions Wε(t) and Bε(t) and a Poisson random measure Nε(dt, du, dς) on (0, ∞)×
R+ × (0, ∞) with intensity dtρ(du, dς) such that (3.15) holds, and, for any (a, b) ⊂ (0, ∞),

J ε((0, t] × (a, b)) =
∫ t

0

∫
R+×(0,∞)

1(a,b)(θ̃ (s, u, ς))Nε(ds, du, dς).

Then (3.16) holds. Thus, Zε(·) is the solution of the stochastic equation system (3.15) and (3.16).
The pathwise uniqueness of the solution for the above equation system is obvious (see [4]).
Also, by Lemma 3.3 we have the weak convergence for Zε

n(·).
Let Zn(t) = (Yn(t), V1,n(t)/a

2
n, V2,n(t)/n3/2). We have the following proposition.

Proposition 3.2. Assume that the conditions of Lemma 3.2 are satisfied with 2 < α < 4. Let
W(t) and B(t) be Brownian motions, and let N(ds, du, dς) be a Poisson random measure

https://doi.org/10.1239/jap/1276784907 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784907


538 C. MA AND L. WANG

(0, ∞) × R+ × (0, ∞) with intensity (α/2) dsu−α/2−1 du dς . Suppose that W , B, and N are
independent of each other. Then Zn(·) converges in distribution on D([0, ∞), R+ ×R

2) to the
process Z(·), which can be defined by

Y (t) = λt +
∫ t

0
σ
√

Y (s) dW(s), V2(t) =
∫ t

0

√
2σ 2Y (s) dB(s), (3.17)

V1(t) =
∫ t

0

∫ ∞

0

∫ Y (s)

0
uÑ(ds, du, dς), (3.18)

where Ñ(ds, du) = N(ds, du, dς) − (α/2) dsu−α/2−1 du dς .

Proof. Obviously, there exists a unique solution for the equation system (3.17)–(3.18),
denoted by Z(·). Let Zε(·) be defined by (3.15)–(3.16). It is not hard to see that Zε(·)
converges in distribution on D([0, ∞), R+ × R

2) to the process Z(·) as ε → 0. We claim that,
for any T > 0 and r > 0,

lim
ε→0

lim sup
n→∞

P
(

sup
0≤t≤T

|Zε
n(t) − Zn(t)| > r

)
= 0. (3.19)

Recall that F̄n=σ(X0, ξk,j , ηk : 1 ≤ k ≤ n, j ≥ 1). Then

V1,n(t) − V ε
1,n(t) =

[nt]∑
k=1

Xk−1∑
j=1

(ζ 2
k,j 1{|ζk,j |≤anε} − E[ζ 2

k,j 1{|ζk,j |≤anε}])

is an F̄[nt]-martingale. By Doob’s inequality,

lim sup
n→∞

1

a4
n

E
[

sup
0≤t≤T

(V1,n(t) − V ε
1,n(t))

2
]

≤ lim sup
n→∞

4

a4
n

[nT ]∑
k=1

E[Xk−1] E[ζ 4
1,1 1{|ζ1,1|≤anε}]

≤ 4α

4 − α
ε4−α

∫ T

0
E[Y (s)] ds. (3.20)

Since 2 < α < 4, limε→0 lim supn→∞ E[sup0≤t≤T (V1,n(t) − V ε
1,n(t))

2]/a4
n = 0. Note that

V2,n(t) − V ε
2,n(t) = 2

[nt]∑
k=1

Xk−1∑
i �=j

(ζk,i 1{|ζk,i |>anε} − E[ζk,i 1{|ζk,i |>anε}])ζk,j 1{|ζk,j |≤anε}

− 2
[nt]∑
k=1

Xk−1∑
i �=j

(ζ̃k,i 1{|ζk,i |>anε} − E[ζ̃k,i] P(|ζk,i | > anε))ζk,j 1{|ζk,j |≤anε}

− 2
[nt]∑
k=1

Xk−1∑
i<j

(ζ̃k,i 1{|ζk,i |>anε} − E[ζ̄k,i])(ζ̃k,j 1{|ζk,j |>anε} − E[ζ̄k,j ])

+ 2
[nt]∑
k=1

Xk−1∑
i<j

ζk,i 1{|ζk,i |>anε} ζk,j 1{|ζk,j |>anε}

=
4∑

k=1

Jk,n(t). (3.21)
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Note that J1,n(k/n)/n3/2 is an F̄k-martingale. For any t ≥ 0,

1

n3

[nt]∑
k=1

E

[(Xk−1∑
i �=j

(ζk,i 1{|ζk,i |>anε} − E[ζk,i 1{|ζk,i |>anε}])ζk,j 1{|ζk,j |>anε}
)2 ∣∣∣∣ F̄k−1

]

≤ a2
n

n2

α

(α − 2)εα−2 E[ζ 2
1,1]

∫ t

0
Y 2

n (s) ds + a4
n

n5

α3

(α − 1)2(α − 2)ε3α−4

∫ t

0
Y 3

n (s) ds,

which converges in probability to 0 by Lemma 2.1 and α > 2. It follows from the martingale
central limit theorem that J1,n(t)/n3/2 p−→ 0 in the topology of D([0, ∞), R). For J3,n(t)/n3/2,

1

n3/2 E
[

sup
0≤t≤T

|J3,n(t)|
]

≤ 8

(
E[|ζ1,1|] 1

n5/4εα
+ α

α − 1

an

n5/4εα−1

)2 ∫ T

0
E[Y 2

n (s)] ds,

which converges to 0 by α > 2. Similarly, J2(t)/n3/2 and J4(t)/n3/2 have the same results as
J1,n(t)/n3/2 and J3,n(t)/n3/2, respectively. By (3.21) and (3.20), (3.19) holds. Proposition 3.2
follows from Proposition 3.1 and [2, Theorem 3.2].

Let N1(ds, du) be a Poisson random measure on (0, ∞) × R+ with intensity

α

2
dsu−α/2−1 du,

independent of W , B, and N . Define

Sα/2(t) =
∫ t

0

∫ ∞

0

∫ Y (s)

0
(Y (s))−2/α 1{Y (s)�=0} uÑ(ds, du, dς)

+
∫ t

0

∫ ∞

0
u 1{Y (s)=0} Ñ1(ds, du).

Then Sα/2(t) is a martingale. By Itô’s formula, it is not hard to see that Sα/2(t) is a one-sided
(α/2)-stable process with exponent defined by (2.5). Thus, we also have

V1(t) =
∫ t

0
Y 2/α(s) dSα/2(s). (3.22)

Proof of Theorem 2.1. For case (i), note that n3/2/a2
n → 0. Write Vn(t)/a

2
n = V1,n(t)/a

2
n +

(n3/2/a2
n)(V2,n(t)/n3/2) + V3,n(t)/a

2
n. By Lemma 3.1, Proposition 3.2, (3.22), and the con-

tinuous mapping theorem, the weak convergence result holds with (2.6). In a similar way, we
also have cases (ii)–(iii) when α < 4. Now we concentrate on case (iii) when α ≥ 4. As
in the proofs of Lemmas 3.2–3.5 and Proposition 3.1, we can prove that (Yn(·), V2,n(·)/n3/2)

converges in distribution on D([0, ∞), R+ × R) to the process (Y (·), V2(·)) defined by (3.17).
If α > 4, E[ξ4

1,1] < ∞ and

1

n3

[nt]∑
k=1

E

[(Xk−1∑
j=1

(ζ 2
k,j − σ 2)

)2 ∣∣∣∣ F̄k−1

]
≤ 1

n
E[ζ 4

1,1]
∫ t

0
Yn(s) ds,
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which converges in probability to 0 for any t ≥ 0. By the martingale central limit theorem
(see [6, p. 58]), V1,n(t)/n3/2 p−→ 0 in the topology of D([0, ∞), R). If α = 4, we note that

1

n3/2 E
[

sup
0≤s≤t

|V1,n(s)|
]

≤ 2

n3/2 E1/2
[( [nt]∑

k=1

Xk−1∑
j=1

(ζ 2
k,j 1{|ζk,j |≤an} − E[ζ 2

k,j 1{|ζk,j |≤an}])
)2]

+ 2

n3/2

[nt]∑
k=1

Xk−1∑
j=1

E[ζ 2
k,j 1{|ζk,j |>an}]

≤
(

4

n3

[nt]∑
k=1

E[Xk−1] E[ζ 4
1,1 1{|ζ1,1|≤an}]

)1/2

+ 2

n3/2

[nt]∑
k=1

E[Xk−1] E[ζ 2
1,1 1{|ζ1,1|>an}].

Since α = 4, it follows from Karamata’s theorem (see [3, Proposition 1.5.9]) that

E[ζ 2
1,1 1{|ζ1,1|>an}] ∼ 2a2

n

n2 ,

and that E[ζ 4
1,1 1{|ζ1,1|≤an}] = L̃(an)−a4

n P(|ζ1,1| > an) for some positive function L̃(x) slowly
varying at ∞. In this case, a2

n/n3/2 → 0 and L̃(an)/n → 0. Then V1,n(t)/n3/2 p−→ 0 in the
topology of D([0, ∞), R). Thus, by Lemma 3.1, Theorem 2.1 follows from the continuous
mapping theorem.

Based on Proposition 2.1, Wei and Winnicki [17] gave the asymptotic properties of the CLSE
(m̂n, λ̂n) of (m, λ) as follows.

Lemma 3.6. ([17].) If m = 1, σ 2 < ∞, and γ 2 < ∞, then

(
n(m̂n − m)

λ̂n − λ

)
d−→

⎛
⎜⎜⎜⎜⎜⎝

Y 2(1)/2 − (Y (1) + σ 2/2)
∫ 1

0 Y (t) dt∫ 1
0 Y 2(t) dt − (

∫ 1
0 Y (t) dt)2

∫ 1
0 σY 1/2(t) dW(t)

∫ 1
0 Y 2(t) dt − ∫ 1

0 Y (t) dt
∫ 1

0 σY 3/2(t) dW(t)∫ 1
0 Y 2(t) dt − (

∫ 1
0 Y (t) dt)2

⎞
⎟⎟⎟⎟⎟⎠ ,

(3.23)
where Y (·) and W(·) are given in (2.3).

Proof of Theorem 2.2. Write Vn(t) = Mn(t) + Hn(t), where

Mn(t) =
[nt]∑
k=1

Xk−1∑
j=1

(ζ 2
k,j 1{|ζk,j |≤an} − E[ζ 2

k,j 1{|ζk,j |≤an}]) + 2
[nt]∑
k=1

Xk−1∑
j=2

j−1∑
l=1

ζk,j ζk,l

+ 2
[nt]∑
k=1

Xk−1∑
j=1

ζk,j (ηk − λ),

Hn(t) =
[nt]∑
k=1

Xk−1∑
j=1

(ζ 2
k,j 1{|ζk,j |>an} − E[ζ 2

k,j 1{|ζk,j |>an}]) +
[nt]∑
k=1

((ηk − λ)2 − γ 2).
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Now we turn to case (i). In this case, Mn(t) is an F̄[nt]-martingale, and, for any t ≥ 0,

lim sup
n→∞

1

a4
n

E[M2
n(t)] ≤ α

4 − α

∫ t

0
E[Y (s)] ds.

Here Hn(t) has paths of finite variation on bounded intervals. Denote its finite variation by∫ t

0 |dHn(s)|. We have

lim sup
n→∞

1

a2
n

E

[∫ t

0
|dHn(s)|

]
≤ 2α

α − 2

∫ t

0
E[Y (s)] ds.

Then, by Theorem 2.1 and [12, Theorem 2.2],(
Yn(t),

Vn(t)

a2
n

,
1

a2
n

∫ t

0
Yn(s) dVn(s)

)
→
(

Y (t), V (t),

∫ t

0
Y (s) dV (s)

)
(3.24)

in distribution on D([0, ∞), R+ × R
2), where V (·) is defined by (2.6). Here V (t) and∫ t

0 Y (s) dV (s) are stochastically continuous. Also, note that

n2

a2
n

(σ̄ 2
n − σ 2) = (1/a2

n)
∫ t

0 Yn(s) dVn(s) − (Vn(1)/a2
n)
∫ t

0 Yn(s) ds∫ 1
0 Y 2

n (s) − (
∫ 1

0 Yn(s) ds)2
,

n

a2
n

(γ̄ 2
n − γ 2) = Vn(1)

a2
n

− n2

a2
n

(σ̄ 2
n − σ 2)

∫ t

0
Yn(s) ds.

By (3.24) and the continuous mapping theorem, we have (2.9) for case (i). Cases (ii)–(iii) can
be proved in a similar way. On the other hand,

Û2
k − U2

k = (m̂n − m)2X2
k−1 + (λ̂n − λ)2 + 2(m̂n − m)(λ̂n − λ)Xk−1

− 2(m̂n − m)UkXk−1 − 2(λ̂n − λ)Uk.

As in the above proof, again by Lemma 3.6 and [18, Lemma 2.7], we can show that the above
results also hold for σ̄ 2

n and γ̄ 2
n .
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