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Abstract

Smooth cubic hypersurfaces X ⊂ P5 (over C) are linked to K3 surfaces via their Hodge
structures, due to the work of Hassett, and via a subcategory AX ⊂ Db(X), due to
the work of Kuznetsov. The relation between these two viewpoints has recently been
elucidated by Addington and Thomas. In this paper, both aspects are studied further
and extended to twisted K3 surfaces, which in particular allows us to determine the
group of autoequivalences of AX for the general cubic fourfold. Furthermore, we prove
finiteness results for cubics with equivalent K3 categories and study periods of cubics
in terms of generalized K3 surfaces.

1. Introduction

As shown by Kuznetsov [Kuz10, Kuz06], the bounded derived category Db(X) of coherent sheaves
on a smooth cubic hypersurface X ⊂ P5 contains, as the semi-orthogonal complement of three
line bundles, a full triangulated subcategory

AX := 〈O,O(1),O(2)〉⊥ ⊂ Db(X)

that behaves in many respects like the bounded derived category Db(S) of coherent sheaves on a
K3 surface S. In fact, for certain special cubics AX is equivalent to Db(S) or, more generally, to
the derived category Db(S, α) of α-twisted sheaves on a K3 surface S. Kuznetsov also conjectured
that AX is of the form Db(S) if and only if X is rational. Neither of the two implications has
been verified until now, although Addington and Thomas recently have shown in [AT14] that
the conjecture is (generically) equivalent to a conjecture attributed to Hassett [Has00] describing
rational cubics in terms of their periods.

1.1 This paper is not concerned with the rationality of cubic fourfolds, but with basic results
on AX . Ideally, one would like to have a theory for AX that parallels the theory for Db(S) and
Db(S, α). In particular, one would like to have analogues of the following results and conjectures.

– For a given twisted K3 surface (S, α) there exist only finitely many isomorphism classes of
twisted K3 surfaces (S′, α′) with Db(S, α) ' Db(S′, α′).

– Two twisted K3 surfaces (S, α), (S′, α′) are derived equivalent, i.e. there exists a C-linear
exact equivalence Db(S, α) ' Db(S′, α′), if and only if there exists an orientation-preserving
Hodge isometry H̃(S, α,Z) ' H̃(S′, α′,Z).

– The group of linear exact autoequivalences of Db(S, α) admits a natural representation
ρ : Aut(Db(S, α)) // Aut(H̃(S, α,Z)), which is surjective up to index two. Moreover, up to finite

Received 13 September 2015, accepted in final form 26 August 2016, published online 2 March 2017.
2010 Mathematics Subject Classification 14J28, 14F05 (primary).
Keywords: cubic fourfold, K3 surfaces, Hodge theory, derived categories.

This work was supported by the SFB/TR 45 ‘Periods, Moduli Spaces and Arithmetic of Algebraic Varieties’
of the DFG (German Research Foundation).
This journal is c© Foundation Compositio Mathematica 2017.

https://doi.org/10.1112/S0010437X16008137 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X16008137


The K3 category of a cubic fourfold

index Aut(Db(S, α)) is conjecturally described as a fundamental group of a certain Deligne–
Mumford stack.

Most of the theory for untwisted K3 surfaces is due to Mukai [Muk87] and Orlov [Orl97],
whereas the basic theory of twisted K3 surfaces was developed in [HS05, HS06]. See also [Huy06,
Huy09] for surveys and further references. Originally, the generalization to twisted K3 surfaces
was motivated by the existence of non-fine moduli spaces [Căl00]. However, more recently
it has become clear that allowing twists has quite unexpected applications, e.g. to the Tate
conjecture [Cha16, LMS14]. Crucial for the purpose of this article is the observation proved
together with Macr̀ı and Stellari [HMS08] that Ker(ρ) = Z[2] for many twisted K3 surfaces
(S, α). Note that for untwisted projective K3 surfaces the kernel is always highly non-trivial and,
in particular, not finitely generated. The conjectural description of Aut(Db(S)) has in this case
only been achieved for K3 surfaces of Picard rank one [BB13].

1.2 As a direct attack on AX is difficult, we follow Addington and Thomas [AT14] and reduce
the study of AX via deformation to the case of (twisted) K3 surfaces. Central to our discussion is
the Hodge structure H̃(AX ,Z) associated with AX introduced in [AT14] as the analogue of the
Mukai–Hodge structure H̃(S,Z) of weight two on the full cohomology H∗(S,Z) of a K3 surface
S or of the twisted version H̃(S, α,Z) introduced in [HS05]. For example, any FM-equivalence
AX ' AX′ induces a Hodge isometry H̃(AX ,Z) ' H̃(AX′ ,Z), cf. Proposition 3.4. This suffices
to prove the following theorem.

Theorem 1.1. For any given smooth cubic X ⊂ P5 there are only finitely many cubics X ′ ⊂ P5

up to isomorphism for which there exists a FM-equivalence AX ' AX′ . See Corollary 3.5.

Recall that due to a result of Bondal and Orlov a smooth cubic X ⊂ P5 itself does not admit
any non-isomorphic Fourier–Mukai partners. This is no longer true if Db(X) is replaced by its
K3 category AX . In particular, there exist FM-equivalences AX ' AX′ that do not extend to
equivalences Db(X) ' Db(X ′). However, we will also see that general cubics X and X ′, i.e. those
for which rk H2,2(X,Z) = 1, admit a FM-equivalence AX ' AX′ if and only if X ' X ′, see
Theorem 1.5 or Corollary 3.6.

The following can be seen as an easy analogue of the result of Bayer and Bridgeland [BB13]
describing Aut(Db(S)) for general K3 surfaces S (namely those with ρ(S) = 1) or rather
of [HMS09] describing this group for general non-projective K3 surfaces or twisted projective
K3 surfaces (S, α) without (−2) classes (see § 6.1).

Theorem 1.2. (i) For the very general1 smooth cubic X ⊂ P5 the group Auts(AX) of symplectic
FM-autoequivalences is infinite cyclic with

Auts(AX)/Z · [2] ' Z/3Z.

Alternatively, the group of all FM-autoequivalences Aut(AX) is infinite cyclic containing Z · [1]
as a subgroup of index three.

(ii) Moreover, the induced action on H̃(AX ,Z) of any FM-autoequivalence Φ : AX ∼ //AX
of a non-special cubic preserves the natural orientation.

1 A property holds for the very general cubic if it holds for cubics in the complement of countably many proper
closed subsets of the space of cubics under consideration. It holds for the generic cubic if it holds for a Zariski
open, dense subset.
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In fact, for every smooth cubic Auts(AX) contains an infinite cyclic group with Z · [2] as a
subgroup of index three, see Corollary 3.13. The theory of twisted K3 surfaces is crucial for the
theorem, as eventually the problem is reduced to [HMS08] which deals with general twisted K3
surfaces.

The group Auts(AX) of an arbitrary cubic is described by an analogue of Brigdeland’s
conjecture, see Conjecture 3.15.

1.3 In [Has00] Hassett showed that in the moduli space C of smooth cubics, the set of those
cubics X for which there exists a primitive positive plane Kd ⊂ H2,2(X,Z) of discriminant d
containing the class c1(O(1))2 is an irreducible divisor Cd ⊂ C. Moreover, Cd is not empty if and
only if

(∗) d ≡ 0, 2 (6) and d > 6.

Cubics parametrized by the divisors Cd are called special. Hassett also introduced the numerical
condition

(∗∗) d is even and d/2 is not divisible by nine or any prime p ≡ 2 (3).2

Hassett then proved that (∗∗) is equivalent to the orthogonal complement of the corresponding
lattice Kd in H4(X,Z) being (up to sign) Hodge isometric to the primitive Hodge structure
H2(S,Z)prim of a polarized K3 surface. In [AT14] the condition was shown to be equivalent to

the existence of a Hodge isometry H̃(AX ,Z) ' H̃(S,Z) for some K3 surface S. We prove the
following twisted version of it (cf. Proposition 2.10).

Theorem 1.3. For a smooth cubic X ⊂ P5 the Hodge structure H̃(AX ,Z) is Hodge isometric
to the Hodge structure H̃(S, α,Z) of a twisted K3 surface (S, α) if and only if X ∈ Cd with

(∗∗′) d is even and in the prime factorization d/2 =
∏
pnii one has ni ≡ 0 (2) for all primes

pi ≡ 2 (3).

Obviously, if d satisfies (∗∗), then k2d satisfies (∗∗′) for all integers k. Conversely, any d
satisfying (∗∗′) can be written (in general, non-uniquely) as k2d0 with d0 satisfying (∗∗).

Also note that for X ∈ Cd with d satisfying (∗∗′) the transcendental part T (X) ⊂ H2,2(X,Z)
is Hodge isometric (up to sign) to T (S, α) of a twisted K3 surface (S, α) (cf. [HS05]):

T (X)(−1) ' T (S, α) ' Ker(α : T (S) //Q/Z). (1.1)

As the main result of [AT14], Addington and Thomas proved that at least generically (∗∗)
is equivalent to AX ' Db(S) for some K3 surface S. The following twisted version of it will be
proved in § 6.2.

Theorem 1.4. (i) If AX ' Db(S, α) for some twisted K3 surface (S, α), then X ∈ Cd with d
satisfying (∗∗′).

(ii) Conversely, if d satisfies (∗∗′), then there exists a Zariski open dense set ∅ 6= U ⊂ Cd such
that for all X ∈ Cd there exists a twisted K3 surface (S, α) and an equivalence AX ' Db(S, α).

Non-special cubics are determined by their associated K3 category AX and for general special
cubics AX is determined by its Hodge structure (see Corollary 3.6 and § 6.3).

2 This condition was originally stated as: d ≡ 0, 2 (6) and d not divisible by four, nine or any prime 2 6= p ≡ 2 (3).
The reformulation has been suggested by the referee.
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Theorem 1.5. Let X and X ′ be two smooth cubics.

(i) Assume X is not special, i.e. not contained in any Cd ⊂ C. Then there exists a FM-
equivalence AX ' AX′ if and only if X ' X ′.

(ii) For d satisfying (∗∗′) and a Zariski dense open set of cubics X ∈ Cd, there exists a
FM-equivalence AX ' AX′ if and only if there exists a Hodge isometry H̃(AX ,Z) ' H̃(AX′ ,Z).

(iii) For arbitrary d and very general X ∈ Cd there exists a FM-equivalence AX ' AX′ if and
only if there exists a Hodge isometry H̃(AX ,Z) ' H̃(AX′ ,Z).

We will also see that arguments of Addington [Add16] can be adapted to show that (∗∗′) is
in fact equivalent to the Fano variety of lines on X being birational to a moduli space of twisted
sheaves on some K3 surface, see Proposition 4.1.

1.4 There are a few fundamental issues concerning AX that we do not know how to address
and that prevent us from developing the theory in full. First, this paper only deals with FM-

equivalences AX ' AX′ , i.e. those for which the composition Db(X) //AX ∼ //AX′ �
� //Db(X ′)

is a Fourier–Mukai transform. One would expect this to be the case for all equivalences, but
the classical result of Orlov [Orl97] and its generalization by Canonaco and Stellari [CS07] do
not apply to this situation. Secondly, it is not known whether AX always admits bounded
t-structures or stability conditions. This is problematic when one wants to study FM-partners
of AX as moduli spaces of (stable) objects in AX . As in [AT14], the lack of stability is also the
crucial stumbling block to use deformation theory to prove statements as in Theorem 1.4 for all
cubics and not only for generic or very general ones.

1.5 The plan of the paper is as follows. Section 2 deals with all issues related to the lattice theory
and the abstract Hodge theory. In particular, natural (countable unions of) codimension-one
subsets DK3 ⊂ DK3′ of the period domain D ⊂ P(A⊥2 ⊗ C) are studied at great length. They

parametrize periods that induce Hodge structures that are Hodge isometric to H̃(S,Z) and
H̃(S, α,Z), respectively, and which are described in terms of the numerical conditions (∗∗) and
(∗∗′). In particular, Theorem 1.3 is proved. We also provide a geometric description of all periods
x ∈ D in terms of generalized K3 surfaces, see Proposition 2.17.

In § 3 we extend results in [AT14] from equivalences AX ' Db(S) to the twisted case and
prove the finiteness of FM-partners for AX , see Theorem 1.1. Moreover, we produce an action
of the universal cover of SO(A2) on AX for all cubics (Remark 3.14) and formulate an analogue
of Bridgeland’s conjecture (cf. Conjecture 3.15).

The short § 4 shows that (∗∗′) is equivalent to F (X) being birational to a moduli space of
stable twisted sheaves on a K3 surface. In § 5 we adapt the deformation theory of [AT14] to the
twisted case. Finally, in § 6 we conclude the proofs of Theorems 1.2, 1.4, and 1.5.

2. Lattice theory and period domains

We start by discussing the relevant lattice theory. To make the reading self-contained, we will
also recall results due to Hassett and to Addington and Thomas on the way.

There are two kinds of lattices, those related to K3 surfaces, Λ, Λ̃, etc., and those attached
to cubic fourfolds, I21,2, Kd, etc. The two types are linked by a lattice A⊥2 of signature (2, 20)
and two embeddings

I2,21 A⊥2
� � //? _oo Λ̃.
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The induced maps between the associated period domains allows one to relate periods of cubic
fourfolds to periods of (generalized) K3 surfaces.

2.1 By U we shall denote the hyperbolic plane, i.e. Z2 with the intersection form
(

0 1
1 0

)
. The K3

lattice Λ and the extended K3 lattice Λ̃ are by definition the unique even, unimodular lattice of
signature (3, 19) and (4, 20), respectively. So,

Λ ' E8(−1)⊕2 ⊕ U⊕3 and Λ̃ ' Λ⊕ U.

Next, A2 denotes the standard root lattice of rank two, i.e. there exists a basis λ1, λ2 with
respect to which the intersection matrix is given by

(
2 −1
−1 2

)
. The lattice A2 is even and of

signature (2, 0). Moreover, its discriminant group is AA2 := A∗2/A2 ' Z/3Z and, in particular,
A2 is not unimodular.

Due to [Nik79, Theorem 1.14.4], there exist embeddings

A2
� � //Λ and A2

� � // Λ̃,

which are both unique up to the action of O(Λ) and O(Λ̃), respectively. Note that all such
embeddings are automatically primitive. In the following we will fix once and for all one such
embedding A2

� � //Λ �
� // Λ̃ and consider the orthogonal complement of A2 ⊂ Λ̃ as a fixed primitive

sublattice
A⊥2 ⊂ Λ̃ (2.1)

of signature (2, 20). Its isomorphism type does not depend on the chosen embedding of A2. It
can be described explicitly as the orthogonal complement of the embedding A2

� � // Λ̃ given by

A2
� � //U ⊕ U �

� // Λ̃, λ1
� // e′ + f ′, λ2

� // e+ f − e′, (2.2)

where e, f and e′, f ′ denote the standard bases of the two copies of the hyperbolic plane. Thus,3

A⊥2 ' E8(−1)⊕2 ⊕ U⊕2 ⊕A2(−1). (2.3)

Remark 2.1. For later use we recall that the group of isometries O(A2) of the lattice A2

is isomorphic to S3 × Z/2Z. Here, the Weyl group S3 permutes the unit vectors ei ∈ R3,
where A2

� � //R3 via λ1 = e1−e2 and λ2 = e2−e3, and the generator of Z/2Z acts by −id. In fact,
S3 ⊂ O(A2) is the kernel of the natural map O(A2) //O(AA2) ' Z/2Z (use the aforementioned
AA2 ' Z/3Z). The sign S3

//Z/2Z can be identified with the determinant O(A2) // {±1}.
Thus, the group of orientation-preserving isometries of A2 acting trivially on AA2 is just
A3 ' Z/3Z, where the generator can be chosen to act by λ1

� // − λ1 − λ2, λ2
� // λ1.

2.2 Next, consider the unique odd, unimodular lattice

I2,21 := Z⊕2 ⊕ Z(−1)⊕21 ' E8(−1)⊕2 ⊕ U⊕2 ⊕ Z(−1)⊕3

of signature (2, 21) and an element h ∈ I2,21 with (h)2 = −3, e.g. h = (1, 1, 1) ∈ Z(−1)⊕3. Then
the primitive sublattice h⊥ ⊂ I2,21 is of signature (2, 20) and using (2.3) one finds

h⊥ ' A⊥2 .

3 In [Has00] the last summand is instead described as a lattice with intersection matrix
(−2 −1
−1 −2

)
, which is of course

isomorphic to A2(−1).
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In the following, we will always consider A⊥2 with two fixed embeddings as above:

I2,21 A⊥2
� � //? _oo Λ̃.

Following Hassett [Has00], we now consider all primitive, negative-definite sublattices

h ∈ Kd ⊂ I2,21

of rank two containing h. Here, the index d = disc(Kd) denotes the discriminant of Kd, which
is necessarily positive. Using [Nik79, § 1.5] one finds that up to the action of the subgroup of
O(I2,21) fixing h the lattice Kd ⊂ I2,21 is uniquely determined by d, see [Has00, Proposition 3.2.4]
for the details.

Furthermore, d ≡ 0, 2 (6) and the generator v of Kd ∩A⊥2 (unique up to sign) satisfies

−(v)2 =

{
d/3 if d ≡ 0 (6),

3d if d ≡ 2 (6).
(2.4)

More precisely, Hassett shows that up to isometry of A⊥2 the vector v is given as

v = e1 − (d/6)f1 and v = 3(e1 − ((d− 2)/6)f1) + µ1 − µ2, (2.5)

respectively. Here, e1, f1 is the standard basis of one of the copies of U in (2.3) and µ1, µ2 denotes
the standard basis of A2(−1). Viewing v ∈ A⊥2 ⊂ Λ̃ as an element of Λ̃ leads to a lattice

A2 ⊕ Z · v ⊂ Λ̃

of rank three and signature (2, 1). As it turns out, this is a primitive sublattice for d ≡ 0 (6) and
it is of index three in its saturation for d ≡ 2 (6). This follows from [Has00, Proposition 3.2.2]
asserting that in the two cases (v.A⊥2 ) = Z and 3Z, respectively. Altogether this yields the
following lemma.

Lemma 2.2. The saturation Γd ⊂ Λ̃ of A2 ⊕ Z · v satisfies

disc(Γd) = d.

Proof. This can either be proved by a direct computation or by observing that disc(Γd) equals
the discriminant of Γ⊥d ⊂ Λ̃, which is isomorphic to v⊥ ⊂ A⊥2 . Similarly, d = disc(Kd) equals the
discriminant of the lattice 〈v, h〉⊥, which again is just v⊥ ⊂ A⊥2 . 2

In our discussion, the lattices Kd will take a back seat, as it will be more natural to work
with the generator v ∈ A⊥2 ∩Kd directly.

2.3 We shall be interested in the period domains

D ⊂ P(A⊥2 ⊗ C) and Q ⊂ P(Λ̃⊗ C),

defined by the two conditions (x.x) = 0 and (x.x̄) > 0. Observe that

dim D = 20 and dim Q = 22
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and that Q is connected while D has two connected components. Using the embedding (2.1), we
can write D = P(A⊥2 ⊗ C) ∩Q as part of the commutative diagram

D �
� //� _

��

Q� _

��

P(A⊥2 ⊗ C) �
� // P(Λ̃⊗ C).

Thus, points x ∈ D correspond to Hodge structures of weight two on the lattice A⊥2 , but also

to Hodge structures on Λ̃ with A2 contained in the (1, 1) part. In fact, for very general points
x ∈ D the integral (1, 1) part of the corresponding Hodge structure is the lattice A2.

We shall refer to D as the period domain of cubic fourfolds, although only an open subset
really corresponds to smooth cubics. More concretely, for a smooth cubic X ⊂ P5 and any

marking, i.e. an isometry, ϕ : h⊥
∼ //A⊥2 (up to sign), one defines the associated period as the

image x := [ϕC(H3,1(X))] ∈ D. A description of the image of the period map, allowing cubics
with ADE singularities, has been given by Laza [Laz10] and Looijenga in [Loo09]. Points in Q
are thought of as periods of generalized K3 surfaces, cf. § 2.8.

For later use we state the following technical observation.

Lemma 2.3. The Hodge structure on Λ̃ defined by an arbitrary x ∈ D admits a Hodge isometry
that reverses any given orientation of the four positive directions.

Proof. Consider a transposition g := (12) ∈S3 ⊂O(A2). Then g acts trivially on the discriminant
AA2 (see Remark 2.1) and can, therefore, be extended to g̃ ∈ O(Λ̃) acting trivially on A⊥2 . Thus,
the Hodge structure defined by x admits a Hodge isometry g̃, which preserves the orientation of
the two positive directions given by the (2, 0) and (0, 2) parts. On the other hand, by construction,
it reverses the orientation of the two positive directions in A2. 2

Remark 2.4. This result is the analogue of the observation that any Hodge structure on Λ̃
containing a hyperbolic plane U in its (1, 1) part admits an orientation-reversing Hodge isometry.
This assertion applies to the Hodge structure H̃(S,Z) of a K3 surface S, but it is not clear
whether also H̃(S, α,Z) of a twisted K3 surface (S, α) (see below) admits an orientation-reversing
Hodge isometry. The latter would be important for adapting the arguments in [HMS09] to the
description of the image of Aut(Db(S, α)) // Aut(H̃(S, α,Z)), see [Rei14] for partial results.

2.4 Let us now turn to the geometric interpretation of certain periods in Q. Recall that for a K3

surface S the extended K3 (or Mukai) lattice H̃(S,Z) is abstractly isomorphic to Λ̃. Moreover,
H̃(S,Z) comes with a natural Hodge structure of weight two defined by

H̃2,0(S) := H2,0(S) and H̃1,1(S) := H1,1(S)⊕ (H0 ⊕H4)(S,C).

For a Brauer class α ∈ Br(S) ' H2(S,Gm) ' H2(S,O∗S)tors we have introduced in [Huy05] the

weight-two Hodge structure H̃(S, α,Z). As a lattice this is still isomorphic to Λ̃ and its Hodge
structure is determined by

H̃2,0(S, α) := C · (σ +B ∧ σ) and H̃1,1(S, α) := exp(B) · H̃1,1(S).

Here, 0 6= σ ∈ H2,0(S) and B ∈ H2(S,Q) maps to α under the exponential map

H2(S,Q) // H2(S,OS)
exp // H2(S,O∗S).

The isomorphism type of the Hodge structure is independent of the choice of B.
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Definition 2.5. A period x ∈ Q is of K3 type (respectively twisted K3 type) if there exists a
K3 surface S (respectively a twisted K3 surface (S, α ∈ Br(S))) such that the Hodge structure
on Λ̃ defined by x is Hodge isometric to H̃(S,Z) (respectively H̃(S, α,Z)).

The sets of periods of K3 type and twisted K3 type will be denoted

QK3 ⊂ QK3′ ⊂ Q.

There is also a geometric interpretation for points outside QK3′ in terms of symplectic
structures [Huy05], but those are a priori inaccessible by algebro-geometric techniques (see,
however, § 2.8).

For the following recall that the twisted hyperbolic plane U(n) is the rank-two lattice with
intersection matrix

(
0 n
n 0

)
. The standard isotropic generators will be denoted en, fn or simply e, f .

Part (i) of the next lemma is well known.

Lemma 2.6. Consider a period point x ∈ Q. Then:

(i) x ∈ QK3 if and only if there exists an embedding U �
� // Λ̃ into the (1, 1) part of the Hodge

structure defined by x;

(ii) x ∈ QK3′ if and only if there exists a (not necessarily primitive) embedding U(n) �
� // Λ̃ for

some n 6= 0 into the (1, 1) part of the Hodge structure defined by x.

Proof. We prove the second assertion; the first one is even easier. Start with a twisted K3 surface
(S, α) and pick a lift B ∈ H2(S,Q) of α. Then the algebraic part H̃1,1(S, α,Z) = exp(B) ·H̃1,1(S,
Q)∩ H̃(S,Z) contains the lattice (Z · (1, B,B2/2)∩ H̃(S,Z))⊕H4(S,Z), which is isomorphic to
U(n) for n minimal with n(1, B,B2/2) ∈ H̃(S,Z).

Conversely, assume U(n) ⊂ Λ̃ is of type (1, 1) with respect to x. Choosing n minimal, we can
assume that the standard isotropic generator en = e is primitive in Λ̃. But then e ∈ U(n) can
be completed to a sublattice of Λ̃ isomorphic to the hyperbolic plane U = 〈e, f〉, which therefore
induces an orthogonal decomposition (usually different from that defining Λ̃)

Λ̃ ' Λ⊕ U. (2.6)

With respect to (2.6) the second basis vector fn ∈ U(n) can be written as fn = γ + nf + ke
with γ ∈ Λ. Similarly, a generator of the (2, 0) part of the Hodge structure determined by x is
orthogonal to e and hence of the form σ+ λe for some σ ∈ Λ⊗C and λ ∈ C. However, it is also
orthogonal to fn and so (γ.σ) +nλ = 0. Now set B := −(1/n)γ. Then σ+λe = σ+B ∧σ, where
B ∧ σ stands for (B.σ)e.

Eventually, the surjectivity of the period map implies that σ ∈ Λ⊗C can be realized as the
period of some K3 surface S, i.e. there exists an isometry H2(S,Z) ' Λ identifying H2,0(S) with
C ·σ ⊂ Λ⊗C. Here one uses (σ.σ) = (σ+λe.σ+λe) = 0 and (σ.σ̄) = (σ+λe.σ̄+ λ̄e) > 0. Mapping
H4(S,Z) to Z · e ⊂ U ⊂ Λ ⊕ U in (2.6) and defining α ∈ Br(S) as the Brauer class induced by
B under Λ⊗Q ' H2(S,Q) //H2(S,Gm) yields a Hodge isometry between H̃(S, α,Z) and the
Hodge structure defined by x on Λ̃. 2

Corollary 2.7. The sets QK3 ⊂ QK3′ ⊂ Q can be described as the intersections of Q with
countably many linear subspaces of codimension two:

QK3 = Q ∩
⋃
U⊥ ⊂ QK3′ = Q ∩

⋃
U(n)⊥ ⊂ Q.

Here, the first union is over all embeddings U �
� // Λ̃ and the second over all U(n) �

� // Λ̃ with
arbitrary n 6= 0.
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2.5 However, it will turn out that the further intersection with D yields countable unions of

codimension-one subsets. These intersections are denoted by

DK3 := D ∩QK3 ⊂ DK3′ := D ∩QK3′ ⊂ D

and will be viewed as the sets of cubic periods that define generalized K3 periods of K3 type

and of twisted K3 type, respectively. So:

• x ∈ DK3 if and only if there exists a K3 surface S such that the Hodge structure on Λ̃

defined by x is Hodge isometric to H̃(S,Z);

• x ∈ DK3′ if and only if there exists a twisted K3 surface (S, α ∈ Br(S)) such that the Hodge

structure on Λ̃ defined by x is Hodge isometric to H̃(S, α,Z).

We remark for later use that for very general x ∈ DK3 (or x ∈ DK3′) the algebraic part

H̃1,1(S,Z) (respectively H̃1,1(S, α,Z)) is of rank three.

We will first explain that DK3′ is a countable union of hyperplane sections. A second proof

for the same assertion that also works for DK3 is provided in § 2.6.

Proposition 2.8. The set of twisted K3 periods in D can also be described as the countable

union of hyperplane sections:

DK3′ = D ∩
⋃
e⊥.

Here, the union runs over all 0 6= e ∈ Λ̃ with (e)2 = 0.

Proof. One inclusion follows from the fact that any U(n) contains an isotropic vector. For the

converse, assume x ∈ e⊥ for some primitive isotropic 0 6= e ∈ Λ̃. Then e 6∈ A⊥2 , as otherwise

the positive plane corresponding to x would be contained in the orthogonal complement of e

in A⊥2 , which has only one positive direction left. Hence, there exists a ∈ A2 with (a.e) 6= 0.

Let f := (a.e)a− ((a)2/2)e, which satisfies (f)2 = 0 and (f.e) = (a.e)2 =: n. Hence, e, f span a

twisted hyperbolic plane U(n) in the (1, 1) part of the Hodge structure defined by x. 2

There is yet another class of hyperplane sections of D that is of importance to us. We let

Dsph := D ∩
⋃
δ⊥,

where the union is over all δ ∈ Λ̃ with (δ)2 = −2 and call it the set of periods with spherical

classes. Indeed, x ∈ D is contained in Dsph if and only if the Hodge structure on Λ̃ defined by

x admits an integral (1, 1) class δ with (δ)2 = −2 and those classes typically appear as Mukai

vectors of spherical objects, see Example 3.11.

Note that there are natural inclusions

DK3 ⊂ Dsph ⊂ D,

for every hyperbolic plane U contains a (−2) class. However, DK3′ is not contained in Dsph and,

more precisely, the inclusions

DK3 ( DK3′ ∩Dsph ( DK3′ , Dsph

are all proper, see Example 2.14 and Proposition 2.15.
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2.6 It is instructive to study the sets DK3 ⊂DK3′ and DK3 ⊂Dsph from a more cubic perspective,
i.e. in terms of the lattices Kd.

For any h ∈ Kd ⊂ I2,21 as in § 2.2 one introduces the hyperplane section

D ∩K⊥d ⊂ P(A⊥2 ⊗ C)

of all cubic periods orthogonal to Kd ∩ A⊥2 . In other words, D ∩K⊥d is the set of cubic periods
for which the generator v of Kd ∩A⊥2 is of type (1, 1), i.e. D ∩K⊥d = D ∩ v⊥. Then one defines

Dd := D ∩
⋃
K⊥d ,

where the union runs over all h ∈ Kd ⊂ I2,21 as above. So, for each positive d ≡ 0, 2 (6) the set
Dd is a countable union of hyperplane sections of D. Dividing Dd by the subgroup Õ(h⊥) =
O(I2,21, h) ⊂ O(I2,21) of elements fixing h yields Hassett’s irreducible divisor

Cd := Dd/Õ(h⊥).

Consider the following conditions for an even integer d > 6:

(∗) d ≡ 0, 2 (6);

(∗∗) d is even and d/2 is not divisible by 9 or any prime p ≡ 2 (3);

(∗∗′) d is even and in the prime factorization d/2 =
∏
pnii one has ni ≡ 0 (2) for all primes

pi ≡ 2 (3).

Obviously, (∗∗) implies (∗∗′). More precisely, if d satisfies (∗∗), then (∗∗′) holds for all k2d.

Remark 2.9. Conditions (∗) and (∗∗) have first been introduced and studied by Hassett [Has00].
He shows that Dd is not empty if and only if (∗) is satisfied. Moreover, d satisfies (∗∗) if and
only if for all cubics X with period x contained in Dd there exists a polarized K3 surface (S,H)
such that its primitive cohomology H2(S,Z)pr is Hodge isometric to the Hodge structure on K⊥d
defined by x. To get polarized K3 surfaces and not only quasi-polarized ones, one has to use a
result of Voisin [Voi86, § 4, Proposition 1] saying that H2,2(X,Z)pr does not contain any class of
square two.

On the level of lattices this boils down to the observation that for v ∈ A⊥2 as in (2.5), say for
d ≡ 0 (6), its orthogonal complement in A⊥2 is isometric to E8(−1)⊕2 ⊕ U ⊕ A2(−1) ⊕ Z(d/3).
And indeed for d satisfying (∗∗′)A2(−1) ⊕ Z(d/3) ' U ⊕ Z(−d) (see [Nik79, Corollary 1.10.2,
1.13.3] or [Huy16, Theorem 14.1.5]) and, therefore, v⊥ ' E8(−1)⊕2⊕U⊕2⊕Z(−d), which is the
transcendental lattice of a very general polarized K3 surface of degree d. A similar argument
holds for d ≡ 2 (6).

Proposition 2.10. With the above notation one has

DK3 =
⋃
(∗∗)

Dd and DK3′ =
⋃

(∗∗′)

Dd,

where d runs through all d satisfying (∗∗) respectively (∗∗′).
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Proof. The first equality is due to Addington and Thomas [AT14, Theorem 3.1]. Indeed, they
show that x ∈Dd with d satisfying (∗∗) if and only if there exists a hyperbolic plane U ⊂ Λ̃ which
is of type (1, 1) with respect to x. The latter is in turn equivalent to x ∈ DK3, see Lemma 2.6.4

Maybe surprisingly, the second assertion is easier to prove. We include the elementary
argument. Due to Corollary 2.8 we know DK3′ = D ∩

⋃
e⊥ with 0 6= e ∈ Λ̃ isotropic. So for

one inclusion one has to show that each D ∩ e⊥ is of the form Dd with d satisfying (∗∗′).
Decompose e = e1 + e2 ∈ (A2 ⊕ A⊥2 ) ⊗ Q. Let then v ∈ A⊥2 such that Q · e2 ∩ A⊥2 = Z · v and
define Kd ⊂ I2,21 as the saturation of the sublattice spanned by v ∈ A⊥2 ⊂ I2,21 and h. We have
to show that the discriminant d of Kd satisfies (∗∗′).

Assume first that A2 ⊕ Z · v ⊂ Λ̃ is primitive. Then d ≡ 0 (6) and d = −3(v)2, see § 2.2. As
e ∈ A2 ⊕ Z · v in this case, the quadratic equation 2(x2

1 + x2
2 − x1x2) + (v)2x2 = 0 admits an

integral solution. However, it is a classical result that

2n = (w)2 (2.7)

for some w ∈ A2 if and only if n =
∏
pnii with ni ≡ 0 (2) for all pi ≡ 2 (3), see [Kne02].5 But

clearly this holds for n = −(v)2/2 if and only if d = 6n satisfies (∗∗′).
Next assume that A2 ⊕ Z · v ⊂ Λ̃ has index three in its saturation. Hence, d ≡ 2 (6) and

3d = −(v)2. Then argue as before, but now with the isotropic vector 3e ∈ A2 ⊕ Z · v and with
n = −(v)2/2 = 3d/2.

Running the argument backwards proves the reverse inclusion. 2

So, in particular, although QK3 ⊂QK3′ ⊂Q are countable unions of codimension-two subsets,
their restrictions DK3 ⊂ DK3′ ⊂ D to D are countable unions of codimension-one subsets. For
DK3′ we have observed this already in § 2.5.

Remark 2.11. As mentioned in [AT14, Add16] and explained to me by Addington, condition (∗∗)
is in fact equivalent to the existence of a primitive w ∈ A2 with d = (w)2. And, as has become
clear in the above proof, condition (∗∗′) is equivalent to the existence of a (not necessarily
primitive) w ∈ A2 with d = (w)2.

The first values of d > 6 that satisfy the various conditions are

(∗) 8 12 14 18 20 24 26 30 32 36 38 42 44 48

(∗∗) 14 26 38 42

(∗∗′) 8 14 18 24 26 32 38 42

4 The ‘only if’ direction is a consequence of Hassett’s original result saying that x ∈ Dd with d satisfying (∗∗)
if and only if there exists a polarized K3 surface (S,H) such that H2(S,Z)prim is Hodge isometric to the Hodge

structure on K⊥d given by x. As the orthogonal complement of H2(S,Z)prim ⊂ H̃(S,Z) ' Λ̃ contains a hyperbolic

plane, by [Nik79, Theorem 1.14.4] this Hodge isometry extends to a Hodge isometry of H̃(S,Z) with the Hodge

structure on Λ̃ given by x. For the other direction one has to show that any Hodge isometry between H̃(S,Z) and

the one on Λ̃ given by x can be used to get a Hodge isometry between the Hodge structure on K⊥d ∩A⊥2 ⊂ Λ̃ and
H2(S,Z)prim for some polarization on S.
5 For example, a prime p can be written as x2 + 3y2 if and only if p = 3 or p ≡ 1 (3), see [Cox89]. Since 4(x2 +xy+
y2) = (2x+ y)2 + 3y2 and (x21 + 3y21) · (x22 + 3y22) = (x1x2 − 3y1y2)2 + 3(x1y2 + x2y1)2, this proves one direction.
The other one uses a computation with Hilbert symbols to determine when −nx21 + x22 + 3x23 = 0 has a rational
solution.
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Example 2.12. For certain d the condition that the period x ∈ D of a cubic X is contained in Dd

has a geometric interpretation, see [Has00, § 4]. For example, x ∈ D8 if and only if X contains a
plane P2 ⊂ X, or if X is a Pfaffian cubic, then x ∈ D14.

Let x ∈ Dd with d satisfying (∗∗′). Then there exists a twisted K3 surface (S, α) such that
the Hodge structure defined by x is Hodge isometric to H̃(S, α,Z). If x ∈ Dd is a very general
point of Dd, then rk(H̃1,1(S, α,Z)) = 3 and A2 ⊕ Z · v ⊂ H̃1,1(S, α,Z) is of index one or three,
respectively.

Lemma 2.13. For the order of the Brauer class α one has

ord(α)2 | d.

Proof. Let ` := ord(α). As proved in [Huy05], the transcendental lattice T (S, α) is isometric to
the kernel of the natural map T (S) // // (1/`)Z/Z defined by α. Hence,

|disc(T (S, α))| = |disc(T (S))| · ord(α)2.

On the other hand, disc(T (S, α)) = disc(H̃1,1(S, α,Z)) = d by Lemma 2.2. 2

Clearly, d/ord(α)2 still satisfies (∗∗′) (but not necessarily (∗∗)). As mentioned earlier, any d
satisfying (∗∗′) can be written (not always uniquely) as d = k2 · d0 with d0 satisfying (∗∗). For
any such factorization one can indeed choose (S, α) as above such that in addition ord(α) = k.
In particular, then the untwisted Hodge structure H̃(S,Z) defines a point in Dd0 . This is best
seen by starting with Dd0 and then choosing globally a B-field which for the very general S in
Dd0 defines a Brauer class of order k.

2.7 We will need to say a few things about the spherical locus Dsph, as this will be crucial later.

Example 2.14. (i) Consider d = 24 which obviously satisfies (∗∗′) but not (∗∗), i.e. Dd ⊂ DK3′

but Dd 6⊂ DK3. Also, Dd ⊂ Dsph. Indeed, if v generates A⊥2 ∩Kd, then (v)2 = −8 and hence there
exists δ ∈ A2⊕Z · v with (δ)2 = −2, e.g. 2λ1 +λ2 + v. So, as mentioned before, one has a proper
inclusion

DK3 ( DK3′ ∩Dsph.

(ii) Consider d = 12 which does not satisfy (∗∗′). So, D12 6⊂ DK3′ , but D12 ⊂ Dsph. Indeed,
in this case v in (2.4) satisfies (v)2 = −4 and, therefore, (λi + v)2 = −2. Hence,

Dsph 6⊂ DK3′ .

It would be interesting to find a numerical condition (†) such that Dsph =
⋃
Dd with the

union over all d satisfying (†). The best we have to offer at this time is the following proposition.

Proposition 2.15. Assume Dd ⊂ DK3′ and 9|d. Then Dd 6⊂ Dsph.

Proof. Consider a fixed Kd and the corresponding generator v of Kd ∩ A⊥2 . As 9|d, clearly

d ≡ 0 (6) and so A2 ⊕ Z · v ⊂ Λ̃ is primitive. If there were a (−2)-class δ ∈ Λ̃ with D ∩K⊥d =
D ∩ v⊥ ⊂ D ∩ δ⊥, then δ ∈ A2 + Z · v and so δ = w + kv for some w ∈ A2 and k ∈ Z. But then
−2 = (w)2 − k2d/3. However, if 9|d, then k2d/3 ≡ 0 (3) and hence (w)2 = 2m with m ≡ 2 (3),
which contradicts (2.7). 2

The following immediate consequence is crucial for the proof of Theorem 1.2, see § 6.1.

Corollary 2.16. The locus of twisted K3 periods DK3′ contains infinitely many hyperplane
sections Dd with Dd 6⊂ Dsph.
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2.8 In [Huy05] we have shown that points in Q can be understood as periods of generalized K3
surfaces. It is useful to distinguish three types.6

(i) Periods of ordinary K3 surfaces are parametrized by QK3. Up to the action of O(Λ̃), the
set of these periods is the intersection of Q with the linear codimension-two subspace P(Λ⊗C) ⊂
P(Λ̃⊗ C).

(ii) More generally, one can consider periods of the form σ + B ∧ σ, where σ ∈ Λ ⊗ C is an
ordinary period and B ∈ Λ⊗C (but not necessarily B ∈ Λ⊗Q). Up to the action of O(Λ̃), these
periods are parametrized by the intersection of Q with the linear subspace of codimension one
P((Λ⊕Z ·f)⊗C) ⊂ P(Λ̃⊗C). Here, f is viewed as the generator of H4. Note that, by definition,
QK3′ is the subset of periods for which B can be chosen in Λ⊗Q.

(iii) Periods of the form exp(B+ iω) = 1+(B+ iω)+((B2−ω2)/2+(B.ω)i) are geometrically
interpreted as periods associated with complexified symplectic forms. Here, the first and third
summands are considered in U ' H0 ⊕ H4. Periods of this type are parametrized by an open
dense subset of Q.

In particular, all cubic periods parametrized by D ⊂ Q should have an interpretation in
terms of these three types. This has been discussed above for type (i) and has led to consider the
intersection DK3 = D∩QK3. For type (ii) with B rational the intersection with the cubic period
domain gives DK3′ . It is now natural to ask whether the remaining periods, so the periods in
D\DK3′ , are of type (ii) with B not rational or rather of type (iii), i.e. related to complexified
symplectic forms. It is the latter, as shown by the following proposition.

Proposition 2.17. The Hodge structure of a cubic period x ∈ D is Hodge isometric to the
Hodge structure of a twisted projective K3 surface (S, α), i.e. x ∈DK3′ , or to the Hodge structure
associated with exp(B + iω). Furthermore, if the Hodge structure of x is Hodge isometric to a
Hodge structure of the type σ +B ∧ σ, then B can be chosen rational.

Proof. One first observes that, analogously to Lemma 2.6(ii), a period x ∈ Q is of the type (ii) if
and only if the integral (1, 1) part of the Hodge structure associated with x contains an isotropic
direction. Indeed, if x is of type (ii), i.e. of the form σ + B ∧ σ, then H4 provides an isotropic
direction of type (1, 1). For the converse use that any isotropic direction can be completed to a
hyperbolic plane U as a direct summand of Λ̃. Now regard U as H0 ⊕H4 with H4 as the given
isotropic direction, which is of type (1, 1). Hence, x is indeed of type (ii).

Now let x ∈ D ∩ Q be of type (ii). It is enough to show that then x ∈ DK3′ . The integral
(1, 1)-part of the Hodge structure associated with x contains A2 and an isotropic direction, say
Z · f . Then conclude by Proposition 2.8. 2

Note that both subsets,

D ⊂ Q and QK3 ⊂ Q,

are of codimension two and that they both parametrize periods that can be interpreted in complex
geometric terms (in contrast to the ‘symplectic periods’ of the form exp(B+iω)). In fact, periods
in D are even algebro-geometric in the sense that essentially all of them are associated with cubic
fourfolds X ⊂ P5, whereas most K3 surfaces are of course not projective.

In categorical language one would want to interpret the inclusion D ⊂ Q for points in the
complement of DK3′ as saying that the cubic K3 category AX associated with the cubic fourfold

6 The discussion has been prompted by a question of Ben Bakker.
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X ⊂ P5 corresponding to x ∈ D\DK3′ is equivalent to the derived Fukaya category DFuk(B+ iω)
associated with a complexified symplectic form B + iω. Deciding which symplectic structures
occur here is in principle possible, but establishing an equivalence

AX ' DFuk(B + iω)

will be difficult even in special cases.
The categorical interpretation of DK3 ⊂ Q is the content of [AT14], where it is proved that

at least for a Zariski open dense set of periods x ∈ DK3 the cubic K3 category AX really is
equivalent to Db(S) of the K3 surface S realizing the Hodge structure associated with x. This
paper deals with the categorical interpretation of DK3′ ⊂ Q.

Remark 2.18. The period domain Q ⊂ P(Λ̃ ⊗ C) contains D ⊂ Q as a codimension two subset,
but it also contains natural codimension one subspaces. For example, for a K3 surface S and the
Mukai vector v = (1, 0, 1 − n) ∈ H̃1,1(S,Z) the hyperplane section Q ∩ v⊥ can be seen as the
period domain for deformations of the Hilbert scheme S[n]. Note, however, that from a categorical
point of view the situation is different, even when one restricts to the codimension-two part that
corresponds to projective deformations of the Hilbert scheme. In [MM15] it is explained how the
non-full subcategory Db(S) ⊂ Db(S[n]) deforms sideways.

3. The cubic K3 category

Let X ⊂ P5 be a smooth cubic hypersurface. The cubic K3 category associated with X is the
category

AX := 〈OX ,OX(1),OX(2)〉⊥ := {E ∈ Db(X) | Hom(OX(i), E[∗]) = 0 for i = 0, 1, 2}.

The category has first been studied by Kuznetsov in [Kuz10], see also the more recent [Kuz15].
It behaves in many respects like the derived category Db(S) of a K3 surface S. In particular, the
double shift E � //E[2] defines a Serre functor of AX (see [Kuz09], [Kuz04, Corollary 4.3] and
[KM09, Remark 4.2]) and the dimension of Hochschild homology of AX and of Db(S) coincide,
see [Kuz10, Kuz09].

Example 3.1. Due to the work of Kuznetsov [Kuz10, Kuz06], certain cubic K3 categories AX
are known to be equivalent to bounded derived categories Db(S, α) of twisted K3 surfaces (S, α).
For example, if the period x ∈ D of a cubic X is contained in D8, then X contains a plane and
for generic choices there exists a twisted K3 surface (S, α) with AX ' Db(S, α). Similarly, if X is
a Pfaffian cubic and hence x ∈ D14, then AX ' Db(S) for the K3 surface S naturally associated
with the Pfaffian X.

Remark 3.2. Despite the almost perfect analogy between the cubic K3 category AX and the
derived category Db(S) of K3 surfaces, certain fundamental issues are more difficult for AX . For
example, to the best of my knowledge no AX , which is not equivalent to the derived category
Db(S, α) of some twisted K3 surface (S, α), has yet been endowed with a bounded t-structure,
let alone a stability condition. See [Tod14, Tod13] for a discussion of special stability conditions
on certain AX of the form Db(S, α).

The semi-orthogonal decomposition Db(X) = 〈AX ,⊥AX〉 with ⊥AX = 〈OX ,OX(1),OX(2)〉
comes with the full embedding i∗ : AX �

� //Db(X) (which is often suppressed in the notation)
and the left and right adjoint functors i∗, i! : Db(X) //AX , see [Kuz09, § 3] for a survey.
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3.1 For a K3 surface S the Mukai lattice H̃(S,Z) is endowed with the Hodge structure

determined by H̃2,0(S) = H2,0(S) and by requiring H̃2,0 ⊥ H̃1,1. Using the natural isomorphism
Ktop(S) ' H∗(S,Z) this Hodge structure can also be regarded as a Hodge structure on Ktop(S).

In [AT14] Addington and Thomas introduce a similar Hodge structure associated with the
category AX , defined on Ktop(AX) and denoted by H̃(AX ,Z). Here, Ktop(AX) ⊂ Ktop(X) is
the orthogonal complement of {[O], [O(1)], [O(2)]} with respect to the pairing χ(α, β) = 〈v(α),
v(β)〉 defined in terms of the Mukai vector v : Ktop(X) //H∗(X,Q) and the Mukai pairing on
H∗(X,Q). It is not difficult to see that one has in fact a semi-orthogonal direct sum decomposition

Ktop(X) = Ktop(AX)⊕ 〈[OX ], [OX(1)], [OX(2)]〉.

As H∗(X,Z) is torsion free, Ktop(X) and

H̃(AX ,Z) := Ktop(AX)

are as well. The Hodge structure is then defined by H̃2,0(AX) := v−1(H3,1(X)) and the condition
H̃2,0 ⊥ H̃1,1. Furthermore, N(AX) and the transcendental lattice T (AX) of AX are introduced
in terms of this Hodge structure as H̃1,1(AX ,Z) and its orthogonal complement H̃1,1(AX ,Z)⊥,
respectively. As a lattice H̃(AX ,Z) is independent of X and by [AT14] any equivalence AX '
Db(S) (see Example 3.1) induces a Hodge isometry H̃(AX ,Z) ' H̃(S,Z) (cf. Proposition 3.3).
In particular, H̃(AX ,Z) for all smooth cubics is abstractly isomorphic to Λ̃.

As explained in [AT14, Proposition 2.3], the classes λj := [i∗O`(j)] ∈ H̃1,1(AX ,Z), for a line

` ⊂ X and j = 1, 2, can be viewed as the standard generators of a lattice A2 ⊂ H̃1,1(AX ,Z).
Moreover, the Mukai vector v : H̃(AX ,Z) = Ktop(AX) //H∗(X,Q) induces an isometry (up to
sign)

〈λ1, λ2〉⊥ ∼ // h⊥ = H4(X,Z)prim.

In particular, any marking ϕ : h⊥
∼ //A⊥2 induces a marking 〈λ1, λ2〉⊕ 〈λ1, λ2〉⊥ ∼ //A2⊕A⊥2 and

further a marking

H̃(AX ,Z)
∼ // Λ̃. (3.1)

Conversely, any marking (3.1) inducing the standard identification 〈λ1, λ2〉 ∼ //A2 yields a

marking H4(X,Z)prim
∼ //A⊥2 . In this sense, (an open set of) points x ∈ D will be considered as

periods of cubic K3 categories AX via their Hodge structures H̃(AX ,Z).
Note that the positive directions of H̃(AX ,Z) come with a natural orientation, given by the

real and imaginary parts of H̃2,0(AX) and the oriented basis λ1, λ2 of A2 ⊂ H̃1,1(AX ,Z).

3.2 As we are also interested in equivalences Db(S, α)
∼ //AX , we collect a few relevant

facts dealing with the topological K-theory of twisted K3 surfaces (S, α). As it turns out,
the topological setting does not require any substantially new arguments. In order to speak
of twisted sheaves or bundles, let us fix a class B ∈ H2(S,Q) which under the exponential
map H2(S,Q) //H2(S,O∗S) is mapped to α. Next choose a Čech representative {Bijk} of
B ∈ H2(S,Q) and consider the associated Čech representative {αijk := exp(Bijk)} of α. This
allows one to speak of {αijk}-twisted sheaves and bundles, in the holomorphic as well as in the
topological setting.

As explained in [HS05, Proposition 1.2], any {αijk}-twisted bundle E can be ‘untwisted’ to a
bundle EB by changing the transition functions ϕij of E to exp(aij) · ϕij , where the continuous
functions aij satisfy −aij +aik−ajk = Bijk. The process can be reversed and so the categories of
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{αijk}-twisted topological bundles is equivalent to the category of untwisted topological bundles.
In particular,

Ktop(S, α) ' Ktop(S)

which composed with the Mukai vector yields an isomorphism Ktop(S, α) ' H̃(S, α,Z) that

identifies the image of K(S, α) //Ktop(S, α) with H̃1,1(S, α,Z).
The next result is the twisted version of the observation by Addington and Thomas mentioned

earlier.

Proposition 3.3. Any linear, exact equivalence AX ' Db(S, α) induces a Hodge isometry

H̃(AX ,Z) ' H̃(S, α,Z).

Proof. By results due to Orlov in the untwisted case and to Canonaco and Stellari [CS07] in
the twisted case, any fully faithful functor Φ : Db(S, α) //Db(X) is of Fourier–Mukai type,
i.e. Φ ' ΦE for some E ∈ Db(S×X,α−1�1). Therefore, Φ induces a homomorphism ΦK

E : Ktop(S,
α) //Ktop(X), see [HvdB07, Remark 3.4].

If Φ is induced by an equivalence Db(S, α)
∼ //AX , then ΦK

E : Ktop(S, α)
∼ //Ktop(AX) is an

isomorphism and in fact a Hodge isometry H̃(S, α,Z)
∼ // H̃(AX ,Z). The compatibility with the

Hodge structure follows from the twisted Chern character ch−α�1(E) of the Mukai kernel being of
Hodge type. See [HS05, § 1] for the notion of twisted Chern characters. That the quadratic form
is respected as well is proved by mimicking the argument for FM-equivalences, see e.g. [Huy06,
§ 5.2].

(We are suppressing a number of technical details here. As explained before, the actual
realization of the Hodge structure H̃(S, α,Z) depends on the choice of a B ∈ H2(S,Q) lifting α.
Similarly, the Chern character ch−α�1(E) also actually depends on B.) 2

3.3 The above result generalizes to FM-equivalences AX ∼ //AX′ , i.e. to equivalences for which

the composition Db(X) //AX ∼ //AX′ //Db(X ′) admits a Fourier–Mukai kernel. It has been
conjectured that in fact any linear exact equivalence is a FM-equivalence, but the existing results
do not cover our case.

Proposition 3.4. Any FM-equivalence AX ∼ //AX′ induces a Hodge isometry

H̃(AX ,Z)
∼ // H̃(AX′ ,Z).

Proof. The argument is an easy modification of the above. 2

The following improves upon a result in [BMMS12, Proposition 6.3] where it is shown that
for a cubic X ∈ C8, so containing a plane, there exist at most finitely many (up to isomorphism)
cubics X1, . . . , Xn ∈ C8 with AX ' AX1 ' · · · ' AXn .

Corollary 3.5. For any given smooth cubic X ⊂ P5 there exist up to isomorphism only finitely

many smooth cubics X ′ ⊂ P5 admitting a FM-equivalence AX ∼ //AX′ .

Proof. The proof follows the argument for the analogous statement for K3 surfaces [BM01]
closely, but needs a modification at one point that shall be explained.
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Due to the proposition, it suffices to prove that up to isomorphism there are only finitely

many cubics X ′ such that there exists a Hodge isometry ϕ : H̃(AX ,Z)
∼ // H̃(AX′ ,Z). Any

such Hodge isometry induces a Hodge isometry ϕT : T (AX)
∼ // T (AX′) and an isometry of

lattices N(AX)
∼ //N(AX′). We may assume

T (AX) ⊂ A⊥2 ⊂ H̃(AX ,Z) and A2 ⊂ N(AX)

and similarly for X ′. Note however that these inclusions need not be respected by ϕ. The
orthogonal complement of T (AX)⊥ ⊂ A⊥2 is just N(AX) ∩ A⊥2 and the two inclusions of A⊥2
induce two Hodge structures on A⊥2 . Note that if the Hodge isometry ϕT can be extended to

a Hodge isometry A⊥2
∼ //A⊥2 , which can be interpreted as a Hodge isometry H4(X,Z)prim '

H4(X ′,Z)prim, then the global Torelli theorem [Voi86, Voi08] implies that X ' X ′.
We first show that the set of isomorphism classes of lattices Γ occurring as N(AX′) ∩A⊥2 is

finite. The required lattice theory is slightly more involved than the original in [BM01]. Let us
fix two even lattices Λ1 and Λ (in our situation, Λ1 = T (AX) and Λ = A⊥2 ). We show that up to
isomorphisms there exist only finitely many lattices Λ2 occurring as the orthogonal complement
of some primitive embedding Λ1

� � //Λ. For unimodular Λ this is standard, but the proof can be
tweaked to cover the more general statement. Of course, it suffices to show that only finitely many
discriminant forms (AΛ2 , qΛ2) can occur. Now G := Λ/(Λ1⊕Λ2) is naturally a finite subgroup of
Λ∗/(Λ1 ⊕ Λ2) of index d = |disc(Λ)|. The first projection from G ⊂ Λ∗/(Λ1 ⊕ Λ2) ⊂ AΛ1 ⊕ AΛ2

defines an isomorphism of G with a finite subgroup of AΛ1 . This leaves only finitely many
possibilities for the finite groups G and Λ∗/(Λ1 ⊕ Λ2). Note that Λ/(Λ1 ⊕ Λ2) ⊂ AΛ1 ⊕ AΛ2 is
isotropic but not necessarily the bigger Λ∗/(Λ1 ⊕ Λ2) ⊂ AΛ1 ⊕ AΛ2 . However, the restriction of
the quadratic form to Λ∗/(Λ1 ⊕ Λ2) takes values only in (2/d2)Z/2Z. For fixed G ⊂ AΛ1 the
restriction of qΛ1 to G can be extended in at most finitely many ways to a quadratic form on
Λ∗/(Λ1⊕Λ2) with values in (2/d2)Z/2Z. Now use the other projection Λ∗/(Λ1⊕Λ2) // //AΛ2 to
see that there are only finitely many possibilities for the group AΛ2 and also for the quadratic
form qΛ2 .

To conclude the proof, we can assume that Γ is fixed. For two Fourier–Mukai partners
realizing the fixed Γ, any Hodge isometry T (AX1)' T (AX2) can be extended to a Hodge isometry
T (AX1)⊕ Γ ' T (AX2)⊕ Γ. As the finite index overlattices T (AXi)⊕ Γ ⊂ H4(Xi,Z)prim are all
contained in (T (AXi) ⊕ Γ)∗, there are only finitely many choices for them, which allows one
to reduce to the case that the Hodge isometry extends to a Hodge isometry H4(X1,Z)prim '
H4(X2,Z)prim. 2

Two very general cubics have FM-equivalent K3 categories only if they are isomorphic.

Corollary 3.6. Let X be a smooth cubic with rk H2,2(X,Z) = 1. For a smooth cubic X ′ there
exists a FM-equivalence AX ' AX′ if and only if X ' X ′.

Proof. The assumption implies that N(AX) ' A2. As any FM-equivalence AX ' AX′ induces
a Hodge isometry H̃(AX ,Z) ' H̃(AX′ ,Z), also N(AX′) ' A2. Moreover, the natural inclusions
of the transcendental lattices T (AX) ⊂ A⊥2 and T (AX′) ⊂ A⊥2 are in fact equalities and the
induced Hodge isometry T (AX) ' T (AX′) can therefore be read as a Hodge isometry H4(X,
Z)prim ' H4(X ′,Z)prim, which by the global Torelli theorem [Voi86] implies that X ' X ′. 2

Note that, in contrast, very general projective K3 surfaces S, i.e. such that ρ(S) = 1, usually
have non-isomorphic FM-partners, see [Ogu02, Ste04]. The result may also be compared to the
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main result of [BMMS12] showing that for all cubic threefolds Y ⊂ P4 the full subcategory
〈O,O(1)〉⊥ ⊂ Db(Y ) determines Y .

Remark 3.7. In principle, it should be possible to count FM-partners of AX for very general
special cubics X ∈ Cd (i.e. rk H2,2(X,Z) = 2). On the level of Hodge theory, this amounts to
counting the number of Hodge structures on Λ̃ parametrized by D which are Hodge isometric to
H̃(AX ,Z) up to those that are Hodge isometric on A⊥2 . The arguments should follow [HLOY04,
Theorem 1.4], see also [Ste04], with the additional problem that A⊥2 is not unimodular.

As an immediate consequence of Lemma 2.2 we also note the following.

Corollary 3.8. Let X be a special cubic defining a very general point in Cd. Then

rk(H̃1,1(AX ,Z)) = 3 and disc(H̃1,1(AX ,Z)) = d.

Remark 3.9. Suppose d satisfies (∗∗′) and is written as d = k2d0. Then d0 also satisfies (∗∗′). The
most interesting case is when in fact d0 satisfies (∗∗). Then for very general X ∈ Cd, there exists
a twisted K3 surface (S, α) with α of order k and such that AX ' Db(S, α), see Lemma 2.13.
Moreover, there also exists a cubic X ′ ∈ Cd0 such that AX′ ' Db(S). So, a K3 surface S of the
proper degree, with its various Brauer classes, is often related to more than one smooth cubic X.

3.4 We are interested in the group Aut(AX) of isomorphism classes of FM-equivalences Φ :

AX ∼ //AX . As any FM-equivalence Φ induces a Hodge isometry

ΦH : H̃(AX ,Z)
∼ // H̃(AX ,Z),

there is a natural homomorphism

ρ : Aut(AX) // Aut(H̃(AX ,Z)), Φ � //ΦH . (3.2)

Here, Aut(H̃(AX ,Z)) denotes the group of Hodge isometries. We say that Φ is symplectic if
the induced action on H̃2,0(AX), or equivalently on T (AX), is the identity. The subgroup of
symplectic autoequivalences shall be denoted by Auts(AX). Thus, (3.2) induces

ρ : Auts(AX) // Aut(H̃1,1(AX ,Z)).

Remark 3.10. By Aut+(H̃(AX ,Z)) one denotes the subgroup of Hodge isometries preserving a
given orientation of the four positive directions. We expect that Im(ρ) = Aut+(H̃(AX ,Z)). This
is known if AX ' Db(S), see [HMS09], and one inclusion can be proved for non-special cubics,
see Theorem 1.2.

Example 3.11. The most important autoequivalences of K3 categories, responsible for the
complexity of the groups Aut(Db(S)) and Aut(AX), are spherical twists. Associated with any
spherical object A ∈ AX , i.e. Ext∗(A,A) ' H∗(S2), there exists a FM-equivalence

TA : AX ∼ //AX

that sends E ∈ AX to the cone TA(E) of the evaluation map RHom(A,E) ⊗ A //E. This
is indeed a FM-equivalence: its kernel can be described as the cone of the composition A∨ �
A tr // O∆

// (id, i)∗(O∆). Here, (id, i)∗ is the left adjoint Db(X × X) //Db(X) � AX and
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A∨ ∈ AX(−2) is the image of the classical dual of A in Db(X) under the left adjoint of AX(−2) ⊂
Db(X). (With these choices the cone is contained in AX(−2)�AX and would indeed induce a
functor Db(X) //AX that is trivial on ⊥AX .)

The action of the spherical twist TA : AX ∼ //AX on H̃(AX ,Z) is given by the reflection
sδ : v � // v + 〈v, δ〉 · δ, where δ ∈ H̃1,1(AX ,Z) is the Mukai vector of A.

In [Kuz04, § 4] Kuznetsov considers the functor

Ψ : AX //AX , E � // i∗(i∗E ⊗OX(1))[−1],

which turns out to be an equivalence satisfying Ψ3 ' [−1]. Clearly, by construction Ψ is a
FM-equivalence. In fact, for the proof that AX is a K3 category this functor is crucial. Define

Φ0 := Ψ[1],

which satisfies Φ3
0 ' [2].

Proposition 3.12. The autoequivalence Φ0 : AX ∼ //AX is symplectic and the induced action

ΦH
0 : H̃(AX ,Z)

∼ // H̃(AX ,Z) corresponds to the element in O(A2) that is given by the cyclic
permutation of the roots λ1, λ2,−λ1 − λ2.

Proof. As the action on cohomology is independent of the specific cubic X ⊂ P5, we can assume
that the transcendental lattice T (AX) ⊂ H̃(AX ,Z) is of odd rank. However, ±id are the only
Hodge isometries of an irreducible Hodge structure of weight two of K3 type of odd rank,
cf. [Huy16, Corollary 3.3.5], and, as Φ3

0 ' [2] acts trivially on H̃(AX ,Z), we must have ΦH
0 = id

on T (AX), i.e. Φ0 is symplectic.
If X is a cubic with A2 ' H̃1,1(AX ,Z), then ΦH

0 corresponds to an element in O(A2). As
Φ0 is symplectic, ΦH

0 = id on A⊥2 and hence ΦH
0 = id on the discriminant group AA2 . Therefore,

ΦH
0 ∈ S3, see Remark 2.1. For a cubic X such that AX ' Db(S), we know that ΦH

0 must be
orientation preserving by [HMS09] and thus ΦH

0 ∈ A3 ' Z/3Z in general.
It remains to show that ΦH

0 6= id. One way to see this relies on a direct computation. Another
possibility is to use the recent result of Bayer and Bridgeland [BB13] confirming Bridgeland’s
conjecture in [Bri08] in the case of a K3 surface S of Picard rank one. More precisely, due
to [BB13, Theorem 1.4] for a K3 surface S with ρ(S) = 1 the subgroup of Aut(Db(S)) of
autoequivalences acting trivially on H̃(S,Z) is the product of Z[2] and the free group generated
by squares of spherical twists T 2

E associated with spherical vector bundles E on S. (That this
is a reformulation of Bridgeland’s original conjecture for ρ(S) = 1 had also been observed by
Kawatani [Kaw12].) Hence, if ΦH

0 = id, then Φ0 = (∗iT 2
Ei

) ◦ [2k], but then clearly Φ3
0 could not

be isomorphic to the double shift [2]. 2

Corollary 3.13. For every smooth cubic X ⊂ P5 the group of symplectic FM-autoequivalences
Auts(AX) contains an infinite cyclic group Z ⊂ Auts(AX) generated by Φ0 such that

Z · [2] ⊂ Z

is a subgroup of index three and such that the natural map ρ : Auts(AX) // Aut(H̃(AX ,Z))
defines an isomorphism of the quotient Z/Z · [2] with the subgroup A3 ⊂ O(A2) ⊂ O(H̃(AX ,Z))
of alternating permutations of the roots λ1, λ2,−λ1 − λ2 of A2.
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Remark 3.14. The subgroup SO(A2) ⊂ O(A2) of orientation-preserving isometries of A2 is A3×
Z/2Z ' Z/3Z × Z/2Z, see Remark 2.1. Its action can be ‘lifted’ to an action on AX via the

natural extension

0 //Z · [2] // (Z · Φ0 × Z · [1])/(Φ3
0 − [2]) // SO(A2) // 0,

which can be seen as induced by the universal cover of SO(A2 ⊗ R). Clearly, the group in the

middle is still infinite cyclic.

Inspired by Bridgeland’s conjecture for K3 surfaces in [Bri08], we state the following

conjecture (see [Huy14, § 5.4] explaining this reformulation).

Conjecture 3.15. There exists an isomorphism

Auts(AX) ' πst
1 [P0/O].

Here, P ⊂ P(H̃1,1(AX ,Z) ⊗ C) is the period domain defined analogously to D and Q in

§ 2.3 and P0 := P\
⋃
δ⊥, with the union over all (−2) classes δ ∈ H̃1,1(AX ,Z). Moreover, O ⊂

O(H̃1,1(AX ,Z)) is the subgroup of all isometries acting trivially on the discriminant. However,

contrary to the case of untwisted K3 surfaces we do not even have a natural map between these

two groups at the moment.

3.5 The cubic K3 category AX can also be described as a category of graded matrix

factorizations, see [Orl09]. More precisely, there exists an exact linear equivalence

AX ' MF(W,Z).

Here, W ∈ R := k[x0, . . . , x5] is a cubic polynomial defining X. The objects of MF(W,Z) are

pairs (K α // L,L
β // K(3)), where K and L are finitely generated, free, graded R-modules

and α, β are graded R-module homomorphisms with β ◦ α = W · id = α ◦ β. Recall that K(n)

for a graded R-module K =
⊕
Ki is the graded module with K(n)i = Kn+i. Homomorphisms

in MF(W,Z) are the obvious ones modulo those that are homotopic to zero (everything Z/2Z-

periodic).

The shift functor that makes MF(W,Z) a triangulated category is given by

(K α // L,L
β // K(3))[1] = (L

−β // K(3),K(3) −α // L(3)).

Viewing AX as the category of graded matrix factorizations allows one to describe Φ0 in

Proposition 3.12 alternatively as follows. Consider the grade shift functor

Φ0 : MF(W,Z)
∼ // MF(W,Z)

(K α // L,L
β // K(3)) � // (K(1) α // L(1), L(1)

β // K(4)).

Then, obviously,

Φ3
0 ' [2].

Note that Φ0 constructed in this way coincides with the FM-equivalence of Proposition 3.12,

see [BFK12, Proposition 5.8].
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4. The Fano variety

For the sake of completeness, let us also mention the recent results of Addington [Add16] building
upon an observation of Hassett [Has00], see also [MS12]. For this consider the Fano variety of
lines F (X), which, due to work of Beauville and Donagi [BD85], is a four-dimensional irreducible
holomorphic symplectic variety deformation equivalent to Hilb2(K3).
• For a smooth cubic X and its period x ∈ D the following two conditions are equivalent:

(i) x ∈ Dd such that d satisfies (∗∗);
(ii) F (X) is birational to a moduli space of stable sheaves M(v) on some K3 surface S.

• For a smooth cubic X and its period x ∈ D the following two conditions are equivalent:

(iii) x ∈ Dd such that there exist integers n and a with da2 = 2(n2 + n+ 1);

(iv) F (X) is birational to the Hilbert scheme Hilb2(S) of some K3 surface S.

Obviously, condition (iv) implies condition (ii) or, equivalently and after a moment’s thought,
condition (iii) implies condition (i). See [GS14] for a discussion of the relation between rationality
of the cubic X and condition (iii) (or, equivalently, condition (iv)).

Proposition 4.1. For the period x of a smooth cubic X the following two conditions are
equivalent:

(i) x ∈ Dd with d satisfying (∗∗′);
(ii) F (X) is birational to a moduli space of stable twisted sheaves on some K3 surface.

Proof. The argument is an adaptation of Addington’s proof [Add16]. Note however that in the
twisted case the transcendental lattice cannot play the same role as in the untwisted case. This
was observed in [HS05], where it was shown that twisted K3 surfaces (S, α), (S′, α′) with Hodge
isometric transcendental lattices, T (S, α) ' T (S′, α′), need not be derived equivalent.

Following Markman [Mar11] for every hyperkähler manifold Y deformation equivalent to
Hilb2(S) of a K3 surface S there exists a distinguished primitive embedding H2(Y,Z) ⊂ Λ̃
orthogonal to a vector v ∈ Λ̃ with (v.v) = 2. The Hodge structure of H2(Y,Z) extends to a
Hodge structure on Λ̃ such that v is of type (1, 1). Moreover, Y and Y ′ are birational if and
only if there exists a Hodge isometry H2(Y,Z) ' H2(Y ′,Z) that extends to a Hodge isometry
Λ̃ ' Λ̃. For a moduli space M(v) of α-twisted stable sheaves on a K3 surface S with primitive
v ∈ H̃1,1(S, α,Z) such that (v.v) = 2 the universal family induces the distinguished embedding
(see [Yos06, Theorem 3.19])

H2(M(v),Z) ' v⊥ �
� // H̃(S, α,Z).

Similarly, and this is the other crucial input, Addington shows in [Add16, Corollary 8] that for
the Fano variety of lines the universal family of lines induces this distinguished embedding

H2(F (X),Z) ' λ⊥1
� � // H̃(AX ,Z) ' Λ̃.

Hence, F (X) and M(v) are birational if and only if there exists a Hodge isometry

H̃(AX ,Z) ' H̃(S, α,Z) (4.1)

for some twisted K3 surface (S, α) that restricts to H2(F (X),Z) ' H2(M(v),Z). Due to
Proposition 2.10, the existence of a Hodge isometry (4.1) is equivalent to x ∈Dd with d satisfying
(∗∗′). This proves that condition (ii) implies condition (i).
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Conversely, for a Hodge isometry (4.1) consider a primitive vector v ∈ H̃1,1(S, α,Z) (the

image of λ1) in the orthogonal complement of H2(F (X),Z) �
� // H̃(AX ,Z) ' H̃2(S, α,Z) and the

induced moduli space M(v) of stable α-twisted sheaves. Write v = (r, `, s). If r 6= 0, then for v

or −v the moduli space M(v) is indeed non-empty. For r = 0 observe that (v)2 > 0 and, hence,

(`)2 > 0. Again by passing to −v if necessary, one can assume that (`.H) > 0 for the polarization

H. That the moduli space is non-empty in this case was shown in [Yos09, Corollary 3.5]. (Note

that for r = 0 twisted sheaves can also be considered as untwisted ones.) In [Add16] the case r = 0

is dealt with by a reflection associated with O, which does not work in the twisted situation.

To conclude, compose the Hodge isometry H2(F (X),Z) ' v⊥, given by the choice of v, with

H2(M(v),Z) ' v⊥, induced by the universal family as above. By construction, it extends to a

Hodge isometry Λ̃ ' Λ̃ and, therefore, F (X) and M(v) are birational. 2

5. Deformation theory

This section contains two results on the deformation theory of equivalences Db(S, α) ' AX
respectively AX′ ' AX that are crucial for the main results of the paper. The techniques have

been developed by Toda [Tod09], Huybrechts et al. [HMS09], Huybrechts and Thomas [HT10],

and in the present setting by Addington and Thomas [AT14]. We follow [AT14] quite closely and

often only indicate the additional difficulties and how to deal with them.

5.1 We first consider FM-equivalences AX′ ' AX between the K3 categories of two cubics X

and X ′ and study under which condition they deform sideways with X and X ′.

Theorem 5.1. Consider two families of smooth cubics X ,X ′ // T over a smooth base T and

with distinguished fibres X := X0 and X ′ := X ′0, respectively. Assume Φ : AX′
∼ //AX is a

FM-equivalence inducing a Hodge isometry ϕ : H̃(AX′ ,Z)
∼ // H̃(AX ,Z) that remains a Hodge

isometry ϕt : H̃(AX ′t ,Z)
∼ // H̃(AXt ,Z) under parallel transport for all t ∈ T .

Then Φ deforms sideways to FM-equivalences Φt : AX ′t
∼ //AXt for all t in a Zariski open

neighbourhood 0 ∈ U ⊂ T .

Proof. The argument is a variant of the deformation theory in [AT14]. We only indicate the

necessary modifications.

As, by assumption, Φ is a FM-equivalence, the composition

ΦP : Db(X ′) // AX′
∼
Φ
// AX �

� // Db(X)

is a FM-functor with some kernel P ∈ Db(X ′×X) contained in AX′(−2)�AX . It suffices to show

that P deforms to Pt ∈ Db(X ′t × Xt) for t in some open neighbourhood 0 ∈ U ⊂ T , because the

conditions for ΦPt to factorize via a functor Φt : AX ′t //AXt and for this functor Φt to define an

equivalence are both Zariski open. Indeed, Φt takes values in AXt if and only if its composition

with the projection Db(Xt) // ⊥AXt = 〈OXt ,OXt(1),OXt(2)〉 is trivial. The composition, however,

is again of FM-type and the vanishing of a FM-kernel is a Zariski open condition. Similarly,

whether Φt is an equivalence can be detected by composing it with its adjoints and then

checking whether the natural map to the kernel of the identity is an isomorphism, again a

Zariski open condition.
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The crucial part is to understand the first-order deformations, the higher-order obstructions
are dealt with by the T 1-lifting property, see [AT14, § 7.2] and [HMS09, § 3.2]. First note that
by results of Kuznetsov [Kuz09] one has

HH ∗(AX′) ' Ext∗X′×X(P, P ) ' HH ∗(AX).

This allows one to compare the first-order deformations

κX′ ∈ H1(TX′) ⊂ HH 2(X ′) and κX ∈ H1(TX) ⊂ HH 2(X)

corresponding to some tangent vector v ∈ T0T of T at 0. Due to a result of Toda [Tod09]
(cf. [AT14, Theorem 7.1]) it suffices to show that under HH 2(X ′) // Ext2

X′×X(P, P )
respectively HH 2(X) // Ext2

X′×X(P, P ) the classes κX′ and κX are mapped to the same class.
For this consider the following diagram (cf. [AT14, Proposition 6.2]).

HH 2(X ′)

(1)κX′

��

∼ // HH 2(AX′)

(2)α

��

ΦHH∗
P

∼ // HH 2(AX)

κ̄X
��

∼ //

(3)

HH 2(X)

κX
��

HH 0(X ′)

(4)
��

// // HH 0(AX′)
ΦHH∗
P

∼ // HH 0(AX) �
� // HH 0(X)

��
H∗(X ′)

&&

ΦHP

// H∗(X)

H̃∗(AX′)
∼
ϕ
// H̃∗(AX)

88

By H∗(X) ' HH ∗(X) we denote the HKR isomorphism (see [Căl05]) post-composed with√
td ∧ ( ) and so, in particular, HH 2(X) ' H1(Ω3

X) with chosen generator σX . Similarly for
X ′, where we choose the generator σX′ ∈ H1(Ω3

X′) ' HH 2(X ′) such that its image yields
σX . Furthermore, κ̄X denotes the image of κX under the projection HH 2(X) //HH 2(AX),
see [Kuz09], and α := ΦHH ∗(κ̄X).

We aim at showing that (1) is commutative. For this note first that (4) is induced by the
FM-transform ΦP : Db(X ′) //Db(X) and hence commutative due to [MS09]. The commutativity
of (2) is obvious, as Hochschild (co)homology is respected by equivalences, and commutativity
of (3) is the analogue of [AT14, Proposition 6.1]. (Recall that ΦP does not necessarily induce a
map ΦHH ∗

P , as it is not fully faithful.)
The first-order version of the assumption on the Hodge isometry ϕ is the statement that the

diagram

H1(TX′)� _

σX′

��

T0T //oo H1(TX)� _
σX
��

H2,2(X ′)prim� _

��

H2,2(X)prim� _

��

H̃1,1(AX′) ϕ
∼ // H̃1,1(AX)

is commutative. Using the ring-module isomorphism (HH ∗,HH ∗) ' (H∗(
∧∗ T ), H∗(Ω∗)) for X ′,

this implies that the image in H∗(X ′) of σX′ ∈ HH 2(X ′) under contraction with κX′ is mapped
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to the image of σX under contraction with κX . As HH 2(X ′) is one-dimensional, this shows that

also (1) is commutative.

Therefore, in the diagram

HH 2(X ′) //

σX′

��

HH 2(AX′)� _

σAX′
��

∼ //

	

HH 2(AX)� _

σAX
��

HH 0(X ′) // HH 0(AX′)
∼ // HH 0(AX)

the image of κX′ ∈ HH 2(X ′) under the two compositions HH 2(X ′) //HH 0(AX′) ' HH 0(AX)

coincide. As the contraction HH 2(A) �
� //HH 0(A) is injective (as for K3 surfaces), this implies

that the image of κX′ under HH 2(X ′) //HH 2(AX) is indeed κ̄X as claimed.

As in [AT14], the deformation of P to first and then, by T 1-lifting property, to higher order

is unique, for Ext1
X′×X(P, P ) ' HH 1(AX) = 0 by [Kuz09]. 2

5.2 We now come to the more involved situation of equivalences Db(S, α) ' AX and their

deformations.

Theorem 5.2. Consider two families X ,S // T of smooth cubics and K3 surfaces, respectively,

over a smooth base T . Denote the distinguished fibres by X := X0, S := S0 and let αt ∈ Br(St)
be a deformation of a Brauer class α := α0 on S. Assume Φ : Db(S, α)

∼ //AX is an equivalence

inducing a Hodge isometry ϕ : H̃(S, α,Z)
∼ // H̃(AX ,Z) that remains a Hodge isometry ϕt : H̃(St,

αt,Z)
∼ // H̃(AXt ,Z) under parallel transport for all t ∈ T .

Then Φ deforms sideways to equivalences Φt : Db(St, αt) ∼ //AXt for all t in a Zariski open

neighbourhood 0 ∈ U ⊂ T .

Proof. Let us fix representatives αt = {αt,ijk} for the Brauer classes on St and a family Et of

locally free {αt,ijk}-twisted sheaves on the fibres St in a Zariski open neighbourhood of 0 ∈ U ⊂ T .

The proof now consists of copying [AT14, §§ 6, 7]. However, the techniques have to be

adapted to the twisted case, which sometimes causes additional problems as certain fundamental

issues related to Hochschild (co)homology have not been addressed in the twisted setting. For

certain parts we choose ad hoc arguments to reduce to the untwisted case, for others we rely on

Reinecke [Rei14].
Section 6 in [AT14] deals with Hochschild (co)homology. For a twisted variety (Z,α) one

defines HH n(Z,α) := Extn(Z,α−1)×(Z,α)(O∆,O∆). Here, (Z,α−1) × (Z,α) denotes the twisted

variety (Z×Z,α−1�α). Note that O∆ is indeed an (α−1�α)-twisted sheaf. Similarly, one defines
HH n(Z,α) := Extd−n

(Z,α−1)×(Z,α)
(∆∗ω

−1
Z ,O∆), where d = dim(Z). Composition makes HH ∗(Z,α)

a right HH ∗(Z,α)-module. Moreover, there are natural isomorphisms

HH n(Z,α) = Extn(Z,α−1)×(Z,α)(O∆,O∆) ' ExtnZ(∆∗O∆,OZ)

' ExtnZ×Z(O∆,O∆) = HH n(Z)

and

HH n(Z,α) = Extd−n
(Z,α−1)×(Z,α)

(∆∗ω
−1
Z ,O∆) ' Extd−nZ (OZ ,∆∗O∆)

' Extd−nZ×Z(∆∗ω
−1
Z ,O∆) = HH n(Z).
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In particular, the HKR isomorphisms post-composed with td−1/2y( ) respectively td1/2∧( ) yield

isomorphisms

I : HH n(Z,α)
∼ //

⊕
i+j=n

H i(ΛjTZ) and I : HH n(Z,α)
∼ //

⊕
j−i=n

H i(Ωj
Z).

Note that these isomorphisms are again compatible with the ring and module structures on both

sides, which follows from the fact that the isomorphisms HH ∗(Z,α) ' HH ∗(Z) and HH ∗(Z,α)

' HH ∗(Z) are. The latter is a consequence of the functoriality properties of ∆!, ∆∗ and ∆∗.

For a twisted K3 surface (S, α) one has HH 2(S, α) ' H0(ωS) = C · σS and the following

diagram commutes.

HH 2(S, α)

·σS
��

I

∼ // H0(
∧2 TS)⊕H1(TS)⊕H2(OS)

yσS
��

HH 0(S, α)
I

∼ // H0,0 ⊕H1,1(S)⊕H2,2(S)

Let us now consider the fully faithful functor ΦP : Db(S, α)
∼ //AX �

� //Db(X) between the

twisted K3 surface (S, α) and the smooth cubic X, where P ∈ Db((S, α−1) × X). Then as in

[AT14, § 6.1] one obtains natural maps

ΦHH ∗
P : HH ∗(X) //HH ∗(S, α) and ΦHH ∗

P : HH ∗(S, α) //HH ∗(X)

compatible with the module structures, i.e. ΦHH ∗
P (a)◦c= ΦHH ∗

P (a◦ΦHH ∗
P (c)) for all a ∈ HH ∗(S, α)

and c ∈ HH ∗(X). This has been checked by Reinecke in [Rei14, § 4].

The remaining input in the proof of [AT14, Proposition 6.2] is the commutativity of the

untwisted version of the following diagram.

HH 0(S, α)

IB o
��

ΦHH∗
P // HH 0(X)

Io
��⊕

Hp,p(S)
ΦH,BP //

⊕
Hp,p(X)

(5.1)

Note that defining the induced action on cohomology requires the lift of α to a class

B ∈ H2(S,Q), see [Huy05, HS05]. Moreover, the usual HKR isomorphism I post-composed

with td1/2 ∧ ( ) needs to be twisted further to IB := exp(B) ◦ I.

In principle, one could try to prove the commutativity of (5.1) by rewriting the existing

untwisted theory, in particular [Căl05, MS09], for the twisted situation. Instead, we follow

Yoshioka [Yos06] and reduce everything to the untwisted case by pulling back to a Brauer–Severi

variety. We briefly review his approach and explain how to apply it to our situation.

Following [Yos06] we pick a locally free α = {αijk}-twisted sheaf E = {Ei, ϕij} on a twisted

variety (Z,α) and associate to it the projective bundle π : Y := P(E) //Z, which naturally

comes with a π∗α−1-twisted line bundle L := Oπ(1). The pull-back of any α-twisted sheaf

F = {Fi, ψij} tensored with L then naturally leads to the untwisted sheaf F̃ := π∗F ⊗ L.
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Analogously, any α−1-twisted sheaf F can be turned into the untwisted sheaf π∗F ⊗ L∗. The

construction yields a functor Db(Z,α) //Db(Y ) which, in fact, defines an equivalence of Db(Z,α)

with a full subcategory

(̃ ) : Db(Z,α)
∼ //Db(Y/Z) ⊂ Db(Y ).

The construction applied to E itself yields the sheaf G := Ẽ that corresponds to the unique

non-trivial extension class in Ext1
Y (Tπ,OY ) and Db(Y/Z) ⊂ Db(Y ) can alternatively be described

as the full subcategory of all objects H for which the adjunction map π∗π∗(G
∗ ⊗H) //G∗ ⊗H

is an isomorphism. Analogously, Db(Z,α−1) is equivalent to the full subcategory of objects H

for which π∗π∗(G⊗H)
∼ //G⊗H.

We apply this construction to the twisted K3 surface (S, α) and consider Y = P(E) //S

as above. Assume α is of order r and choose a lift B = (1/r)B0 with B0 ∈ H2(S,Z) of it.

The FM-kernel of our given equivalence ΦP : Db(S, α)
∼ //AX ⊂ Db(X), which is an object in

Db((S, α−1)×X), is turned into the untwisted sheaf P̃ := π∗P ⊗ (L∗�O) on Y ×X. This leads

to the following commutative diagram.

Db(S, α)

˜( )
��

π∗1 // Db((S, α)×X)

˜( )
��

⊗P // Db(S ×X)

π∗

��

π2∗ // Db(X)

=
��

Db(Y/S)
π∗1 // Db((Y ×X)/(S ×X))

⊗P̃ // Db((Y ×X)/(S ×X))
π2∗ // Db(X)

Therefore, the FM-functor ΦP : Db(S, α)
∼ //AX ⊂ Db(X) can be written as the composition

ΦP = ΦP̃ ◦ ΦQ of a twisted FM-functor ΦQ := (̃ ), with Q = (OS � L)|Γπ , and an untwisted

FM-functor ΦP̃ :

ΦP : Db(S, α)
ΦQ // Db(Y )

ΦP̃ // Db(X). (5.2)

This allows one to decompose the diagram (5.1) as

HH 0(S, α)

IB o
��

ΦHH∗
Q // HH 0(Y )

ΦHH∗
P̃ //

o
��

HH 0(X)

o
��⊕

Hp,p(S)
ΦH,BQ //

⊕
Hp,p(Y )

ΦH
P̃ //
⊕
Hp,p(X).

(5.3)

The right-hand square is induced by the usual untwisted FM-functor ΦP̃ and its commutativity

therefore follows from the result of Macr̀ı and Stellari [MS09, Theorem 1.2]. Hence, it suffices to

prove the commutativity of the left-hand square (which does not involve the cubic X anymore).

For greater clarity we split this further by decomposing ΦQ as

ΦQ : Db(S, α)
π∗ // Db(Y, π∗α)

L⊗ // Db(Y ).
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Let us first consider π∗ : Db(S, α) //Db(Y, π∗α) and the induced diagram

HH 0(S, α)

IB

��

o
��

// HH 0(Y, π∗α)

Iπ
∗B

��

o
��

HH 0(S)

I
��

// HH 0(Y )

I
��

H∗(S)

exp(B)
��

√
tdπ ·π∗ // H∗(Y )

exp(π∗B)
��

H∗(S) √
tdπ ·π∗

// H∗(Y ).

Note that the usual
√

tdπ · π∗ on the bottom is indeed the map on cohomology induced by the
functor π∗ : Db(S, α) //Db(Y, π∗α), which a priori depends on the choice of the lifts of α and
π∗α to classes in H2(S,Q) and H2(Y,Q), respectively, for which we choose B and π∗B. The
commutativity of the upper and the lower squares is trivial. The commutativity of the middle
square is an easy case of [MS09, Theorem 1.2]. Next consider Ψ := L⊗ ( ) : Db(Y, α) //Db(Y )
and the following induced diagram (where ψ is defined by the requirement of commutativity).

HH 0(Y, π∗α)

	o
��

ΨHH∗ // HH 0(Y )

=

��
HH 0(Y )

I
��

ψ // HH 0(Y )

I

��

H∗(Y )

exp(π∗B)

��
H∗(Y )

ΨH,π
∗B
// H∗(Y )

By definition, ΨH,π∗B is given by multiplication with chπ
∗(−B)(L) = exp(−π∗B) · exp(c1(L)).

Here, use that Lr is an untwisted line bundle and define c1(L) := (1/r)c1(Lr) ∈ H1,1(Y,Q).
See [HS05, § 1] for the conventions concerning twisted Chern classes. In particular, ΨH,π∗B ◦
exp(π∗B) = exp(c1(L)) and, therefore, it suffices to prove the commutativity of the diagram

HH 0(Y )

I
��

ψ // HH 0(Y )

I
��

H∗(Y )
exp(c1(L)) // H∗(Y )

(5.4)

which no longer depends on B and is a special case of Lemma 5.3 below.
This concludes the proof of the commutativity of the diagram (5.1) and hence of [AT14,

Proposition 6.2] in our twisted setting. More precisely, if a first-order deformation of X in Dd

given by a class κX ∈ H1(TX) corresponds via the interpretation of Dd as period domain for X

and S to a first-order deformation κS ∈ H1(TS), then ΦHH 2
: HH 2(X) //HH 2(S, α) sends κX

to κS .
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To conclude the proof one has to prove that the kernel P ∈ Db((S, α−1) × X) deforms
sideways, for which we again apply Yoshioka’s untwisting technique. Instead of attempting to
deform the twisted P sideways with (S, α) × X we deform the untwisted P̃ . As the condition
describing the full subcategory Db((S, α−1)×X) ' Db((Y ×X)/(S×X)) ⊂ Db(Y ×X) is open,
any deformation of P̃ will automatically induce a deformation of P .7 The decomposition (5.2)
leads to a diagram

HH 2(X) = Ext2
X×X(O∆X

,O∆X
) // Ext2

Y×X(P̃ , P̃ )
∼ // Ext2

(S,α−1)×X(P, P )

Ext2
Y×Y (O∆Y

,O∆Y
)

OO

// Ext2
(S,α−1)×(S,α)(O∆S

,O∆S
)

o

OO

HH 2(Y ) // HH 2(S, α).

Recall that ΦHH ∗
R is defined for any FM-functor ΦR, whereas in order to define ΦHH ∗

R one needs

ΦR to be fully faithful, which is the case for ΦP and ΦQ = (̃ ). So, both maps in

HH 2(X) // HH 2(S, α) oo HH 2(Y )

κX
� // κS

�oo κY

are well defined, where as above κX ∈ H1(TX) ⊂ HH 2(X) corresponds to κS ∈ H1(TS) ⊂
HH 2(S, α) (via their periods or, equivalently, via ΦHH 2

) and κY is determined by our pre-chosen
deformation Et of E.

Now by [HT10] the obstruction o(P̃ ) can be expressed as

o(P̃ ) = (κY , κX) ◦At(P̃ ).

(Unfortunately, an analogous formula in the twisted case is not available.) The crucial [AT14,
Theorem 7.1], which goes back to Toda [Tod09], proves that in the untwisted case o(P ) = 0 if
κX is mapped to κS under HH 2(X) //HH 2(S). However, in the twisted situation one has to
face the additional problem that there is no natural map HH 2(X) //HH 2(Y ). Nevertheless, the
argument in [AT14] goes through essentially unchanged as follows. Using the same notation, one
writes

o(P̃ ) = π∗1κY ◦AtY (P̃ ) + π∗2κX ◦AtX(P̃ ) ∈ Ext2(P̃ , P̃ ).

The first term is the image of π∗1κY ◦ At1(O∆Y
) ∈ Ext2(O∆Y

,O∆Y
) = HH 2(Y ) which is just

κY , whereas the second one is the image of −π∗1κX ◦ At2(O∆X
) ∈ Ext2(O∆X

,O∆X
) = HH 2(X)

which is just −κX . Hence, to compare κX and κY we do not need a map HH 2(X) //HH 2(Y )
(which simply does not exist naturally), as we only need to compare their images in
Ext2(P̃ , P̃ ) ' HH 2(S, α). Therefore, it suffices to ensure that under HH 2(X) //HH 2(S, α) the
class κX is mapped to κS , which was verified above.

7 This is confirmed by the observation that under the natural isomorphisms

Ext2(S,α−1)×X(P, P ) ' Ext2(Y,π∗α−1)×X(π∗P, π∗P ) ' Ext2Y×X(P̃ , P̃ )

the obstruction o(P ) ∈ Ext2(S,α−1)×X(P, P ) to deform P sideways to first order is first mapped to o(π∗P ) and then

to o(P̃ ) − idπ∗P ⊗ o(Oπ(−1)). The latter, however, equals the obstruction o(P̃ ) ∈ Ext2Y×X(P̃ , P̃ ) for P̃ , because
Oπ(−1) clearly deforms sideways.
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This concludes the argument proving that the FM-kernel P deforms to first order with
(S, α) × X. The arguments in [AT14, § 7.2] proving the existence of deformations of P to all
orders apply verbatim. Note that at the very end of the argument one needs to apply a result of
Lieblich [Lie06] saying that the space of objects with no negative self-Exts in the derived category
is an Artin stack of locally finite presentation. Again, the result as such does not seem to be
in the literature for the twisted situation, but once again it can be deduced from the untwisted
case by Yoshioka’s trick. 2

It remains to check the commutativity of (5.4) which is a general fact. Consider a smooth
variety Z and αijk := βij · βjk · βki with βij ∈ O∗Uij . The associated Brauer class α ∈ H2(Z,O∗Z)

is of course trivial and hence Db(Z, {αijk}) and Db(Z) are equivalent categories and an explicit
equivalence can be given by ‘untwisting by {βij}’, i.e. by E = {Ei, ϕij} � // {Ei, ϕij · β−1

ij }. Note
that changing βij by a cocycle {δij}, which would correspond to an untwisted line bundle say
M , the equivalence would be modified by M∗ ⊗ ( ).

Assume furthermore that αrijk = 1. Then {βrij} is a cocycle defining a line bundle H and we

define c1(β) := (1/r)c1(H) ∈ H1,1(Z). Explicitly, c1(β) = {d log βij}.

Lemma 5.3. The ‘untwisting by {βij}’, i.e. the equivalence

Φ : Db(Z, {αijk})
∼ //Db(Z), E = {Ei, ϕij} � // {Ei, ϕij · β−1

ij },

induces a commutative diagram

HH ∗(Z, {αijk})
ΦHH∗ //

HKR
��

HH ∗(Z)

HKR
��

H∗(Z)
exp(c1(β))

// H∗(Z).

The commutativity of (5.4) then follows from the observation that L⊗ ( ) can be written as
the composition of the ‘untwisting by {βij}’ as above with the equivalence L⊗ ( ). Here, L is the
untwisted line bundle given by {ψij · βij}, where L itself is the {α−1

ijk}-twisted line bundle given
by {ψij}.

Indeed, for Ψ := L ⊗ ( ) : Db(Z)
∼ //Db(Z) the commutativity of

HH ∗(Z)
ΨHH∗ //

HKR
��

HH ∗(Z)

HKR
��

H∗(Z)
exp(c1(L))

// H∗(Z)

is an easy special case of8 [MS09, Theorem 1.2], which can be proved by a direct calculation.
The proof of the lemma is a variant of this computation.

Proof. Consider the universal Atiyah class At : O∆
//∆∗ΩZ [1]. Twisted with a line bundle of

the form M�M∗ it yields a map AtM : O∆
//∆∗ΩZ [1]. The usual formula c1(E⊗M) = c1(E)+

rk E · c1(M) corresponds to the universal formula AtM = α + ∆∗c1(M), which can be checked

8 Note that td1/2∧ can be dropped here and in the lemma, as it commutes with exp(c1(L)).
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by using arguments of [BF08, BF03] or a direct cocycle computation. Here, c1(M) is viewed as
a map OZ //ΩZ [1] which can be pushed forward via ∆. Similarly, the exponential exp(At) :
O∆

//
⊕

∆∗Ω
i
Z [i] (see [Căl05]) twisted with M �M∗ is given by exp(At)M = ∆∗ exp(c1(M)) ◦

exp(At).
Let now f ∈ HH j(Z) = ExtjZ×Z(∆!OZ ,∆∗OZ) and denote by F ∈ ExtjZ(OZ ,∆∗∆∗OZ)

its image under ExtjZ×Z(∆!OZ ,∆∗OZ) ' ExtjZ(OZ ,∆∗∆∗OZ). So if η : (∆!∆
∗)∆∗OZ //∆∗OZ

denotes adjunction, then f = η ◦ ∆!F . Due to [Căl05, Proposition 4.4], the latter is under the
HKR isomorphism given by exp(At), so

η : (∆!∆
∗)∆∗OZ '

⊕
∆∗(Ω

i[i]⊗ ω−1
Z [−d])) '

⊕
∆∗(Ω

d−i
Z )∗[i− d]

exp(At) // ∆∗OZ .

The image of f under L ⊗ ( ) is given by tensoring with L � L∗. The push-forward ∆!F
remains unchanged by tensoring with L � L∗ and by the above η changes by composing with
∆∗ exp(c1(L)).

Literally the same argument applies to the untwisting by {βij} for which one has to observe
that the universal Atiyah class At : O∆

//∆∗ΩZ [1] on (Z, {α−1
ijk})×(Z, {αijk}) under untwisting

by {βij} becomes At + ∆∗c1(β) : O∆
//∆∗ΩZ [1] on Z × Z. 2

6. Proofs

6.1 Proof of Theorem 1.2
(i) According to Corollary 3.13, for every smooth cubic X ⊂ P5 there exists a distinguished

FM-autoequivalence Φ0 : AX ∼ //AX of infinite order which acts as the identity on T (AX), so it
is symplectic, and such that Φ3

0 is the double shift E � //E[2]. We have to show that for the very
general cubic every symplectic FM-equivalence Φ is a power of Φ0.

As H̃1,1(AX ,Z) ' A2 for very general X and ΦH = id on T (AX) = A⊥2 , the induced action

ΦH is contained in O(A2). Clearly, any Hodge isometry of H̃(AX ,Z) that is the identity on A⊥2
stays a Hodge isometry for all deformations of X. Therefore, applying Theorem 5.1, Φ deforms
to FM-autoequivalences Φt : AXt ' AXt for cubics Xt in a Zariski open neighbourhood U ⊂ C of
X inside the moduli space of smooth cubics.

Then for all but finitely many d satisfying (∗∗) the intersection U ∩ Cd is non-empty (and
open) and, therefore, by [AT14, Theorem 1.1] there exists t ∈ U such that AXt ' Db(S) for some
K3 surface S. Due to [HMS09, Theorem 2], autoequivalences of Db(S) are orientation preserving
and hence ΦH ∈ A3 ' Z/3Z, cf. Remark 2.1. Thus, by composing with some power of Φ0, we
may assume that ΦH = id.

Now apply Corollary 2.16 and Theorem 1.4, to be proved below, to conclude that there exists
t ∈ U such that AXt ' Db(S, α) for a twisted K3 surface (S, α) not admitting any (−2) class.
Indeed,

(CK3′ ∩ U)\Csph 6= ∅,

where CK3′ :=
⋃

(∗∗′) Cd ⊂ C and Csph ⊂ C is the image of Dsph. By [HMS08, Theorem 2], we know
that then Φt is isomorphic to an even shift E � //E[2k]. It is easy to see that k is independent
of t.

The locus of points U0 ⊂ U such that Φt ' [2k] for t ∈ U0 is Zariski open and by the above
non-empty. Therefore, for every X ∈ C in the intersection of all U0 ⊂ C the assertion holds.
But this intersection is certainly countable, as FM-kernels are parametrized by countably many
products of Quot schemes.
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(ii) Now consider a non-special cubic X, i.e. X ∈ C\
⋃
Cd, and an arbitrary Φ ∈ Aut(AX). By

composing with the shift functor [1] if necessary, we may assume that ΦH acts trivially on the
discriminant group AA2 ' AA⊥2 . But then the induced Hodge isometry of T (AX) ' A⊥2 extends

to a Hodge isometry of H4(X,Z) that respects h. By the global Torelli theorem [Voi86, Loo09,
Cha12] it is therefore induced by an automorphism f ∈ Aut(X), which clearly acts trivially on
the orthogonal complement of h⊥ ⊂ H∗(X,Z) and hence as the identity on A2 ⊂ H̃(AX ,Z).
Moreover, since f respects H3,1(X), the action of f in H̃(AX ,Z) preserves the orientation.

So, composing, if necessary, Φ with the shift functor and an automorphism, we reduce to the
case Φ ∈ Auts(AX). As X is non-special, i.e. A2 ' H̃1,1(AX ,Z), we can deform Φ sideways as
above until it can be interpreted as an autoequivalence of a category of the form Db(S), which
implies that it is orientation preserving. This eventually proves that for every non-special cubic
the image of ρ : Aut(AX) // Aut(H̃(AX ,Z)) is the subgroup of orientation-preserving Hodge
isometries.

Remark 6.1. We expect the first assertion in Theorem 1.2 to hold for every non-special cubic,
i.e. for all X ∈ C\

⋃
Cd, but this would require to show that if Φ ∈ Aut(AX) deforms to the

identity functor and H̃1,1(AX ,Z) ' A2, then Φ ' id. The techniques of [HMS08] should be
useful here, but they require the existence of stability conditions.

Furthermore, one would also expect that any Φ ∈ Aut(AX) of any cubic preserves the natural
orientation.

6.2 Proof of Theorem 1.4
Assertion (i) follows from Theorem 1.3 and Proposition 3.3. For the converse, fix d satisfying
(∗∗′). Then for any smooth cubic X ∈ Cd there exists a Hodge isometry

ϕ : H̃(S, α,Z)
∼ // H̃(AX ,Z) (6.1)

for some twisted K3 surface (S, α). In fact, this Hodge isometry can be chosen globally over the
period domain Dd (or some appropriately constructed covering C̃d of Cd, see [AT14]). The aim is
to show that generically this Hodge isometry is induced by an equivalence AX ' Db(S, α) (up
to changing the orientation).

The starting point for the argument is [AT14, Theorem 4.1], which is based on Kuznetsov’s
work [Kuz10] and on the description of the image of the period map for cubic fourfolds due to
Laza [Laz10] and Looijenga [Loo09]. Combined, these results show that for every d satisfying
(∗∗′) (but in fact (∗) is enough) there exists a smooth cubic X ∈ C8 ∩ Cd, a K3 surface S0 and
an equivalence

Φ0 : AX ∼ //Db(S0).

By [AT14] or Proposition 3.3, any such Φ0 induces a Hodge isometry ΦH
0 : H̃(AX ,Z)

∼ // H̃(S0,Z)
(usually completely unrelated to (6.1)). Consider now the composition

ψ := ΦH
0 ◦ ϕ : H̃(S, α,Z)

∼ // H̃(AX ,Z)
∼ // H̃(S0,Z).

By modifying ϕ (globally over Dd) if necessary (use Lemma 2.3), we may assume that ψ
preserves the orientation and then [HS06] applies and shows that there exists an equivalence

Ψ : Db(S, α)
∼ //Db(S0) with ΨH = ψ. Then the equivalence

Φ := Φ−1
0 ◦Ψ : Db(S, α)

∼ //Db(S0)
∼ //AX

satisfies ΦH = ϕ.
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We can now forget about S0 and only keep X and S and the equivalence Φ = ΦP with
P ∈ Db((S, α−1) × X). Then consider the two families Xt and (St, αt) over Dd (or rather
C̃d in order to use the Zariski topology) of cubics respectively twisted K3 surfaces with

X = X0, S = S0, for which ϕ defines Hodge isometries H̃(St, αt,Z)
∼ // H̃(AXt ,Z) for all t. As

Φ : Db(S, α)
∼ //AX induces ϕ, Theorem 5.2 applies and shows that Φ can be deformed to

equivalences Φt : Db(St, αt) ∼ //AXt for all t in a Zariski open neighbourhood of 0 ∈ C̃d.

6.3 Proof of Theorem 1.5
The first assertion of the theorem has been proved already as Corollary 3.6. For assertions (ii) and
(iii) recall that any FM-equivalenceAX 'AX′ induces a Hodge isometry H̃(AX ,Z)' H̃(AX′ ,Z),
cf. Proposition 3.4. So it remains to prove the converse for generic X ∈ Cd with d satisfying (∗∗′)
respectively very general X ∈ Cd for arbitrary d. The first case is easy, as then, by Theorem 1.4,
AX ' Db(S, α) and AX′ ' Db(S′, α′) for twisted K3 surfaces (S, α) respectively (S′, α′). The
assertion then follows from [HS06] and Lemma 2.3.

For the second case consider the correspondence

Z := {(X,X ′, ϕ) | X ∈ Cd and ϕ : H̃(AX ,Z)
∼ // H̃(AX′ ,Z)}

of smooth cubics X,X ′ with X ∈ Cd and a Hodge isometry ϕ. (Note that with X also X ′ ∈ Cd.)
This correspondence consists of countably many components Zi ⊂ Z and for the image of a
component Z0 ⊂ Z under the first projection π : Z // Cd one either has π(Z0) ⊂ Cd ∩

⋃
d′ 6=d Cd′

or π(Z0) ⊂ Cd is dense.
As we are interested in very general X ∈ Cd only, we may assume that we are in the latter

situation. Then by [AT14, Theorem 1.1], cf. § 6.1, one finds a (X,X ′, ϕ) ∈ Z0 for which there
exist K3 surfaces S and S′ and FM-equivalences

Ψ : AX ∼ //Db(S) and Ψ′ : AX′
∼ //Db(S′). (6.2)

By Proposition 3.3, Ψ and Ψ′ induce Hodge isometries ΨH respectively Ψ′H , which composed
with ϕ yield a Hodge isometry

ϕ0 : H̃(S,Z)
∼

(Ψ−1)H
// H̃(AX ,Z)

∼
ϕ
// H̃(AX′ ,Z)

∼
Ψ′H

// H̃(S′,Z).

We may assume that ϕ0 is orientation preserving and, thus, induced by a FM-equivalence Φ0 :

Db(S)
∼ //Db(S′). Composing the latter with the equivalences (6.2) yields a FM-equivalence

Φ : AX ' AX′ inducing ϕ. Now use Theorem 5.1 to deform Φ sideways to FM-equivalences Φt :

AXt
∼ //AX′t for all points (Xt, X

′
t, ϕt ≡ ϕ) in a Zariski dense open subset U0 ⊂ Z0.

Hence, for all X ∈
⋂
π(Ui), with the intersection over all components Zi ⊂ Z (dominating

Cd), the existence of a Hodge isometry H̃(AX ,Z) ' H̃(AX′ ,Z) implies the existence of a FM-
equivalence AX ' AX′ .
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