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Introduction. Consider a group presentation

P̂ �< x; r > : �1�
Here x is a set and r is a set of non-empty, cyclically reduced words on the alphabet
x [ xÿ1 (where xÿ1 is a set in one-to-one correspondence x$xÿ1 with x). We assume
throughout that P̂ is ®nite. Let FÃ be the free group on x (thus FÃ consists of free
equivalence classes [W ] of word on x[xÿ1), and let N be the normal closure of {[R] :
R2r} in FÃ. Then the group G=G�P̂) de®ned by P̂ is FÃ/N. We will write W1 =G W2 if
[W1]N=[W2]N.

Associated with P̂ is a certain crossed module (�, FÃ, @). This can be described in
several di�erent (but equivalent) ways:

(a) topologically as the relative second homotopy group �2(K, K(1)) where K is
the standard 2-complex modelled on P̂ and K(1) is its 1-skeleton;

(b) algebraically in terms of sequences;
(c) geometrically in terms of pictures.

Also, there is the (absolute) second homotopy group �2(P̂)=Ker @, which is a ZG-
module. Elements of this can be represented algebraically by identity sequences, or
geometrically by spherical pictures. See [1], [3], [10] for details. We will use the sec-
ond description (b), and refer the reader to [10] for basic terminology and results
concerning identity sequences. (However, for the reader's convenience we give a
brief account of this material in x1 below.)

Now P̂ gives rise to a monoid presentation P for G, where

P � �x; xÿ1;R � 1�R 2 r�; x"xÿ" � 1�x 2 x; " � �1��:
The monoid de®ned by P is the quotient of the free monoid F on x [ xÿ1 by the
smallest congruence � generated by the relations. A typical element of this monoid is
a congruence class W� (W2F), and we have an isomorphism from this monoid to G,
given by

W� 7! �W�N �W 2 F�:

We will often identify W� and [W]N (if no confusion can arise) and will denote this
element by �W.

Now in [12] (see also [11]) we associated with any monoid presentation Q a 2-
complex D(Q) (``the 2-complex of monoid pictures'') and we showed that the ®rst
homology group H1 (D(Q)) has considerable signi®cance. The fundamental groups
of D(Q) are also of considerable interest and have been investigated by Guba and
Sapir [7], and Kilibarda [8].

For our presentation P above, the 2-complex D(P) has underlying graph as
follows. The vertex set is F and the edge set consists of all the atomic monoid
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pictures (U,T,",V) (U,V2F,T2r [ {xxÿ1,xÿ1x : x2x}, "=�1) (Figure 1). The initial,
terminal and inversion functions �,�,ÿ1 are given by

��U;T; 1;V� � ��U;T;ÿ1;V� � UTV;

��U;T;ÿ1;V� � ��U;T; 1;V� � UV;

�U;T; ";V�ÿ1 � �U;T;ÿ";V�:
There are obvious (compatible) left and right actions of F on this graph. Paths in
this graph are called (monoid) pictures. The left and right actions of F extend to
actions on pictures. The de®ning paths of D(P) are the paths

�A;B� � �A � ��B�����A� � B��Aÿ1 � ��B�����A� � Bÿ1�: �2�

(A,B are edges of the graph.) See [11], [12] for further details.

Now elements of the fundamental groupoid �l(D(P)) are represented by monoid
pictures. Consequently, in view of (c) above, it is natural to ask for our group G
what is the relationship (if any) between �1(D(P)) and �.

In fact to obtain a relationship we need to modify D(P) by adding some extra
de®ning paths to it. For each x2x, "�1 we have the spherical monoid picture as in
Figure 2. (This is a path of length 2 in D(P).) We let D(P)* be the 2-complex
obtained from D(P) by adding the extra de®ning paths

W � P � V �P as in Figure 2;W;V 2 F�: �3�

Now let �* be the collection of all elements of the fundamental groupoid
�1(D(P)*) represented by monoid pictures which start at freely reduced words on x
[ xÿ1, and end at the empty word. We show in x2 that a crossed module structure
(�*,FÃ,@*) can be imposed on �*, and we prove (Theorem 1) that there is a crossed
module isomorphism

 : �! ��:

By restriction, we then get a ZG-isomorphism

�2�P̂� � Ker @! Ker @� � �1�D�P��; 1�:

Figure 1

Figure 2
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The notion of ®nite derivation type (FDT) was introduced by Squier in his
posthumously published article [13]. In our terminology, a monoid presentation Q is
FDT if there is a ®nite set X of spherical monoid pictures over Q such that the 2-
complex D(Q)X obtained from D(Q) by adding the de®ning paths

W � P � V �W;V 2 F;P 2 X�
has trivial fundamental groups. A ®nitely presented monoid S is FDT if some (and
hence, as shown by Squier [13], any) ®nite presentation of S is FDT. Monoids of
®nite derivation type have been discussed in [4], [5], [9], [12].

Now if G is a group then it has been shown by Cremanns and Otto [5] that G is
FDT if and only if for some (and hence, in fact, any) ®nite group presentation P̂ of
G, the ZG-module �2(P̂) is ®nitely generated.

We give in x3 a simple proof of the Cremanns/Otto result mentioned above. Let
P̂, P be as in (1), (2) respectively. We ®rst establish the easy fact that all the funda-
mental groups of D(P)* are isomorphic. Using this we prove (Theorem 2) that P is
FDT if and only if the ZG-module �1(D(P)*,1) is ®nitely generated. Then in view of
the isomorphism �2(P̂) � �1(D(P)*,1) (x2), the Cremanns/Otto result follows.

It should be noted that for any group presentation P̂=<x; r> there is a stan-
dard exact sequence

0! �2�P̂� ! �R2rZGeR !�x2xZGex ! ZG! Z! 0

of ZG-modules (see for example [3], [10]). Using this, together with the generalised
Schanuel Lemma [2], one easily obtains the (well-known) result that a ®nitely pre-
sented group G is of type FP3 [2] if and only if for some (in fact any) ®nite pre-
sentation P̂ of G, �2(P̂) is ®nitely generated. Thus, for ®nitely presented groups,
FDT and FP3 are equivalent. (This result is obtained in [5].)

1. Preliminaries. If P, P0 are paths in D(P)* then we write P � P0 if P, P0 are
equivalent (homotopic) in D(P)*. The equivalence class of P will be denoted by
<P>. We will assume the reader has some familiarity with the material regarding
monoid pictures in [12, xx2,5].

An edge of D(P)* of the form (U, x"xÿ",�1,V) (U,V2F, x2x, "=�1) will be
called trivial, and a path will be called trivial if all its edges are trivial. Two vertices
W1, W2 can be connected by a trivial path if and only if W1 and W2 are freely
equivalent (the chosen path connecting W1 to W2 then gives a method of freely
transforming W1 to W2). In view of the de®ning paths (3) of D(P)*, we have that
any two trivial paths between a given pair of vertices W1, W2 are homotopic in D(P)*.
This key observation allows us to replace a trivial subpath T of a given path P by
any other trivial path T0 (where �(T0)=�(T), �(T0)=�(T)) without a�ecting the
homotopy type of P.

Suppose P is a path in D(P)* with �(P)=W, �(P)=Z, and let T, �T be trivial
paths in D(P)* from W1 to W, Z1 to Z respectively, where W1, Z1 are the unique
reduced words freely equivalent to W, Z. Then the picture TP �Tÿ1 will be said to be
obtained from P by freely reducing the boundary of P, and will be denoted by P*.
Obviously this notation is ambiguous because P* depends on T, �T. However, since
we will be working up to homotopy inD(P)*, we can, by our comment in the previous
paragraph, allow ourselves to choose any trivial paths T, �T that suit our purpose. This
simple, but key point will be used over and over again, without further comment.
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Another important point is the following.

Suppose that P1 is obtained from P by inserting into P a pair of

parallel arcs with labels x"; xÿ" �x 2 x; " � �1�: Then P�1 � P�:
�4�

This is because, when we freely reduce the boundary of P1 we can begin as in Figure
3. This creates a cancelling pair of discs which can be removed.

If P, P0 are paths in D(P)* then we write P+P0 for the path (P.�(P0))(�(P).P0).
Then for paths Pl, P2,� � �, Pn we de®ne P1+P2 +� � �+ Pn inductively to be (P1

+� � �Pnÿ1 ) + Pn.
For anyU2F, sayU=x1x2� � �xm (xi2x [ xÿ1 for i=1,� � �,m) we denote the picture

Ym
i�1
�x1 � � � xiÿ1; xixÿ1i ;ÿ1; xÿ1iÿ1 � � � xÿ11 �

(see Figure 4) by TUUÿ1 .

For R2r, U2F, "2{ÿ1,1} we de®ne ER,U,E as follows:

ER;U;" � �U;R; 1;Uÿ1� " � 1;
�U;R;ÿ1;Rÿ1Uÿ1� " � ÿ1:

�
We complete this section by giving a brief account of � in terms of sequences.

(For further details, as well as for the elementary theory of crossed modules, see [10].
See also [6] for the theory of crossed modules.)

Let rF be the set of all elements of F of the form WR"Wÿ1 (W2F, R2r,"=�1).
We consider ®nite sequences s=(cl, c2,� � �,cm) of elements of rF. We de®ne certain
operations on sequences as follows.

(I) Replace some term ci=WR"Wÿ1 by ci
0=W0R"W0ÿ1 where W0 is a word

freely equivalent to W.

Figure 3

Figure 4
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(II) Delete two consecutive terms if one is identically equal to the inverse of the
other.

(III) Replace two consecutive terms ci, ci+l by ci+1, c
ÿ1
i�1 cici+1 or by cici+1 ci

ÿ1, ci.

Two sequences s, s0 are said to be (Pei�er) equivalent if one can be obtained
from the other by a ®nite number of operations (I), (II), (II)ÿ1, (III). The equiva-
lence class containing s is denoted by <�>. The set � of equivalence classes forms
a (non-abelian) group under the binary operation

< �1 > � < �2 > � < �1�2 > :

There is a (well-de®ned) action of FÃ on � given by

�W�� < � > � < �W >

(where, if �=(c1,� � �,cm) then �W=(Wc1W
ÿ1,. . ., WcmW

ÿ1)), and there is a group
homomorphism

@ : �! F̂; < �c1; c2; � � � ; cm� > 7! �c1c2 � � � cm�:

The triple (�, FÃ, @) then has the structure of a crossed module. A well-known result
(originally proved by Whitehead [14]) is that this crossed module is free, with basis
consisting of the elements bR=<(R)>(R2r). By the elementary theory of crossed
modules, Ker@ is abelian and Im@(= N) acts trivially on Ker@, so we get a well-
de®ned action of G=FÃ/N on Ker@. With this action Ker@ becomes a left ZG-module,
which is the second homotopy module of P̂, denoted �2(P̂).

2. The crossed module �*. We de®ne a crossed module (�*, FÃ, @*) as follows.
The elements of �* are the equivalence classes < P > where P is a monoid picture
such that �(P) is a freely reduced word on x [ xÿ1 and �(P) is the empty word. We
de®ne a (non-commutative) operation + on �* by

< P1 > � < P2 > � < �P1 � P2�� > �< P1 >;< P2 >2 ���;

and an action (which is well-de®ned by (4)) of FÃ on �* by

�W�� < P > � < �W � P �Wÿ1�� > ��W� 2 F̂; < P >2 ���:

We de®ne

@� : �� ! F̂

by

@� < P > � ���P�� �< P >2 ���:

Then under the operation +, �* is a group on which F̂ acts. Clearly, for [W]2F̂,
<P>2�* we have

@���W�� < P >� � �W�@� < P > �W�ÿ1:
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Also, as can be seen geometrically (Figure 5), for any < P1 >, < P2 >2�* we have

< P1 > � < P2 > � @� < P1 > � < P2 > � < P1 > :

Thus (�*, F̂, @*) is a crossed module. Note that

ÿ < P > � < �Pÿ1 � ��P�ÿ1�� > �< P >2 ���:

Let aR=< ER,1,1 > (R2r).

Proposition. �* is generated (as a crossed module) by the elements aR (R2r).

Proof. Let

B � T1A1T2A2 � � �TnAnTn�1

be a closed path in D(P)* starting at the reduced word U and ending at the empty
word 1. Here the T's are trivial paths and the A's are non-trivial edges. Write
Ai=(Ui, Ri, "i, Vi) (i=1,� � �,n). We claim that

< B >� "1�U1� � aR1
� � � � � "n�Un� � aRn

: �5�

Let

P � E1 � E2 � � � � � En;

where Ei=ERi
,Ui
,"i (i=1,� � �,n). Then the right hand side of (5) is < P*>. Now let �P be

the picture obtained from P by inserting immediately to the right of the ith disc a suc-
cession of parallel arcs with total label ViVi

ÿ1(i=1,� � �,n). Then �P* � P* by (4). Now

�� �P� � ��A1���A1�ÿ1��A2���A2�ÿ1 � � � ��An���An�ÿ1;
�� �P� � ��A1���A1�ÿ1��A2���A2�ÿ1 � � � ��An���An�ÿ1;

and so we can take �P* to be D �PD0 where

Figure 5
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D � T1 � �T��A1�ÿ1��A1�����A1�ÿ1 � T2� � � � � � �T��An�ÿ1��An�����An�ÿ1 � Tn�1�
D0 � Tÿ1

��A1���A1�ÿ1 � � � � � Tÿ1
��An���An�ÿ1

(see Figure 6). Making use of the de®ning paths (3) of D(P)* to eliminate the
``bends'' we see that �P* � B.

Now since � is free on the elements bR=< (R) > (R2r) we have a crossed
module homomorphism

� : �! ��; bR 7!aR:

Theorem 1. The crossed module homomorphism � is an isomorphism.

Proof. We will construct the inverse of �.
De®ne a mapping  0 from the edge set of D(P)* to � as follows. Trivial edges

are mapped to 0; an edge (U, R, ", V) (U,V2F,R2r, "=�1) is mapped to
<UR"Uÿ1>. Then for any edge A

@ 0�A� � ���A���A�ÿ1�: �6�

Now  0 extends to a mapping on paths and it follows from (6) that for any
path P

@ 0�P� � ���P���P�ÿ1�: �7�

The image of each de®ning path of D(P)* is 0. This is clear for paths of the form
(3), and for a path as in (2) we have

 0�A;B� �  0�A� � ���A�� �  0�B� ÿ  0�A� ÿ ���A�� �  0�B�
� @� 0�A�� � ����A�� �  0�B�� ÿ ���A�� �  0�B�
�using the crossed module structure on ��

� 0 �using �6��:

We thus get a well-de®ned mapping of equivalence classes

< P > 7!  0�P�;

and in particular, we get a function

Figure 6
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 : �� ! �:

Now  is a group homomorphism, since for any < P1 >, < P2 >2 �* we have

 �< P1 > � < P2 >� �  0���P1 � ��P2��P2���
�  0��P1 � ��P2��P2�
�  0�P1 � ��P2�� �  0�P2�
�  0�P1� �  0�P2�
�  < P1 > � < P2 > :

Also, it is easily checked that  respects the FÃ-action, and it follows from (7) that
@ =@*. Hence  is a crossed module homomorphism.

Since  � agrees with the identity on the generating set aR (R2r) of �*,  �=1.
Similarly � =1.

This proves the theorem.

Note that, by restriction, we get a mutually inverse pair of isomorphisms

�2�P̂� � Ker @ �
 ker @� � �1�D�P��; 1�:

The G-action on �2(P̂) induces a G-action on �1(D(P)*, 1) by the rule

�W� < P >�< �W � P �Wÿ1�� > � �W 2 G; < P >2 �1�D�P��; 1��;

and �,  are then ZG-isomorphisms.

3. The fundamental groups of D(P)*. Let U2F. We have a well-de®ned group
homomorphism

�U : �1�D�P��; 1� ! �1�D�P��;U�;

< B > 7! < B �U > :

This is in fact an isomorphism, for consider the (well-de®ned) function

�U : �1�D�P��;U� ! �1�D�P��; 1�

< P > 7! < �P �Uÿ1�� > :

Now �U�U=1, for if B is a spherical monoid picture with �(B)=1 then (B.UUÿ1)* �
B*=B by (4). Also, �U�U=1, for if P is a spherical monoid picture with �(P)=U
then (see Figure 7)

�P �Uÿ1�� �U � P:

Thus �U; �U are mutually inverse isomorphisms.
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We will need the following result.

Lemma. Let P be a spherical monoid picture over P with �(P)=U. Suppose W,
V2F are such that WUV=G 1. Let D be any path in D(P)* from 1 to WUV. Then in
�1(D(P)*, 1) we have

< D�W � P � V�Dÿ1 > � �W � �U < P > :

This can be seen geometrically as follows. First note that Vÿ1Uÿ1Wÿ1=G1 so
there is a path �D in D(P*) from 1 to Vÿ1Uÿ1Wÿ1. Then we have the equivalence as
in Figure 8 (where for simplicity we have taken W, U, V to each consist of a single
letter).

Theorem 2. P is of ®nite derivation type if and only if the left ZG-module
�1(D(P)*, 1) is ®nitely generated.

Proof. First suppose that P has ®nite derivation type. Then there is a ®nite col-
lection X of spherical monoid pictures over P such that the 2-complex D(P)X
obtained from D(P) by adjoining the de®ning paths

Figure 7

Figure 8
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W � P � V �W;V 2 F; P 2 X�

has trivial fundamental groups.
Let B be any spherical monoid picture with �(B)=1. Then B is homotopic in

D(P) (and hence in D(P)*) to a product of the form

Yn
i�1

Di�Wi � Pi � Vi�"iDÿ1i

where Pi2X, "i=�1, Wi, Vi2F, Di is some path in D(P) with �(Di)=1,
��Di�=��Wi

. Pi � Vi� (i=1,� � �, n). Hence in �1(D(P)*, 1) we have

< B > �
Xn
i�1

"i < Di�Wi � Pi � Vi�Dÿ1i >

�
Xn
i�1

"i �Wi � ���Pi� < Pi > �by the Lemma�:

Thus the module �1(D(P)*, 1) is generated by the elements

f���P� < P >: P 2 Xg:

Conversely, suppose there is a ®nite set Y of spherical monoid pictures (each
starting at 1) such that the elements < B > (B2Y) generate �1(D(P)*, 1) as a
module. Let P be any spherical monoid picture, and suppose that �(P)=U. Then

�U < P >�
Xn
i�1

"i �Wi� < Bi >

where Bi2Y, Wi2F, "i=�1 (i=1,� � �, n). Thus in �1(D(P)*, U) we have

< P > �
Yn
i�1
�U� �Wi� < Bi >�"i

�
Yn
i�1

< �TWiW
ÿ1
i
�U��Wi � B"ii �Wÿ1i U��TWiW

ÿ1
i
�U�ÿ1 > :

Consequently, we see that if we adjoin to D(P)* the additional de®ning paths

W � B � V �W;V 2 F;B 2 Y�

then all fundamental groups of the resulting complex are trivial. Thus if X consists
of the pictures in Y together with the pictures of the form (3), then D(P)X has trivial
fundamental groups, and so P is of ®nite derivation type.
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this paper.
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