LOW DIMENSIONAL HOMOTOPY FOR MONOIDS II: GROUPS

STEPHEN J. PRIDE

Department of Mathematics, University of Glasgow, University Gardens, Glasgow G12 8QW, Scotland

(Received 28 January, 1997)

Introduction. Consider a group presentation

$$\hat{\mathcal{P}} = <\mathbf{x}; \, \mathbf{r} > . \tag{1}$$

Here **x** is a set and **r** is a set of non-empty, cyclically reduced words on the alphabet $\mathbf{x} \cup \mathbf{x}^{-1}$ (where \mathbf{x}^{-1} is a set in one-to-one correspondence $x \leftrightarrow x^{-1}$ with **x**). We assume throughout that $\hat{\mathcal{P}}$ is finite. Let \hat{F} be the free group on **x** (thus \hat{F} consists of free equivalence classes [W] of word on $\mathbf{x} \cup \mathbf{x}^{-1}$), and let N be the normal closure of $\{[R] : R \in \mathbf{r}\}$ in \hat{F} . Then the group $G = G(\hat{\mathcal{P}})$ defined by $\hat{\mathcal{P}}$ is \hat{F}/N . We will write $W_1 =_G W_2$ if $[W_1]N = [W_2]N$.

Associated with $\hat{\mathcal{P}}$ is a certain crossed module $(\Sigma, \hat{F}, \partial)$. This can be described in several different (but equivalent) ways:

- (a) topologically as the relative second homotopy group $\pi_2(\mathcal{K}, \mathcal{K}^{(1)})$ where \mathcal{K} is the standard 2-complex modelled on $\hat{\mathcal{P}}$ and $\mathcal{K}^{(1)}$ is its 1-skeleton;
- (b) algebraically in terms of sequences;
- (c) geometrically in terms of pictures.

Also, there is the (absolute) second homotopy group $\pi_2(\hat{\mathcal{P}}) = \text{Ker } \partial$, which is a ZGmodule. Elements of this can be represented algebraically by identity sequences, or geometrically by spherical pictures. See [1], [3], [10] for details. We will use the second description (b), and refer the reader to [10] for basic terminology and results concerning identity sequences. (However, for the reader's convenience we give a brief account of this material in §1 below.)

Now $\hat{\mathcal{P}}$ gives rise to a *monoid* presentation \mathcal{P} for G, where

$$\mathcal{P} = [\mathbf{x}, \mathbf{x}^{-1}; R = 1 (R \in \mathbf{r}), x^{\varepsilon} x^{-\varepsilon} = 1 (x \in \mathbf{x}, \varepsilon = \pm 1)].$$

The monoid defined by \mathcal{P} is the quotient of the free monoid F on $\mathbf{x} \cup \mathbf{x}^{-1}$ by the smallest congruence ρ generated by the relations. A typical element of this monoid is a congruence class $W\rho$ ($W \in F$), and we have an isomorphism from this monoid to G, given by

$$W\rho \mapsto [W]N \ (W \in F).$$

We will often identify $W\rho$ and [W]N (if no confusion can arise) and will denote this element by \overline{W} .

Now in [12] (see also [11]) we associated with any monoid presentation Q a 2-complex $\mathcal{D}(Q)$ ("the 2-complex of monoid pictures") and we showed that the first homology group $H_1(\mathcal{D}(Q))$ has considerable significance. The fundamental groups of $\mathcal{D}(Q)$ are also of considerable interest and have been investigated by Guba and Sapir [7], and Kilibarda [8].

For our presentation \mathcal{P} above, the 2-complex $\mathcal{D}(\mathcal{P})$ has underlying graph as follows. The vertex set is F and the edge set consists of all the atomic monoid

pictures (U,T,ε,V) $(U,V\in F,T\in \mathbf{r} \cup \{xx^{-1},x^{-1}x : x\in \mathbf{x}\}, \varepsilon = \pm 1)$ (Figure 1). The initial, terminal and inversion functions $\iota,\tau,^{-1}$ are given by

$$\iota(U, T, 1, V) = \tau(U, T, -1, V) = UTV, \iota(U, T, -1, V) = \tau(U, T, 1, V) = UV, (U, T, \varepsilon, V)^{-1} = (U, T, -\varepsilon, V).$$

There are obvious (compatible) left and right actions of F on this graph. Paths in this graph are called *(monoid) pictures*. The left and right actions of F extend to actions on pictures. The defining paths of $\mathcal{D}(\mathcal{P})$ are the paths

$$[\mathbf{A}, \mathbf{B}] = (\mathbf{A} \cdot \iota(\mathbf{B}))(\tau(\mathbf{A}) \cdot \mathbf{B})(\mathbf{A}^{-1} \cdot \tau(\mathbf{B}))(\iota(\mathbf{A}) \cdot \mathbf{B}^{-1}).$$
(2)

(A,B are edges of the graph.) See [11], [12] for further details.

Now elements of the fundamental groupoid $\pi_1(\mathcal{D}(\mathcal{P}))$ are represented by monoid pictures. Consequently, in view of (c) above, it is natural to ask for our group *G* what is the relationship (if any) between $\pi_1(\mathcal{D}(\mathcal{P}))$ and Σ .

In fact to obtain a relationship we need to modify $\mathcal{D}(\mathcal{P})$ by adding some extra defining paths to it. For each $x \in \mathbf{x}$, $\varepsilon \pm 1$ we have the spherical monoid picture as in Figure 2. (This is a path of length 2 in $\mathcal{D}(\mathcal{P})$.) We let $\mathcal{D}(\mathcal{P})^*$ be the 2-complex obtained from $\mathcal{D}(\mathcal{P})$ by adding the extra defining paths

$$W \cdot \mathbf{P} \cdot V$$
 (*P* as in Figure 2, $W, V \in F$). (3)

Now let Σ^* be the collection of all elements of the fundamental groupoid $\pi_1(\mathcal{D}(\mathcal{P})^*)$ represented by monoid pictures which start at *freely reduced* words on $\mathbf{x} \cup \mathbf{x}^{-1}$, and end at the empty word. We show in §2 that a crossed module structure $(\Sigma^*, \hat{F}, \partial^*)$ can be imposed on Σ^* , and we prove (Theorem 1) that there is a crossed module isomorphism

$$\psi: \Sigma \to \Sigma^*.$$

By restriction, we then get a ZG-isomorphism

$$\pi_2(\mathcal{P}) = \operatorname{Ker} \partial \xrightarrow{\Psi} \operatorname{Ker} \partial^* = \pi_1(\mathcal{D}(\mathcal{P})^*, 1).$$

Figure 2

The notion of finite derivation type (*FDT*) was introduced by Squier in his posthumously published article [13]. In our terminology, a monoid presentation Q is *FDT* if there is a finite set X of spherical monoid pictures over Q such that the 2-complex $\mathcal{D}(Q)^X$ obtained from $\mathcal{D}(Q)$ by adding the defining paths

$$W \cdot \mathbf{P} \cdot V \quad (W, V \in F, \mathbf{P} \in X)$$

has trivial fundamental groups. A finitely presented monoid S is FDT if some (and hence, as shown by Squier [13], any) finite presentation of S is FDT. Monoids of finite derivation type have been discussed in [4], [5], [9], [12].

Now if G is a group then it has been shown by Cremanns and Otto [5] that G is FDT if and only if for some (and hence, in fact, any) finite group presentation $\hat{\mathcal{P}}$ of G, the ZG-module $\pi_2(\hat{\mathcal{P}})$ is finitely generated.

We give in §3 a simple proof of the Cremanns/Otto result mentioned above. Let $\hat{\mathcal{P}}$, \mathcal{P} be as in (1), (2) respectively. We first establish the easy fact that all the fundamental groups of $\mathcal{D}(\mathcal{P})^*$ are isomorphic. Using this we prove (Theorem 2) that \mathcal{P} is *FDT* if and only if the ZG-module $\pi_1(\mathcal{D}(\mathcal{P})^*, 1)$ is finitely generated. Then in view of the isomorphism $\pi_2(\hat{\mathcal{P}}) \cong \pi_1(\mathcal{D}(\mathcal{P})^*, 1)$ (§2), the Cremanns/Otto result follows.

It should be noted that for any group presentation $\hat{\mathcal{P}} = \langle \mathbf{x}; \mathbf{r} \rangle$ there is a standard exact sequence

$$0 \to \pi_2(\hat{\mathcal{P}}) \to \bigoplus_{R \in \mathbf{r}} ZGe_R \to \bigoplus_{x \in \mathbf{x}} ZGe_x \to ZG \to Z \to 0$$

of ZG-modules (see for example [3], [10]). Using this, together with the generalised Schanuel Lemma [2], one easily obtains the (well-known) result that a finitely presented group G is of type FP_3 [2] if and only if for some (in fact any) finite presentation $\hat{\mathcal{P}}$ of G, $\pi_2(\hat{\mathcal{P}})$ is finitely generated. Thus, for finitely presented groups, FDT and FP_3 are equivalent. (This result is obtained in [5].)

1. Preliminaries. If P, P' are paths in $\mathcal{D}(\mathcal{P})^*$ then we write $P \sim P'$ if P, P' are equivalent (homotopic) in $\mathcal{D}(\mathcal{P})^*$. The equivalence class of P will be denoted by $\langle P \rangle$. We will assume the reader has some familiarity with the material regarding monoid pictures in [12, §§2,5].

An edge of $\mathcal{D}(\mathcal{P})^*$ of the form $(U, x^{\varepsilon}x^{-\varepsilon}, \pm 1, V)$ $(U, V \in F, x \in \mathbf{x}, \varepsilon = \pm 1)$ will be called *trivial*, and a path will be called trivial if all its edges are trivial. Two vertices W_1, W_2 can be connected by a trivial path if and only if W_1 and W_2 are freely equivalent (the chosen path connecting W_1 to W_2 then gives a method of freely transforming W_1 to W_2). In view of the defining paths (3) of $\mathcal{D}(\mathcal{P})^*$, we have that *any two trivial paths between a given pair of vertices* W_1, W_2 *are homotopic in* $\mathcal{D}(\mathcal{P})^*$. This key observation allows us to replace a trivial subpath T of a given path P by any other trivial path T' (where $\iota(T') = \iota(T), \tau(T') = \tau(T)$) without affecting the homotopy type of P.

Suppose P is a path in $\mathcal{D}(\mathcal{P})^*$ with $\iota(\mathcal{P}) = W$, $\tau(\mathbf{P}) = Z$, and let T, \overline{T} be trivial paths in $\mathcal{D}(\mathcal{P})^*$ from W_1 to W, Z_1 to Z respectively, where W_1 , Z_1 are the unique reduced words freely equivalent to W, Z. Then the picture $TP\overline{T}^{-1}$ will be said to be obtained from P by *freely reducing the boundary* of P, and will be denoted by P*. Obviously this notation is ambiguous because P* depends on T, \overline{T} . However, since we will be working up to homotopy in $\mathcal{D}(\mathcal{P})^*$, we can, by our comment in the previous paragraph, allow ourselves to choose any trivial paths T, \overline{T} that suit our purpose. This simple, but key point will be used over and over again, without further comment.

STEPHEN J. PRIDE

Another important point is the following.

Suppose that
$$P_1$$
 is obtained from P by inserting into P a pair of parallel arcs with labels x^{ε} , $x^{-\varepsilon}$ ($x \in \mathbf{x}, \varepsilon = \pm 1$). Then $P_1^* \sim P^*$. (4)

This is because, when we freely reduce the boundary of P_1 we can begin as in Figure 3. This creates a cancelling pair of discs which can be removed.

Figure 3

If P, P' are paths in $\mathcal{D}(\mathcal{P})^*$ then we write P+P' for the path $(P \cdot \iota(P'))(\tau(P) \cdot P')$. Then for paths P₁, P₂,..., P_n we define P₁+P₂ +...+ P_n inductively to be (P₁ +...P_{n-1}) + P_n.

For any $U \in F$, say $U = x_1 x_2 \cdots x_m (x_i \in \mathbf{x} \cup \mathbf{x}^{-1} \text{ for } i = 1, \cdots, m)$ we denote the picture

$$\prod_{i=1}^{m} (x_1 \cdots x_{i-1}, x_i x_i^{-1}, -1, x_{i-1}^{-1} \cdots x_1^{-1})$$

(see Figure 4) by $T_{UU^{-1}}$.

Figure 4

For $R \in \mathbf{r}$, $U \in F$, $\varepsilon \in \{-1, 1\}$ we define $E_{R,U,\varepsilon}$ as follows:

$$E_{R,U,\varepsilon} = \begin{cases} (U, R, 1, U^{-1}) & \varepsilon = 1, \\ (U, R, -1, R^{-1}U^{-1}) & \varepsilon = -1. \end{cases}$$

We complete this section by giving a brief account of Σ in terms of sequences. (For further details, as well as for the elementary theory of crossed modules, see [10]. See also [6] for the theory of crossed modules.)

Let \mathbf{r}^F be the set of all elements of F of the form $WR^{\varepsilon}W^{-1}$ ($W \in F$, $R \in \mathbf{r}, \varepsilon = \pm 1$). We consider finite sequences $\sigma = (c_1, c_2, \dots, c_m)$ of elements of \mathbf{r}^F . We define certain operations on sequences as follows.

(I) Replace some term $c_i = WR^{\varepsilon}W^{-1}$ by $c'_i = W'R^{\varepsilon}W'^{-1}$ where W' is a word freely equivalent to W.

- (II) Delete two consecutive terms if one is identically equal to the inverse of the other.
- (III) Replace two consecutive terms c_i , c_{i+1} by c_{i+1} , c_{i+1}^{-1} $c_i c_{i+1}$ or by $c_i c_{i+1} c_i^{-1}$, c_i .

Two sequences σ , σ' are said to be (Peiffer) *equivalent* if one can be obtained from the other by a finite number of operations (I), (II), (II)⁻¹, (III). The equivalence class containing σ is denoted by $\langle \sigma \rangle$. The set Σ of equivalence classes forms a (non-abelian) group under the binary operation

$$<\sigma_1>+<\sigma_2>=<\sigma_1\sigma_2>.$$

There is a (well-defined) action of \hat{F} on Σ given by

$$[W] \cdot \langle \sigma \rangle = \langle \sigma^W \rangle$$

(where, if $\sigma = (c_1, \dots, c_m)$ then $\sigma^W = (Wc_1W^{-1}, \dots, Wc_mW^{-1})$), and there is a group homomorphism

$$\partial: \Sigma \to F, < (c_1, c_2, \cdots, c_m) > \mapsto [c_1 c_2 \cdots c_m].$$

The triple $(\Sigma, \hat{F}, \partial)$ then has the structure of a crossed module. A well-known result (originally proved by Whitehead [14]) is that this crossed module is *free*, with basis consisting of the elements $b_R = \langle (R) \rangle (R \in \mathbf{r})$. By the elementary theory of crossed modules, Ker ∂ is abelian and Im $\partial (= N)$ acts trivially on Ker ∂ , so we get a well-defined action of $G = \hat{F}/N$ on Ker ∂ . With this action Ker ∂ becomes a left ZG-module, which is the *second homotopy module* of $\hat{\mathcal{P}}$, denoted $\pi_2(\hat{\mathcal{P}})$.

2. The crossed module Σ^* . We define a crossed module $(\Sigma^*, \hat{F}, \partial^*)$ as follows. The elements of Σ^* are the equivalence classes $\langle P \rangle$ where P is a monoid picture such that $\iota(P)$ is a *freely reduced* word on $\mathbf{x} \cup \mathbf{x}^{-1}$ and $\tau(\mathcal{P})$ is the empty word. We define a (non-commutative) operation + on Σ^* by

$$< P_1 > + < P_2 > = < (P_1 + P_2)^* > (< P_1 >, < P_2 > \in \Sigma^*),$$

and an action (which is well-defined by (4)) of \hat{F} on Σ^* by

$$[W] \circ \langle P \rangle = \langle (W \cdot P \cdot W^{-1})^* \rangle \quad ([W] \in \hat{F}, \langle P \rangle \in \Sigma^*).$$

We define

$$\partial^*: \Sigma^* \to \hat{F}$$

by

$$\partial^* < P > = [\iota(P)] \ (< P > \in \Sigma^*).$$

Then under the operation +, Σ^* is a group on which \hat{F} acts. Clearly, for $[W] \in \hat{F}$, $\langle \mathbf{P} \rangle \in \Sigma^*$ we have

$$\partial^*([W] \circ < P >) = [W] \partial^* < P > [W]^{-1}.$$

Also, as can be seen geometrically (Figure 5), for any $\langle P_1 \rangle$, $\langle P_2 \rangle \in \Sigma^*$ we have

$$< P_1 > + < P_2 > = \partial^* < P_1 > \circ < P_2 > + < P_1 > .$$

Thus $(\Sigma^*, \hat{F}, \partial^*)$ is a crossed module. Note that

$$- \langle P \rangle = \langle (P^{-1} \cdot \iota(P)^{-1})^* \rangle \quad (\langle P \rangle \in \Sigma^*).$$

Figure 5

Let $a_R = \langle E_{R,1,1} \rangle (R \in \mathbf{r})$.

PROPOSITION. Σ^* is generated (as a crossed module) by the elements a_R ($R \in \mathbf{r}$).

Proof. Let

$$\mathbf{B} = \mathbf{T}_1 \mathbf{A}_1 \mathbf{T}_2 \mathbf{A}_2 \cdots \mathbf{T}_n \mathbf{A}_n \mathbf{T}_{n+1}$$

be a closed path in $\mathcal{D}(\mathcal{P})^*$ starting at the reduced word U and ending at the empty word 1. Here the T's are trivial paths and the A's are non-trivial edges. Write $A_i = (U_i, R_i, \varepsilon_i, V_i)$ $(i=1, \dots, n)$. We claim that

 $\langle \mathbf{B} \rangle = \varepsilon_1[U_1] \circ a_{R_1} + \dots + \varepsilon_n[U_n] \circ a_{R_n}.$ (5)

Let

$$\mathbf{P} = \mathbf{E}_1 + \mathbf{E}_2 + \dots + \mathbf{E}_n,$$

where $E_i = E_{R_i \cup U_i \in i}$ $(i = 1, \dots, n)$. Then the right hand side of (5) is $< P^* >$. Now let \overline{P} be the picture obtained from P by inserting immediately to the right of the *i*th disc a succession of parallel arcs with total label $V_i V_i^{-1} (i = 1, \dots, n)$. Then $\overline{P^*} \sim P^*$ by (4). Now

$$\iota(\bar{\mathbf{P}}) = \iota(\mathbf{A}_1)\tau(\mathbf{A}_1)^{-1}\iota(\mathbf{A}_2)\tau(\mathbf{A}_2)^{-1}\cdots\iota(\mathbf{A}_n)\tau(\mathbf{A}_n)^{-1}, \tau(\bar{\mathbf{P}}) = \tau(\mathbf{A}_1)\tau(\mathbf{A}_1)^{-1}\tau(\mathbf{A}_2)\tau(\mathbf{A}_2)^{-1}\cdots\tau(\mathbf{A}_n)\tau(\mathbf{A}_n)^{-1},$$

and so we can take \bar{P}^* to be $D\bar{P}D'$ where

$$D = T_1 + (T_{\tau(A_1)^{-1}\tau(A_1)})(\tau(A_1)^{-1} \cdot T_2) + \dots + (T_{\tau(A_n)^{-1}\tau(A_n)})(\tau(A_n)^{-1} \cdot T_{n+1})$$

$$D' = T_{\tau(A_1)\tau(A_1)^{-1}}^{-1} + \dots + T_{\tau(A_n)\tau(A_n)^{-1}}^{-1}$$

(see Figure 6). Making use of the defining paths (3) of $\mathcal{D}(\mathcal{P})^*$ to eliminate the "bends" we see that $\bar{P}^* \sim B$.

Figure 6

Now since Σ is free on the elements $b_R = \langle (R) \rangle \langle (R \in \mathbf{r}) \rangle$ we have a crossed module homomorphism

$$\eta: \Sigma \to \Sigma^*, \ b_R \mapsto a_R.$$

THEOREM 1. The crossed module homomorphism η is an isomorphism.

Proof. We will construct the inverse of η .

Define a mapping ψ_0 from the edge set of $\mathcal{D}(\mathcal{P})^*$ to Σ as follows. Trivial edges are mapped to 0; an edge (U, R, ε, V) $(U, V \in F, R \in \mathbf{r}, \varepsilon = \pm 1)$ is mapped to $\langle UR^{\varepsilon}U^{-1} \rangle$. Then for any edge A

$$\partial \psi_0(\mathbf{A}) = [\iota(\mathbf{A})\tau(\mathbf{A})^{-1}]. \tag{6}$$

Now ψ_0 extends to a mapping on paths and it follows from (6) that for any path P

$$\partial \psi_0(\mathbf{P}) = [\iota(\mathbf{P})\tau(\mathbf{P})^{-1}]. \tag{7}$$

The image of each defining path of $\mathcal{D}(\mathcal{P})^*$ is 0. This is clear for paths of the form (3), and for a path as in (2) we have

$$\begin{split} \psi_0[\mathbf{A}, \mathbf{B}] &= \psi_0(\mathbf{A}) + [\tau(\mathbf{A})] \cdot \psi_0(\mathbf{B}) - \psi_0(\mathbf{A}) - [\iota(\mathbf{A})] \cdot \psi_0(\mathbf{B}) \\ &= \partial(\psi_0(\mathbf{A})) \cdot ([\tau(\mathbf{A})] \cdot \psi_0(\mathbf{B})) - [\iota(\mathbf{A})] \cdot \psi_0(\mathbf{B}) \\ &\quad (\text{using the crossed module structure on } \Sigma) \\ &= 0 \text{ (using (6)).} \end{split}$$

We thus get a well-defined mapping of equivalence classes

$$<\mathbf{P}>\stackrel{\psi}{\mapsto}\psi_0(\mathbf{P}),$$

and in particular, we get a function

$$\psi: \Sigma^* \to \Sigma.$$

Now ψ is a group homomorphism, since for any $\langle P_1 \rangle$, $\langle P_2 \rangle \in \Sigma^*$ we have

$$\begin{split} \psi(<\mathbf{P}_1>+<\mathbf{P}_2>) &= \psi_0(((\mathbf{P}_1\cdot\iota(\mathbf{P}_2))\mathbf{P}_2)^*) \\ &= \psi_0((\mathbf{P}_1\cdot\iota(\mathbf{P}_2))\mathbf{P}_2) \\ &= \psi_0(\mathbf{P}_1\cdot\iota(\mathbf{P}_2)) + \psi_0(\mathbf{P}_2) \\ &= \psi_0(\mathbf{P}_1) + \psi_0(\mathbf{P}_2) \\ &= \psi < \mathbf{P}_1 > + \psi < \mathbf{P}_2 > . \end{split}$$

Also, it is easily checked that ψ respects the \hat{F} -action, and it follows from (7) that $\partial \psi = \partial^*$. Hence ψ is a crossed module homomorphism.

Since $\psi \eta$ agrees with the identity on the generating set a_R ($R \in \mathbf{r}$) of Σ^* , $\psi \eta = 1$. Similarly $\eta \psi = 1$.

This proves the theorem.

Note that, by restriction, we get a mutually inverse pair of isomorphisms

$$\pi_2(\mathcal{P}) = \operatorname{Ker} \partial \xleftarrow{\eta}{t} \operatorname{ker} \partial^* = \pi_1(\mathcal{D}(\mathcal{P})^*, 1).$$

The G-action on $\pi_2(\hat{\mathcal{P}})$ induces a G-action on $\pi_1(\mathcal{D}(\mathcal{P})^*, 1)$ by the rule

$$\overline{W} \circ \langle \mathbf{P} \rangle = \langle (W \cdot \mathbf{P} \cdot W^{-1})^* \rangle \quad (\overline{W} \in G, \langle \mathbf{P} \rangle \in \pi_1(\mathcal{D}(\mathcal{P})^*, 1)),$$

and η , ψ are then ZG-isomorphisms.

3. The fundamental groups of $\mathcal{D}(\mathcal{P})^*$. Let $U \in F$. We have a well-defined group homomorphism

$$\phi_U : \pi_1(\mathcal{D}(\mathcal{P})^*, 1) \to \pi_1(\mathcal{D}(\mathcal{P})^*, U),$$
$$< \mathbf{B} > \longmapsto < \mathbf{B} \cdot U > .$$

This is in fact an isomorphism, for consider the (well-defined) function

$$\theta_U : \pi_1(\mathcal{D}(\mathcal{P})^*, U) \to \pi_1(\mathcal{D}(\mathcal{P})^*, 1)$$
$$< \mathbf{P} > \mapsto < (\mathbf{P} \cdot U^{-1})^* > .$$

Now $\theta_U \phi_U = 1$, for if **B** is a spherical monoid picture with $\iota(\mathbf{B}) = 1$ then $(\mathbf{B} \cdot UU^{-1})^* \sim \mathbf{B}^* = \mathbf{B}$ by (4). Also, $\phi_U \theta_U = 1$, for if **P** is a spherical monoid picture with $\iota(\mathbf{P}) = U$ then (see Figure 7)

$$(\mathbf{P} \cdot U^{-1})^* \cdot U \sim \mathbf{P}.$$

Thus θ_U , ϕ_U are mutually inverse isomorphisms.

We will need the following result.

LEMMA. Let P be a spherical monoid picture over \mathcal{P} with $\iota(\mathbf{P}) = U$. Suppose W, $V \in F$ are such that $WUV =_G 1$. Let D be any path in $\mathcal{D}(\mathcal{P})^*$ from 1 to WUV. Then in $\pi_1(\mathcal{D}(\mathcal{P})^*, 1)$ we have

$$< \mathbf{D}(W \cdot \mathbf{P} \cdot V)\mathbf{D}^{-1} > = \bar{W} \circ \theta_U < \mathbf{P} > .$$

This can be seen geometrically as follows. First note that $V^{-1}U^{-1}W^{-1} = {}_{G}1$ so there is a path \overline{D} in $\mathcal{D}(\mathcal{P}^*)$ from 1 to $V^{-1}U^{-1}W^{-1}$. Then we have the equivalence as in Figure 8 (where for simplicity we have taken W, U, V to each consist of a single letter).

Figure 8

THEOREM 2. \mathcal{P} is of finite derivation type if and only if the left ZG-module $\pi_1(\mathcal{D}(\mathcal{P})^*, 1)$ is finitely generated.

Proof. First suppose that \mathcal{P} has finite derivation type. Then there is a finite collection X of spherical monoid pictures over \mathcal{P} such that the 2-complex $\mathcal{D}(\mathcal{P})^X$ obtained from $\mathcal{D}(\mathcal{P})$ by adjoining the defining paths

$$W \cdot \mathbf{P} \cdot V \quad (W, V \in F, \mathbf{P} \in X)$$

has trivial fundamental groups.

Let B be any spherical monoid picture with $\iota(B) = 1$. Then B is homotopic in $\mathcal{D}(\mathcal{P})$ (and hence in $\mathcal{D}(\mathcal{P})^*$) to a product of the form

$$\prod_{i=1}^n \mathbf{D}_i (W_i \cdot \mathbf{P}_i \cdot V_i)^{\varepsilon_i} D_i^{-1}$$

where $P_i \in X$, $\varepsilon_i = \pm 1$, W_i , $V_i \in F$, D_i is some path in $\mathcal{D}(\mathcal{P})$ with $\iota(D_i) = 1$, $\tau(D_i) = \iota(W_i \cdot P_i \cdot V_i)$ $(i = 1, \dots, n)$. Hence in $\pi_1(\mathcal{D}(\mathcal{P})^*, 1)$ we have

$$= \sum_{i=1}^{n} \varepsilon_{i} < D_{i}(W_{i} \cdot P_{i} \cdot V_{i})D_{i}^{-1} >$$
$$= \sum_{i=1}^{n} \varepsilon_{i}\bar{W}_{i} \circ \theta_{\iota(P_{i})} < P_{i} > \text{(by the Lemma)}.$$

Thus the module $\pi_1(\mathcal{D}(\mathcal{P})^*, 1)$ is generated by the elements

$$\{\theta_{\iota(\mathbf{P})} < \mathbf{P} > : \mathbf{P} \in X\}.$$

Conversely, suppose there is a finite set Y of spherical monoid pictures (each starting at 1) such that the elements $\langle B \rangle$ (B \in Y) generate $\pi_1(\mathcal{D}(\mathcal{P})^*, 1)$ as a module. Let P be any spherical monoid picture, and suppose that $\iota(P) = U$. Then

$$\theta_U < P > = \sum_{i=1}^n \varepsilon_i \bar{W}_i \circ < \mathbf{B}_i >$$

where $B_i \in Y$, $W_i \in F$, $\varepsilon_i = \pm 1$ $(i = 1, \dots, n)$. Thus in $\pi_1(\mathcal{D}(\mathcal{P})^*, U)$ we have

$$<\mathbf{P}> = \prod_{i=1}^{n} \phi_{U} (\bar{W}_{i} \circ <\mathbf{B}_{i}>)^{\varepsilon_{i}}$$

=
$$\prod_{i=1}^{n} < (\mathbf{T}_{W_{i}W_{i}^{-1}} \cdot U) (W_{i} \cdot \mathbf{B}_{i}^{\varepsilon_{i}} \cdot W_{i}^{-1}U) (\mathbf{T}_{W_{i}W_{i}^{-1}} \cdot U)^{-1} > .$$

Consequently, we see that if we adjoin to $\mathcal{D}(\mathcal{P})^*$ the additional defining paths

 $W \cdot \mathbf{B} \cdot V$ $(W, V \in F, \mathbf{B} \in Y)$

then all fundamental groups of the resulting complex are trivial. Thus if X consists of the pictures in Y together with the pictures of the form (3), then $\mathcal{D}(\mathcal{P})^X$ has trivial fundamental groups, and so \mathcal{P} is of finite derivation type.

ACKNOWLEDGEMENT. I thank Victor Guba for useful discussions relating to this paper.

REFERENCES

1. W. A. Bogley and S. J. Pride, Calculating generators of π_2 , in: *Low Dimensional Homotopy Theory and Combinatorial Group Theory*, C. Hog-Angeloni, W. Metzler, A. Sieradski (eds.) (Cambridge University Press, 1993), 157–188.

2. K. S. Brown, Cohomology of groups (Springer-Verlag, 1982).

3. R. Brown and J. Huebschmann, Identities among relations, in: *Low-Dimensional Topology*, R. Brown and T. L. Thickstun (eds.), London Mathematical Society Lecture Notes Series **48** (1982), 153–202.

4. R. Cremanns and F. Otto, Finite derivation type implies the homological finiteness condition *FP*₃, *Journal of Symbolic Computation* **18** (1994), 91–112.

5. R. Cremanns and F. Otto, For groups the property of having finite derivation type is equivalent to the homological finiteness condition FP_3 , *Journal of Symbolic Computation* **22** (1996), 155–177.

6. M. N. Dyer, Crossed modules and π_2 homotopy modules, in: *Low-Dimensional Homotopy and Combinatorial Group Theory*, C. Hog-Angeloni, W. Metzler, A. Sieradski (eds.) (Cambridge University Press, 1993), 125–156.

7. V. Guba and M. Sapir, *Diagram groups*, Memoirs of the American Mathematical Society, No. 620 (A.M.S., 1997).

8. V. Kilibarda, On the algebra of semigroup diagrams, Internat. J. Algebra Comput. 7 (1997), 313–338.

9. Y. Lafont, A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier). J. Pure Appl. Algebra 98 (1995), 229–244.

10. S. J. Pride, Identities among relations of group presentations, in: *Group theory from a Geometrical Viewpoint*, E. Ghys, A. Haefliger, A. Verjovsky (eds.), (World Scientific, Singapore, New Jersey, London, Hong Kong, 1991), 687–717.

11. S. J. Pride, Geometric methods in combinatorial semigroup theory, in: *Semigroups, Formal Languages and Groups*, J. Fountain (ed.) (Kluwer Publishers, 1995), 215–232.

12. S. J. Pride, Low-dimensional homotopy theory for monoids, *Internat. J. Algebra Comput.* 5 (1995), 631–649.

13. C. C. Squier, A finiteness condition for rewriting systems, revision by F. Otto and Y. Kobayashi, *Theoretical Computer Science* **131** (1994), 271–294.

14. J. H. C. Whitehead, Combinatorial homotopy II. Bull. Amer. Math. Soc. 55 (1949), 453–496.