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Thomas HOLLANDS, Wolfgang DIERKING

Alfred Wegener Institute for Polar and Marine Research, Bussestrasse 24, D-27570 Bremerhaven, Germany
E-mail: thomas.hollands@awi.de

ABSTRACT. Sea-ice drift fields were obtained from sequences of synthetic aperture radar (SAR) images
using a method based on pattern recognition. The accuracy of the method was estimated for two
image products of the Envisat Advanced SAR (ASAR) with 25 m and 150 m pixel size. For data from the
winter season it was found that 99% of the south-north and west—east components of the determined
displacement vector are within +-3-5 pixels of a manually derived reference dataset, independent of the
image resolution. For an image pair with 25 m resolution acquired during summer, the corresponding
value is 12 pixels. Using the same resolution cell dimensions for the displacement fields in both image
types, the estimated displacement components differed by 150-300m. The use of different texture
parameters for predicting the performance of the algorithm dependent on ice conditions and image
characteristics was studied. It was found that high entropy values indicate a good performance.

INTRODUCTION

Sea ice is subject to constant changes. Ice drift and
deformation are influenced by forces from wind and ocean
currents, by obstacles such as islands and coastlines and
by ice thickness and roughness variations in a given area.
Satellite-borne imaging sensors, operating in the optical and
in the microwave range of the electromagnetic spectrum, are
used for continuous monitoring of sea-ice-covered regions.

The main advantage of microwave data compared to
optical imagery is that they are independent of weather and
light conditions. For more detailed studies of sea-ice drift,
synthetic aperture radar (SAR) images have been successfully
used since the launch of European Remote-sensing Satellite
ERS-1 (Holt and others, 1992). SAR imaging modes with
different spatial coverage and resolution make it possible to
investigate drift patterns at different scales. Our systematic
analysis of different SAR image types indicates that the
possibility to select between data acquired at different
polarizations may enhance the reliability of the drift and
deformation patterns derived from sequences of SAR images.

For the last three decades, various approaches have been
applied to extract sea-ice drift information automatically
from SAR data. One of the first approaches was described by
Hall and Rothrock (1981). The first operational system was
implemented at the Alaska SAR Facility by Kwok and others
(1990). The range of approaches covers feature tracking,
floe tracking, statistical methods and optical flow-based
algorithms, as described by Gutierrez and Long (2003).

Some of the employed approaches are based on the
tracking of pixel patterns such as that described by Fily and
Rothrock (1987) while others first use a classification step to
identify objects for tracking (Banfield, 1991; McConnell and
others, 1991). Recent work by Thomas and others (2008)
is based on pattern recognition to identify the change of
positions of recognizable structures in the ice cover between
successive SAR scenes. Hence, it depends on the assumption
of temporal pattern stability.

However, sea-ice deformation changes existing patterns
and violates the ‘constancy constraint’. It is therefore
necessary to acquire data with a sufficiently high temporal
resolution which varies depending on the typical drift
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velocities in the area of interest. The temporal resolution
also determines the accuracy of the displacement vector
field derived from an image pair. The displacement vector
represents the shortest distance between the respective
positions of a reference point. The true path of the latter,
however, may deviate considerably from a straight line
between the two positions (e.g. due to the influence of
varying wind directions and/or tidal currents). Any variations
of the drift pattern between the two snapshots are unknown.

The first part of the paper deals with the description
of the implemented method and the SAR data used for
testing the algorithm. The implemented method is one of the
most recent pattern-based tracking approaches and shows
promising results for high-resolution sea-ice drift estimation
from SAR satellite data (Thomas and others, 2008). To
estimate the reliability of the method, it is crucial to quantify
the magnitude of the error. Another central point of this
paper is to establish criteria predicting the performance of the
algorithm depending on ice-cover characteristics and image
features such as the texture entropy.

In order to increase the spatial coverage, as well as to study
details of drift and deformation in key regions, it is necessary
to use data of different spatial resolution and swath widths
and to quantify the differences in the estimated drift. Here
comparisons between Image Mode (IM) and Wide Swath
Mode (WS) products from Envisat Advanced SAR (ASAR) are
presented. Finally, the results of this work are discussed and
an outlook on future work is provided.

METHOD

The ice-drift algorithm used is based on a concept outlined
by Thomas (2008) and Thomas and others (2008). In the
original algorithm, global motion (inital motion vector) was
estimated in advance either based on buoy data (Thomas,
2008) or based on an assumed phase correlation (Thomas
and others, 2008). In our implementation, the initial motion
vector is determined in the same way as subsequent vectors
on finer scales (see the description of the algorithm below).
Subpixel accuracy was not included in the recent version of
our implementation. One reason for this was to minimize the
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computational cost, which is an important aspect if sea-ice
drift needs to be determined over a larger area and a longer
time period.

Robustness against noise is an important criterion for
the choice of a drift retrieval algorithm. To achieve a high
robustness, the correlation module is embedded into a cas-
cading resolution pyramid. It is based on a normalized cross
correlation (NCC) with a preceding candidate selection. The
candidates are selected by employing phase correlation, an
approach which is described by, for example, Canty (2007).
All correlation peaks higher than 75% of the maximum peak
obtained from phase correlation are stored as candidates to
be analysed employing the NCC. If the phase correlation
does not provide an unambiguous result (>25% accepted
correlation peaks), the region is regarded as distorted and
an error flag is returned. The NCC has to be carried out in
the spatial domain due to the nonlinear terms introduced by
the normalization employing the standard deviation (division
and squares), which cannot be carried out within a convolu-
tion kernel (Gonzalez and Woods, 2008). The application of
two independent correlation measures increases the stability
of the algorithm. Additionally, the algorithm runs in a
computationally efficient manner since phase correlation
can be performed efficiently in the Fourier domain.

The algorithm starts at the coarsest resolution level with
a search window covering the full scene. On the second
coarsest resolution level, the numbers of rows and columns
of the scene double while the number of pixels in the search
window stays the same which now covers a quarter of the full
scene. For the calculation of position changes at the second
level, the result of the first level is used as the initial shift
and the resulting four shift vectors of the current resolution
level are handed over as the initial shift to the next higher
level. The next higher resolution level again contains four
times more pixels, and the calculated shift vectors are used
to initialize the calculations for the next step until the bottom
of the resolution pyramid is reached.

The number of resolution levels and cascade runs are
defined by the user. This procedure reduces the sensitivity
to noise and increases the robustness of the algorithm, since
the initial vectors are based on the resulting vectors of the
previous cascade representing the estimated central shift
for each search window. Due to this initial information,
the algorithm searches in the predicted direction. Since the
correlation module returns an error flag if a correlation ‘fails’,
data gaps occur which would inhibit shift estimation on
subsequent resolution levels. To avoid this and to reduce the
influence of outliers on successive calculations, the data are
regularized using a running box median filter followed by a
triangulation-based interpolation to fill existing data gaps.
The interpolation is performed using quintic polynomials
(Akima, 1978).

In order to assess the quality of the results, the calculated
values are compared with manually collected reference data.
The reference vectors represent the shift of one specific
identifiable object or pixel within the enclosing resolution
cell, while the algorithm calculates a central shift for the
whole cell. The comparison of both shifts is therefore, strictly
speaking, only valid for uniform shifts within the respective
resolution cell. The manually determined shift is also prone
to errors. The appearance of distinct objects in the two
images is sometimes slightly different, which makes it more
difficult to determine the positions of matching reference
points on a pixel scale. One way to estimate the magnitude of
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reference errors is the collection of two or more independent
reference datasets.

When applying the drift retrieval algorithm described
above, we assume that both images are precisely geocoded.
The comparison between the results of pattern recognition
and the manually derived dataset (which is a result of visual
pattern recognition) is a quality control for the former since,
in both approaches, only the two SAR images are compared.
However, for estimating the absolute error of the obtained
drift vectors, independent datasets such as drift buoy tracks
and/or land-based control points are required. In this case,
the geolocation errors of the SAR images and the reference
drift patterns also have to be taken into account. For our
SAR images we could not find suitable drift buoy data for
comparision and the scenes did not cover land.

Methods based on pattern recognition calculate the spatial
shift of a resolution cell from one point in time to another.
Sea-ice drift refers to a velocity, i.e. a change of position
within a certain time period. To compare the performance
of the algorithm for different resolutions, the shift (motion) is
presented as pixels. Calculated shift data can be converted to
velocity by normalizing them to the time difference between
the respective image acquisitions.

In practical situations, the retrieval of ice drift patterns is
more difficult if the ice cover appears homogeneous in the
image, without clearly recognizable structures. Hence, it is
useful to check whether a given algorithm can be applied
for given sea-ice conditions. For the algorithm used in this
study, the correlation coefficients for each single resolution
cell were compared to different texture parameters such as
entropy and variance.

DATA

The Envisat ASAR data used for the analyses presented in
this paper were acquired in 2006 in the Weddell Sea close
to the grounded A-23A iceberg. The overlaps for each of
the selected image pairs cover regions of at least 100 km x
100 km. The data are from the end of January, middle of June
and end of August. For all three periods it was possible to
order two IM SAR images. For the periods June and August,
corresponding WS data could be ordered in addition to the
IM data. Level 1b data products were used.

While the June and August datasets show numerous
stable patterns, the patterns in the January scene change
considerably due to the season (Antarctic summer). Prior to
drift calculations, the images were geocoded and calibrated
using commercial remote-sensing software. The drift in the
IM data was determined using a five-level resolution pyramid
within a six-stage cascade to create 512 x 512 resolution
cells. The drift values from the WS data were obtained on
the basis of a four-level image resolution pyramid within
a five-stage cascade, creating 128 x 128 resolution cells.
The amount of extractable cells depends on the extent and
spatial resolution of the scene. Experiments show that the
size of a resolution cell should not be smaller than ~10 x
10 pixels in order to extract a stable shift vector field. These
values are based on a close examination of the amount of
data gaps and resulting resolution. A smaller resolution cell
would grant a higher resolution of the drift field but would
also contain more data gaps due to the smaller significance
of corresponding image patterns.

The accuracy of the automated procedure was determined
in comparison to manually derived reference datasets as
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Table 1. Properties of test Envisat ASAR datasets. The original resolution refers to the image product, and the resampled resolution to the
post-processed data products used for the drift calculation. The position of the overlap area is indicated by the coordinate of the upper left
corner (UL). The drift algorithm calculates a drift for square regions (referred to as resolution cells). The covered area per resolution cell is

called shift resolution. Dates are dd/mm/yy

January June August June WS August WS
Acquisition dates 28/01/06, 17/06/06, 26/08/06, 16/06/06, 25/08/06,

29/01/06 23/06/06 27/08/06 20/06/06, 29/08/06

22/06/06
Mode Image Image Image Wide swath Wide swath
Time difference (days) 1.19 5.80 1.19 4.05,* 6.01,T 1,967 4.12
Original resolution (m) 12.5x12.5 12.5x12.5 12.5 x 125 75 x 75 75 x 75
Used resolution (m) 25 x 25 25 x 25 25 x 25 150 x 150 150 x 150
Coordinate UL 76°14/24"S, 76°11749"S, 75°55740"'S, 76°11746"'S, 75°55/39"S,
43°12/24" W 42°55'55" W 43°48'58" W 42°55'54" W 43°49'02" W

Dimensions (pixels) 5520 x 6263 6206 x 6163 6141 x 6089 1036 x 1029 1025 x 1016
No. of resolution cells 512 x 512 512 x 512 512 x 512 128 x 128 128 x 128
Shift resolution (m) 270 x 306 303 x 301 300 x 297 1214 x 1206 1201 x 1191
Collected reference shift vectors 135 Referencel: 150 151 143,* 159,7 163% 162

Reference2: 150

*IM data pair 16-20/06/06. TIM data pair 16-22/06/06. ¥IM data pair 20-22/06/06.

described above. The number of collected vectors per image
pair varies between 133 and 151. Details of the SAR scenes,
the parameters required for the automated procedure and the
reference datasets are summarized in Table 1.

RESULTS

The spatial resolution of the resulting drift vector fields is
300m in the IM data and 1200 m in the WS data. Since we
use geocoded images, the x and y axes (image coordinates)
correspond to the south-north (SN) and west-east (WE)
directions. Mean absolute velocities for the observed cases
are 110-1850md~". Table 2 shows the mean absolute
displacement per day in pixels and metres. The apparently
inconsistent results for June can be explained by fast
variations of wind direction and speed.

To generate larger datasets for statistical analysis of
the errors, the differences between the algorithm and
the reference are combined independently of direction
where possible. It was therefore checked whether the error
is direction-dependent using a two-sample Kolmogorov-
Smirnov test. The null hypothesis Hy states that the WE
and SN errors come from the same distribution. The
alternative hypothesis H; states that they come from different
distributions. The IM error distributions for January and June
do not depend on the direction at the 95% confidence
level. For the August IM dataset, Hp is rejected at the 95%
confidence level. Based on the test results, errors in the
WE and SN directions are combined for January and June
but examined individually for the August period. Student’s

t-distribution is fitted to all four IM error distributions. All
error values are within the 95% confidence bounds of the
corresponding Student’s t-distribution.

The calculated error statistics for the IM-based shift vector
fields are listed in Table 3. For June and August, 99% of
the calculated error values are within 5 pixels, which
corresponds to £125m in the IM images. With a time
difference of 5.8 days (IM image pair from June), the error of
the drift velocity is 22 md~". With 1.19 days (IM image pair
from August), it is 105 md~". These values have to be related
to the estimated daily mean absolute drift shown in Table 2.

For January (summer conditions), the error is £12 pixels,
corresponding to a displacement error of £300m. Error
distributions for the August WS drift field and the 16-20 June
WS data do not depend on the direction, while the error
distributions for the 16-22 June WS and 20-22 June WS do.
Since the position shift is estimated in numbers of pixels, the
different error measures are also given as a number of pixels.
As the errors for June and August are of almost identical
magnitude in the SN and WE directions, it is reasonable to
assume a lower bound of the spatial shift below which any
displacement cannot be resolved reliably.

Thomas (2008) notes that a mean absolute percentage
error (MAPE) of 10% is generally used as a reasonable
metric in many practical applications. The goal is to give
a limit for the estimated shift value below which the relative
error has to be considered in subsequent applications. The
absolute percentage error is calculated for each reference
point individually. It is described as the absolute difference
between reference shift and estimated value, divided by the

Table 2. Mean absolute displacement of the sea ice for the observed time period, normalized to 1 day (24 hours). The results for June are

discussed in the text

28-29/01/06  16-20/06/06

16-22/06/06  20-22/06/06

Image pair
17-23/06/06 25-29/08/06 26-27/08/06

Resolution M WS WS WS IM WS IM
Daily mean absolute shift (pixels d=1) 7417 2.75 0.72 421 13.28 7.24 7.06
Daily mean absolute drift (md—") 1854.25 412.50 108.00 631.50 332.00 1086.00 176.50
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Table 3. Error statistics for IM data: dates of data acquisition, number of used reference displacement vectors n, the calculated mean error
based on the used reference data (as well as the standard deviation of the error), the error margin representing 99% of the error, the mean

absolute error (MAE) and the root mean square error (RMSE)

28-29/01/06

Date

17-23/06/06 26-27/08/06

WE SN
Antarctic season Summer Winter Winter Winter
Number of reference points, n 270 594 149 149
Mean error (pixels) -0.08 0.13 -0.26 0.34
Standard deviation, o (pixels) 1.46 1.20 0.93 0.89
Errorgg, (pixels) +11.57 +4.69 +4.48 +4.81
RMSE (pixels) 3.07 1.74 1.47 1.46
MAE (pixels) 1.84 1.19 0.98 0.98

absolute reference shift. In order to estimate the minimum
shift fulfilling this criterion, the mean absolute error (MAE) is
used (Tables 3 and 4). The lower bound of the magnitude
of the shift vector is therefore about ten times the MAE,
meaning 8-12 pixels for June and August (200-300m and
1200-1800 m, respectively) and about 18 pixels for January
(450 m).

The relative error of a shift vector depends not only
on the existence of constant patterns but also on the
velocity of the related drift. In case of a slow drift, a
short observation time might result in a positional shift
not fulfilling the 10% criterion, while a longer observation
time (with pattern constancy) might do. (The related lower
bounds for the drift are calculated from the pixel shift
bounds, converting them to a distance in metres based on
the given resolution information. The limiting velocity is
calculated by normalizing this distance to the time difference
of the data pair.) The resulting lower bounds for the drift
in the selected IM examples are 388md~" (0.005ms™
for January, 51 m d=' (0.0006 ms™") for June and 206 md ™!
(0.002 ms™") for August. The resulting lower bounds for the
WS examples are 210-690md =" (0.002-0.008 ms~").

The comparison of two manually generated independent
reference datasets of the sea-ice drift for June shows that the
error between the reference shift and the central drift of the
enclosing resolution cell, as well as of the error introduced
by the manually collected reference data, is about 1 pixel
(25 m). This observation also makes sense given that there is
no subpixel tracking for the reference data collection.

Figure 1 shows the results for the August data. The shape
of the image boundaries is determined by the overlapping
area between the two successive SAR images used for the

Table 4. Same as Table 3, but for WS data

derivation of the ice shift. In the figure, the estimated shift
(left) is presented together with a gap map showing the
positions of resolution cells where the matching algorithm
returned an error flag (right). The corresponding pixels are
marked by black dots. The overlap area covers the southern
part of iceberg A-23A (upper left), surrounded by sea ice. In
the western part, open water patches are visible with smaller
icebergs. The key feature of the scene is a long lead dividing
the ice cover into a western and an eastern part. While the
sea ice in the western part of the scene is brought to a halt
by iceberg A-23A in the north, it drifts comparatively fast
northeastwards in the eastern part of the scene.

Studying the gap map reveals that the algorithm fails in
some regions while it works perfectly well for others. Large
icebergs can be easily detected by the increased number
of correlation failures. This is also valid for leads and low-
contrast regions such as in the southeast in Figure 1. Results
for the January and June datasets also support this conclusion.

In order to identify other methods that help to assess
the expected performance of the algorithm from the
characteristics of the image, the correlation coefficient of
each resolution cell was plotted against different texture
parameters such as entropy and variance for the respective
cell. Entropy is a measure used in information theory
describing the uncertainty associated with a value. Minimum
values occur for uniform regions while maximum values
occur for heterogeneous regions with n equiprobable values
for n texture pixels, as first described by Shannon (1948):

n
H(X) == p(xi)log, p(x;), )
i=1
where p(x;) is the probability mass function of outcome x;.

Date
16-20/06/06 16-22/06/06 20-22/06/06 25-29/08/06

Direction WE SN WE SN

Antarctic season Winter Winter Winter Winter Winter Winter
Number of reference points, n 286 159 159 163 163 324
Mean error (pixels) -0.11 -0.01 0.29 -0.25 0.32 0.17
Standard deviation, o (pixels) 1.00 1.56 1.20 0.95 1.04 0.82
Errorgge, (pixels) +3.65 +4.02 +3.09 +2.71 +3.07 +3.07
RMSE (pixels) 1.22 1.56 1.20 1.03 1.18 1.01
MAE (pixels) 0.91 1.07 0.84 0.82 0.90 0.75
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Fig. 1. Drift and data gaps of the August IM dataset. Left: data acquired on 26 August 2006 combined with the calculated drift between
26 and 27 August 2006; right: data gaps indicating regions (black dots) for which the algorithm failed to calculate reliable shift information

and returned an error flag.

Equation (1) is employed as a measure of local textural
heterogeneity. From the investigated parameters, a meaning-
ful relationship was obtained only for the texture entropy
(Fig. 2) but not for measures such as uniformity, registrability
and intensity. Registrability is a measure developed by
Chalermwat (1999) for high-performance image registration
for remote sensing.

Two separated data clusters can be recognized in the
two-dimensional (2-D) histogram (Fig. 2): a smaller group
in the lower left corner with an entropy of 0.8-0.9 and a
correlation coefficient of 0.1-0.3 and the main group with
an entropy of 1.04-1.42 and a corresponding correlation
coefficient of 0.35-0.85. The maximum observed entropy
is 1.70. To reduce the variation in the data and to emphasize
the correspondence between entropy and performance of
the algorithm, the histogram is calculated based on pre-
processed shift data which were filtered with a 5 x 5 median
filter. The correlation coefficient for this relation is 0.75.
While the smaller data cluster is only a significant feature
for the August dataset, caused by the huge influence of
A23-A on this scene, it is possible to find relations similar
to the main group for January and June.

Higher entropy (local heterogeneity) indicates a higher
probability of the occurrence of characteristic patterns
in the sea-ice structure seen by the radar. In this case,
the correlation coefficient between corresponding areas in
successive images is higher. A low entropy value for a region
indicates a lack of characteristic patterns, which may lead
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to worse correlation results. A lower entropy is linked with
less local variation of the radar intensity. Compared with the
sea-ice cover in the August scene, iceberg A23-A appears
quite homogeneous. The correlation between entropy and
(pattern) correlation coefficient is, however, only moderate.
This indicates that the performance of the algorithm
depends not only on the entropy but also on other image
characteristics such as the presence of distinct patterns.

The result suggests that an entropy greater than 1.00 indi-
cates good correlation conditions but with some restrictions
due to the levelling nature of filtered values. Regions of high
entropy cannot be correlated if patterns are different in the
two images used for shift vector retrieval.

The third topic of this paper is the comparison of motion
fields estimated from ASAR IM data with those from WS data.
Figure 3 shows the corresponding results. The field of shift
vectors calculated from the IM data is less homogeneous than
that extracted from the WS mode where the flow field is more
uniform. Key features of the drift field remain recognizable at
the lower resolution level. To compare the results statistically,
the IM shift vector field is smoothed and resampled to the
resolution of the WS data. Both datasets are normalized to
1 day, assuming constant drift conditions during the observa-
tion period. Subsequently, the difference between the vector
fields is calculated separately for the WE and SN components
of the drift. The mean absolute distance between the WS
shift and resampled IM shift is about 1 pixel (150m) in the
WE direction and 2 pixels (300 m) in the SN direction, with

-
5000
4000
3000
2000 54

1000

Entropy

Fig. 2. Relation between entropy and correlation coefficient: a simplified 2-D histogram based on entropy values for each resolution cell
and their corresponding median-filtered correlation coefficents. The data density is indicated with a greyscale.
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145 km

Fig. 3. August drift vector field and August WS drift vector field. Left: results for the IM data pair; right: WS results.

a corresponding RMSE of 2.64 pixels (400m) in the WE
direction and 3.73 pixels (560 m) in the SN direction.

Major differences in the drift field between the two datasets
are caused by the different scales. The high-resolution vector
field follows the shape of the central lead, while in the
WS image larger shifts in the east are transferred into the
stagnant sea ice in the west and vice versa. The relation
between the IM-based drift field and the WS-based drift field
is shown in the scatter plot in Figure 4, which illustrates the
complex relation between the two motion fields. In contrast
to the IM-based drift information, which identifies smaller
motion variations even at the coarser resampled resolution,
the WS-based motion field shows a more levelled drift.
Both directions resolve the stable sea-ice situation south of
iceberg A23-A.

The iceberg itself creates errors due to false correlation
results related to its small amount of characteristic patterns.
While the IM-based drift data follow the shape of the central
lead quite closely, the WS-based motion shows various
deviations from the orientation of the lead. East of the lead
that divides the scene into two parts, the IM drift vector field
shows drift zones of miscellaneous magnitude and direction
while the WS data show a more homogeneous drift situation.
The IM drift field reveals an eastern shift in the far east of
the image, whereas the shift of the WS motion field is a
northeastern shift in this region. Additionally, the fact that
the image pairs span different time periods must be taken
into consideration. Changing conditions during these periods
would also lead to changes within the normalized data.
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The situation is more complicated for the June period since
the extracted drift fields do not show key features common
to both imaging modes (IM and WS). The drift field extracted
from both WS pairs, 16-20 June 2006 and 16-22 June
2006, fails to reveal drift characteristics similar to the drift
field estimated from the IM pair. A direct comparison of
shift is therefore not possible. The result of a manual check
was that the calculated displacements are correct for all
analysed cases. Based on the stable position of the grounded
A23-A in all images, the observed change of motion cannot
be explained by an erroneous geocoding. Instead it is more
probable that a change of motion directions over time
occurred, leading to different motion fields for each data pair
because of different temporal gaps between the individual
images. The change of motion over time is demonstrated on
a single feature shown in Figure 5.

Wind data, provided by the Interim Re-analysis (Berrisford
and others, 2009) of the European Centre for Medium-range
Weather Forecasts, indicate heterogenic wind conditions
with large variations in speed and direction for the period
16-23 June 2006. The wind directly affects the sea-ice drift
characteristics. Since sea-ice motion is not only driven by
the wind but depends also on ocean currents, tides and
general sea-ice conditions (e.g. blocking effects by land and
between different ice areas), it is difficult to link changes in
sea-ice drift directly to changes in wind conditions. The wind
data for the August observation period indicate the typical
behaviour for the monitored region at this time of the year,
with a dominating strong northward wind component.

-200
-600

600

West—east drift (IM) (m d-)

Fig. 4. Scatter plot of IM-based drift versus WS-based speed in WE direction. It shows that in IM images drift field variations are recognized

over shorter distances, i.e. in greater detail, than in WS images.
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IM 17.06
Drift 17.06/23.06

- WS 16.06
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Fig. 5. Change of motion over time. Comparison of a characteristic pattern for all data pairs acquired in June 2006. The comparison indicates

high variations of drift direction and magnitude. Dates are dd/mm.

CONCLUSION

The multiscale drift retrieval algorithm investigated in this
study demonstrates a good performance for the analysed
image pairs. A few drawbacks were found in cases for which
central assumptions inherent in the algorithm were not valid.
The quality of the estimated vector field strongly depends on
pattern constancy in the analysed datasets, as the differences
between the January dataset (summer) and the June and
August datasets (winter) indicate.

In the analysed cases, the absolute error was independent
of the magnitude of shift. The relative error therefore depends
on the magnitude of shift. If a 10% criterion is used as an
acceptable error for the shift, the minimum shift should be
higher than 10-12 pixels (250-300m) in winter (June and
August) and about 18 pixels (450m) in summer (January).
Consequently, a longer time period between successive
images is needed for slowly drifting ice than for large drift
velocities. However, a longer time period increases the risk
of violating the pattern constancy constraint.

The method has problems in homogeneous regions such as
iceberg surfaces and areas without any features such as ridges
and identifiable single floes. Fast-changing ice-cover charac-
teristics such as leads revealed only low correlation coeffi-
cients between successive images. It was demonstrated that a
relation between entropy and correlation performance exists
and that a higher entropy is linked to a better correlation.

A first comparison of WS and IM data revealed that the
drift fields estimated from the WS mode compare well with
drift data estimated from IM data, although details are lost. In
the presented example it was also demonstrated that sea-ice
motion may change rather quickly. This is also very important
for sea-ice physics since the averaging of heterogenous sea-
ice motion fields may cause an underestimation of the
ice velocity and the range of direction changes within
the observation period, which affects our ability to inter-
pret/reconstruct the observed sea-ice deformation patterns,
in particular with regard to minor deformation events.

Our studies will continue with a comparison of motion
fields derived from datasets with different spatial resolution,
obtained with different imaging modes from different
satellites. The goal is to increase the temporal and spatial
resolution of the sea-ice motion field for detailed observation
of sea-ice deformation.
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