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Abstract. An element r in a ring R is clean if r is a sum of a unit and an
idempotent. Camillo and Yu showed that unit regular rings are clean and in a very
surprising development Nicholson and Varadarajan showed that linear transforma-
tions on countable dimension vector spaces over division rings are clean. These rings
are very far from being unit regular.

Here we note that an idempotent is just a root of gðxÞ ¼ x2 � x. For any gðxÞ we
say R is gðxÞ-clean if every r in R is a sum of a root of gðxÞ and a unit. We show that
if V is a countable dimensional vector space and over a division ring D and gðxÞ is
any polynomial with coefficients in K ¼ CenterD and two distinct roots in K, then
EndVD is gðxÞ-clean.
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1. Introduction. A ring R is clean if every r 2 R is the sum of a unit and an
idempotent. In [1] it was shown that a unit regular ring is clean. Now a regular ring
is unit regular if and only if fR � gR implies ð1� f ÞR � ð1� gÞR. Therefore it was
quite surprising when Nicholson and Varadarajan showed that every linear trans-
formation on a space of countable dimension over a division ring is clean.

Think of an idempotent as a solution to gðxÞ ¼ xðx � 1Þ ¼ 0. We seek to replace
xðx � 1Þ by a more general gðxÞ. Suppose D contains a field K and gðxÞ 2 K½x�.
Consider the one-dimensional case and d 2 D, then, d ¼ s þ u where gðsÞ ¼ 0 and u
is a unit. Since u is a unit, u 6¼ 0. Let s ¼ t þ v where gðtÞ ¼ 0. Since v 6¼ 0, we must
have that g has at least two roots in D.

Let R be a ring that contains a field K. Let gðxÞ 2 K½X �. We say that R is gðxÞ-
clean if for every r 2 R we have r ¼ s þ u where gðsÞ ¼ 0 and u is a unit. We have
seen from the above paragraph that if R is gðxÞ-clean, then gðxÞ has at least two
roots in R. However, even if R is a division ring, we cannot factor gðxÞ because of
commutativity problems. Therefore, we assume gðxÞ has two roots in K ¼ CenterD.
In the Nicholson-Varadarajan Theorem, these are 0 and 1.
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We prove here:

Theorem 1.1. Let VD be a vector space of countable dimension or less over a
division ring D. Let gðxÞ be a polynomial with at least two roots in K ¼ CenterD. Then
EndVD is gðxÞ-clean.

Corollary 1.2. If D is commutative then V is gðxÞ-clean for all spaces of count-
able dimension if and only if gðxÞ has at least two roots in K.

In what follows we number our lemmas as in [3].

2. The Shift Operator. Let VD be a vector space of countable dimension with
basis fxi j i 2 Ng ¼ X. Let sðxiÞ ¼ xiþ1 be the associated shift operator. Let
gðxÞ ¼ ðx � uÞðx � vÞ be a polynomial of degree two that splits as shown. Let
L 2 EndV. We want to show eventually that L ¼ a þ u where gðaÞ ¼ 0 and u is a
unit. Nicholson and Varadarajan have shown that if gðxÞ ¼ x2 � x it is enough to do
this for L ¼ s, the shift operator s with respect to the basis X. To do this we must
find an a with gðaÞ ¼ 0 and a � s a unit. First we have:

ðx � uÞðx � vÞ ¼ ðx � uÞðx � u þ u � vÞ ¼ 0:

So

ðx � uÞ2 ¼ ðu � uÞðx � uÞ:

Let l ¼ ðu � vÞ.
We illustrate our techniques with some preliminary considerations.
It is clearly enough to define a � s. We begin with:

ða � sÞx1 ¼ px1: ð2:1Þ

Then ask what ða � sÞx2 must be for ða � uÞ2 ¼ lða � uÞ:
We have ax1 ¼ px1 þ x2 so ða � u þ uÞx1 ¼ px1 þ x2;

ða � uÞx1 ¼ ðp � uÞx1 þ x2: ð2:2Þ

We multiply both sides of (2.1) by ða � uÞ to obtain

ða � uÞ2x1 ¼ ðp � uÞða � uÞx1 þ ða � uÞx2: ð2:3Þ

Now, we want ða � uÞ2x1 ¼ lða � uÞx1, that is,

lða � uÞx1 ¼ ðp � uÞða � uÞx1 þ ða � uÞx2;

ðl � p þ uÞða � uÞx1 ¼ ða � uÞx2;

ðl � p þ uÞða � uÞx1 ¼ ða � s þ s � uÞx2;

ðl � p þ uÞða � uÞx1 ¼ ða � sÞx2 þ x3 � ux2;

ðl � p þ uÞða � uÞx1 þ ux2 � x3 ¼ ða � sÞx2:

ð2:4Þ

Use the fact that ax1 ¼ px1 þ x2 so ðl � p þ uÞðpx1 þ x2 � ux1Þ þ ux2 � x3 ¼ ða � sÞx2.
Now collect terms:
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ðl � p þ uÞðp � uÞx1 þ ðl � p þ 2uÞx2 � x3 ¼ ða � sÞx2: ð2:5Þ

Now, the right side of (2.3) can be obtained by reversing the steps to (2.4) and is also
the right side of (2.2). This means that (2.4) is necessary and sufficient for
ða � uÞ2x1 ¼ lða � uÞx1. This suggests a guess for the general case.

Proposition 2.1. Let VD be a vector space of countable dimension over a division
ring D containing a field K. Let gðxÞ ¼ ðx � uÞ2 � lðx � uÞ where u and l are in K. Let
X0 ¼ fxi j i 2 Ng be a basis for V with shift operator s. In A and B below if p 6¼ 0 and
l þ p þ 2u 6¼ 0 then A and B define a so that a � s is a unit and gðaÞ ¼ 0.

A. ða � sÞx2k�1 ¼ px2k�1:
B. ða � sÞx2k ¼ ðl � p þ uÞðp � uÞx2k�1 þ ðl þ p þ 2uÞx2k � x2kþ1:

Proof. We factor B to obtain

ða � sÞx2k ¼ ðl � p þ uÞ½px2k�1 � ux2k�1 þ ux2k� þ ux2k � x2kþ1; ð2:6Þ

then from A,

px2k�1 � ux2k�1 þ ux2k ¼ ða � uÞx2k�1: ð2:7Þ

So

ða � sÞx2k ¼ ðl � p þ uÞða � uÞx2k�1 þ ux2k � x2kþ1; ð2:8Þ

then cancel �sx2k ¼ �x2kþ1, bring ux2k to the left side of (2.8) and obtain

ða � uÞx2k ¼ ðl � p þ uÞða � uÞx2k�1;

ða � uÞx2k�1 ¼ px2k�1 � ux2k�1 þ x2k:
ð2:9Þ

So, from A, multiplying the above by ða � uÞ and factoring:

ða � uÞ2x2k�1 ¼ ðp � uÞða � uÞx2k�1 þ ða � uÞx2k:

Substitute from (2.9) for ða � uÞx2k and cancel. We get

ða � uÞ2x2k�1 ¼ lða � uÞx2k�1: ð2:10Þ

Further, from (2.9), ða � uÞx2k is a scalar multiple of ða � uÞx2k�1 so ða � uÞ2x2k ¼

lða � uÞx2k also, which establishes that a satisfies pðxÞ.
To show that ða � sÞ is a unit, first note it is onto because by A, Imða � sÞ con-

tains all the basis vectors indexed by odd natural numbers and therefore by B the
even index ones also, since we are assuming p 6¼ 0 and l þ p þ 2u 6¼ 0.

To see that ða � sÞ is one to one, suppose
P

�iða � sÞxi ¼ 0. Let �i0 be the largest
nonzero coefficient. Suppose i0 is even, i0 ¼ 2j0. Then when we expand the relation in
terms of the basisX,��i0 appears as the coefficient of x2j0þ1 exactly once and so is zero.

If i0 ¼ 2j0 � 1 is odd, then �2j0�1ðpx2j0�1Þ þ �2j0�2½ðl � p þ uÞðp � uÞx2j0�3þ
ðl þ p þ 2uÞx2j0�2 > þx2j0�1� þ � � � ¼ 0. Then, checking the coefficient of x2j0�2 we
have �2j0�2 ¼ 0 and we are reduced to the previous case. &
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3. The general case. Nicholson and Varadarajan show how to extend the truth
of their theorem in the shift operator context to the entire space under considera-
tion. Their argument works here. We have to show their proof works. We repeat
much of their argument as quickly as possible.

Lemma 3.1 If R is gðxÞ-clean then any n � n companion matrix over R is gðxÞ-
clean.

Proof. Let a1 ¼ s þ u where gðsÞ ¼ 0; then

0 0 0 � � � 0 a1

1 0 0 � � � 0 a2

0 1 0 � � � 0 a3

..

. ..
. . .

. . .
. ..

. ..
.

0 0 0 � � � 0 an�1

0 0 0 � � � 1 an

2
6666666664

3
7777777775

¼

0 0 0 � � � s

0 0 0 � � � s

0 0 0 � � � s

..

. ..
. ..

. ..
.

0 0 0 � � � s

0 0 0 � � � s

2
6666666664

3
7777777775

þ

0 0 0 � � � 0 u

1 0 0 � � � 0 a2 � s

0 1 0 0 a3 � s

..

. ..
. . .

. . .
. ..

. ..
.

0 0 0 � � � 0 an�1 � s

0 0 0 � � � 1 an � s

2
6666666664

3
7777777775

:

The first matrix on the right side satisfies gðxÞ ¼ 0 and the second is a unit. &

Lemma 3.2. Let a be gðxÞ-clean in the a-invariant subspace U. Suppose V ¼

span anðyÞ
� 	

þ U for some vector g. Then a is gðxÞ-clean in V.

Proof. Let V ¼ M � U where g 2 M and y 2 M. Let O be the projection onto M
with kernel U. Let O0 : V=U ! M be the induced isomorphism, and �aa be the
induced action of a on V=U. &

Then fO0 �aa
nð �yyÞg ¼ X spans M. Proposition 2.1 applies if X is a basis; Lemma 3.1

applies if X is finite-dimensional. In either case O0aO
�1
0 ¼ a2 þ b2 where

a2 : M ! M satisfies gða2Þ ¼ 0 and b2 is an automorphism of M. By assumption we
may write a ¼ a1 þ b1 on U; where gða1Þ ¼ 0 and b2 is a unit.

Let

cðm þ uÞ ¼ a2ðmÞ þ a1ðuÞ;

dðm þ uÞ ¼ b2ðmÞ þ ½aðmÞ � O0aO
�
0 1ðmÞ þ b1ðUÞ�:

Then, since c is defined componentwise gðcÞ ¼ 0. Also

cðm þ uÞ þ dðm þ uÞ ¼ ½a2ðmÞ þ b2ðmÞ � O0aO
�
0 1ðmÞ� þ ½aðmÞ� þ ½a1ðuÞ þ b1ðuÞ�

¼ 0þ aðmÞ þ aðuÞ

¼ aðm þ uÞ:
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https://doi.org/10.1017/S0017089502030021 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502030021


The reader may consult [3] to see that d is a unit.
Now as in [3] given a, we create triples ðu; ai; biÞ where U1 is a; ai; bi and

a ¼ ai þ bi. These are partially ordered by containment and extension of maps. Pick
a maximal triple and the previous lemmas show that U ¼ V and a ¼ ai0 þ bi0 .
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