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Abstract

We consider a stationary Poisson hyperplane process with given directional distribution
and intensity in d-dimensional Euclidean space. Generalizing the zero cell of such a
process, we fix a convex body K and consider the intersection of all closed halfspaces
bounded by hyperplanes of the process and containing K . We study how well these
random polytopes approximate K (measured by the Hausdorff distance) if the intensity
increases, and how this approximation depends on the directional distribution in relation
to properties of K .

Keywords: Poisson hyperplane process; zero polytope; approximation of convex bodies;
directional distribution
2010 Mathematics Subject Classification: Primary 60D05

1. Introduction

Asymptotic properties of the convex hull of n independent, identically distributed (i.i.d.)
random points in R

d , as n tends to ∞, are an actively studied topic of stochastic geometry;
see, for example, Subsection 8.2.4 of the book [11] and the more recent survey by Reitzner [6].
Very often, one studies uniform random points in a given convex body and measures the rate
of approximation by the volume difference, or the difference of other global functionals, or
one investigates the asymptotic behaviour of combinatorial quantities such as face numbers.
In contrast, approximation by random polytopes, measured in terms of the Hausdorff metric δ,
has been investigated less frequently. We recall that the Hausdorff distance of two nonempty
compact sets K, L ⊂ R

d is defined by

δ(K, L) = max
{

max
x∈K

min
y∈L

‖x − y‖, max
x∈L

min
y∈K

‖x − y‖
}
.

For results on Hausdorff distances of random polytopes, we refer the reader to Note 5 of [11,
Subsection 8.2.4] and mention here only the following. For a convex body K of class C2+ (that
is, with a twice continuously differentiable boundary with positive Gauss curvature), Bárány [1,
Theorem 6] showed that the Hausdorff distance from K to the convex hull Kn of n i.i.d. uniform
random points in K satisfies

Eδ(K, Kn) ∼
(

log n

n

)2/(d+1)

as n → ∞
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920 • SGSA D. HUG AND R. SCHNEIDER

(here f (n) ∼ g(n) means that there are constants c1 and c2 such that c1g(n) < f (n) < c2g(n)).
A result of Dümbgen and Walther [3, Corollary 1] says that, for an arbitrary convex body K ,

δ(K, Kn) = O

((
log n

n

)1/d)
almost surely.

The second standard approach to convex polytopes, generating them as intersections of
closed halfspaces instead of convex hulls of points, was, for the case of random polygons in the
plane, already considered in the third of the seminal papers by Rényi and Sulanke [7], [8], [9],
which initiated this subject. Nevertheless, this approach has later not found equal attention in
the study of random polytopes. To learn more about the role that duality, either in an exact or
a heuristic sense, can play here, we refer the reader to the introduction of [2]. This alternative
approach offers some new aspects, in particular since random hyperplanes naturally come with
some directional distribution, which influences the random polytopes that they generate. This
aspect is emphasized in the present article, where we consider random polytopes generated by
a stationary Poisson hyperplane process, with an arbitrary directional distribution.

Let X be a stationary nondegenerate (see [11, p. 486]) Poisson hyperplane process in
Euclidean space R

d , d ≥ 2 (with scalar product 〈·, ·〉 and norm ‖ · ‖). The reader is referred to
Chapters 3 and 4 of [11] for an introduction, and also for some notational conventions used here.
In particular, we recall the convention that a simple point process X, which is by definition a
simple random counting measure, is often identified with its support, which is a locally finite
random set.

For a hyperplane H in R
d , not passing through the origin o, we denote by H−

o the closed
halfspace bounded by H that contains o. The random polytope

Z0 :=
⋂

H∈X

H−
o

is called the zero cell of X (it is also known as the Crofton polytope of X).
A generalization of this notion is obtained as follows. Let K ⊂ R

d be a convex body, by
which we understand, in the following, a compact convex subset with interior points. For a
hyperplane H not intersecting K , we denote by H−

K the closed halfspace bounded by H that
contains K . Then we define the K-cell of X as the random polytope

ZK :=
⋂

H∈X, H∩K=∅

H−
K .

The almost-sure boundedness of ZK follows as in the proof of [11, Theorem 10.3.2]. In the
following we are interested in the question how well K is approximated by ZK , if the intensity
of the process X tends to ∞. Since the intensity is a constant multiple of the expected number
of hyperplanes in the process that hit K , the analogy to convex hulls of an increasing number
of points is evident.

We consider approximation in the sense of the Hausdorff metric δ on the space Kd of convex
bodies in R

d . Of course, in order that the approximation of K by ZK is at all possible, the
convex body K and the directional distribution of the hyperplane process X must somehow
be adapted to each other. For example, a ball K cannot be approximated arbitrarily closely
by ZK if the hyperplane process X has only hyperplanes of finitely many directions. To make
this more precise, let N be a closed subset of the unit sphere S

d−1, not contained in a closed
halfsphere. For a given convex body K , we denote by P (K, N) the set of all polytopes which
are finite intersections of closed halfspaces containing K and with outer unit normal vectors
in N .
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Proposition 1. The convex body K can be approximated arbitrarily closely, with respect to the
Hausdorff metric, by polytopes from P (K, N) if and only if supp Sd−1(K, ·) ⊂ N .

Here supp denotes the support of a measure, and Sd−1(K, ·) is the surface area measure of K

(see [10, Section 4.2] for example). We shall give a proof of Proposition 1 in the next section.
It serves here only to motivate assumption (2) made below.

The intensity measure � = EX(·) of X is assumed, as usual, to be locally finite. It can then
be represented in the form (see [11, Equation (4.33)])

�(A) = 2γ

∫
Sd−1

∫ ∞

0
1A(H(u, t)) dt ϕ(du) (1)

for A ∈ B(Hd), where γ > 0 is the intensity and ϕ is the spherical directional distribution
of X; the latter is an even Borel probability measure on the unit sphere S

d−1 which is not
concentrated on a great subsphere. Later, when ϕ is fixed and γ varies, we write �γ instead
of �. By Hd we denote the space of hyperplanes in R

d , and B(T ) is the σ -algebra of Borel
sets of a topological space T . Furthermore,

H(u, t) = {x ∈ R
d : 〈x, u〉 = t}

for u ∈ S
d−1, where t > 0 is the standard parameterization of a hyperplane not passing through

the origin o. For convenience (in view of some later estimations of constants), we also assume
that γ ≥ 1.

For K ∈ Kd , the Hausdorff distance δ(K, P ) of K from a polytope P containing it is the
smallest number ε ≥ 0 such that P ⊂ K(ε), where K(ε) = K + εBd (Bd is the unit ball)
denotes the outer parallel body of K at distance ε. Thus, for given ε > 0, the probability
P{δ(K, ZK) > ε}, in which we are interested, is equal to P{ZK ⊂ K(ε)}. First we give a
necessary and sufficient condition that this probability tends to 0 if the intensity of the process
X tends to ∞; if the condition is satisfied then the decay is exponential. Under a slightly
stronger assumption, this can then be used to derive our main results concerning the rate of
convergence.

We assume in the following that the surface area measure of the given convex body K

satisfies
supp Sd−1(K, ·) ⊂ supp ϕ. (2)

By Proposition 1, this assumption is necessary for an arbitrarily good approximation of K by
ZK . Theorem 1 shows, in a stronger form, that it is also sufficient.

For y ∈ R
d \ K , let Ky := conv(K ∪ {y}). For ε > 0, we define

μ(K, ϕ, ε) := min
y∈bd K(ε)

∫
Sd−1

[h(Ky, u) − h(K, u)] ϕ(du), (3)

where h denotes the support function. Lemma 1, to be proved in the next section, shows that
condition (2) implies that μ(K, ϕ, ε) > 0.

Theorem 1. Let K ∈ Kd be a convex body. Let X be a stationary Poisson hyperplane process
in R

d with intensity γ and with a directional distribution ϕ satisfying (2). There are positive
constants C1(ε) and C2 (both depending on K , ϕ, and d) such that the following holds. If
0 < ε ≤ 1 then

P{δ(K, ZK) > ε} ≤ C1(ε) exp[−C2μ(K, ϕ, ε)γ ], (4)

where μ(K, ϕ, ε) > 0.
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In order to be able to deal with convergence for increasing intensities, we consider an
embedding of the stationary Poisson hyperplane processes Xγ with intensity γ > 0, directional
distribution ϕ, and intensity measure

EXγ (·) = 2γ

∫
Sd−1

∫ ∞

0
1{H(u, t) ∈ ·} dt ϕ(du) =: �γ

into a Poisson process ξ in [0, ∞)×Hd (on a suitable probability space) with intensity measure
λ ⊗ �1, where λ denotes the Lebesgue measure on [0, ∞). Then ξ([0, γ ] × ·) is a Poisson
hyperplane process in R

d with intensity measure �γ ; thus, Xγ is stochastically equivalent
to ξ([0, γ ] × ·) (e.g. by [11, Theorem 3.2.1]). In the following, we can identify Xγ with
ξ([0, γ ] × ·). Let Z

(γ )

K denote the K-cell associated with ξ([0, γ ] × ·). Then we have K ⊂
Z

(τ)
K ⊂ Z

(γ )

K for τ ≥ γ > 0, and, therefore, δ(K, Z
(τ)
K ) ≤ δ(K, Z

(γ )

K ). This shows that

P

{
sup
τ≥γ

δ(K, Z
(τ)
K ) ≥ ε

}
= P{δ(K, Z

(γ )

K ) ≥ ε} ≤ C1(ε) exp[−C2μ(K, ϕ, ε)γ ]

for all ε > 0, and, thus,
lim

γ→∞ δ(K, Z
(γ )

K ) = 0

holds almost surely. We state this as a corollary.

Corollary 1. If the Poisson hyperplane processes Xγ , γ ≥ 1, are defined as above on a
common probability space and if Z

(γ )

K denotes the K-cell of Xγ for a convex body K ∈ Kd ,
then condition (2) is necessary and sufficient in order that

lim
γ→∞ δ(K, Z

(γ )

K ) = 0 almost surely. (5)

In the following, we will be interested in the rates of convergence. For this, we consider
the sequence X1, X2, . . . of Poisson hyperplane processes defined as above, with spherical
directional distribution ϕ, where Xn has intensity n.

Under the sole assumption (2), no statement stronger than (5), involving also a rate of
convergence, is possible. In fact, if any decreasing sequence (εn)n∈N with εn → 0 for n → ∞
is given and if K is a convex body, then the directional distribution ϕ of the hyperplane processes
Xn can be chosen in such a way that (2) is satisfied but

P{δ(K, Z
(n)
K ) ≥ εn for almost all n} = 1. (6)

We prove this at the end of the paper. Therefore, no assumption on the convex body K

alone allows us to estimate the rate of convergence of δ(K, Z
(n)
K ) for arbitrary directional

distributions ϕ. On the other hand, suitable assumptions on the directional distribution, for
example,

ϕ ≥ bσ (7)

with a constant b > 0, where σ denotes spherical Lebesgue measure, permit us to estimate
the rate of convergence for arbitrary convex bodies. This is shown by the first assertion of
Theorem 2 below.

If the directional distribution does not satisfy such a strong assumption then the rates of
convergence can only be estimated if this distribution is suitably adapted to the given convex
body. In this sense, we assume that

ϕ ≥ bSd−1(K, ·) (8)

with some constant b.
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If (Yn)n∈N is a sequence of real random variables and f (n)n∈N is a sequence of nonnegative
real numbers, we write Yn = O(f (n)) almost surely if there is a constant C < ∞ such that,
with probability 1, we have Yn ≤ Cf (n) for sufficiently large n. Moreover, we write Yn ∼ f (n)

almost surely if there are constants 0 < c ≤ C < ∞ such that, with probability 1, we have
cf (n) ≤ Yn ≤ Cf (n) for all sufficiently large n. A ‘ball’ in the following is a Euclidean ball
of positive radius. One says that a convex body M slides freely inside a convex body K if K is
the union of all translates of M that are contained in K .

Theorem 2. Let K ∈ Kd be a convex body. Let X be a stationary Poisson hyperplane process
in R

d with intensity γ and with a directional distribution ϕ satisfying (7) or (8). Then

δ(K, Z
(n)
K ) = O

((
log n

n

)1/d)
almost surely (9)

as n → ∞.
Suppose that (8) holds. If a ball slides freely inside K then the exponent 1/d in (9) can be

replaced by 2/(d + 1), and if K is a polytope then it can be replaced by 1.

Under stronger assumptions on K and ϕ, we can determine the exact asymptotic order of
approximation.

Theorem 3. Let the convex body K ∈ Kd be such that a ball slides freely inside K and that K

slides freely inside a ball. Suppose that the directional distribution ϕ of the stationary Poisson
hyperplane processes Xn satisfies

aσ ≥ ϕ ≥ bσ (10)

with some positive constants a and b. Then

δ(K, Z
(n)
K ) ∼

(
log n

n

)2/(d+1)

almost surely

as n → ∞.

Note that Theorem 3 covers, in particular, the case where K is of class C2+ and the hyperplane
processes Xn are isotropic, that is, their directional distribution ϕ is invariant under rotations
and is thus equal to the normalized spherical Lebesgue measure. If K is of class C2+ then the
assumptions on K are satisfied by Blaschke’s rolling theorem (see Corollary 3.2.13 of [10]).

In the next section we prove some auxiliary results. Theorem 1 is proved in Section 3, and
the proofs of Theorems 2 and 3 follow in Section 4.

2. Auxiliary results

Proof of Proposition 1. By [10, Theorem 4.5.3], the support of the area measure Sd−1(K, ·)
is equal to cl extn K , the closure of the set of extreme (unit) normal vectors of K .

Suppose now that K can be approximated arbitrarily closely by polytopes from P (K, N).
Let x be a regular boundary point of K , and let (xi )i∈N be a sequence of points in R

d \ K

converging to x. To each i, there exists a polytope Pi ∈ P (K, N) not containing xi ; hence,
there is a closed halfspace H−

i with outer normal vector ui ∈ N containing K but not xi . For
i → ∞, the sequence of hyperplanes Hi bounding H−

i has a convergent subsequence; its limit
is the unique supporting hyperplane of K at x. It follows that the outer unit normal vector
of K at x belongs to the closed set N . A normal vector at a regular boundary point of K is
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a 0-exposed normal vector. Since x was an arbitrary regular boundary point of K , the set N

contains the set of 0-exposed normal vectors of K . The closure of the 0-exposed normal vectors
is equal to the closure of the extreme normal vectors (see Theorem 2.2.9 of [10], also for the
terminology used here). Hence, cl extn K ⊂ N .

Conversely, suppose that cl extn K ⊂ N . The body K is the intersection of its supporting
halfspaces with a regular point of K in the boundary (see [10, Theorem 2.2.5]). The outer
unit normal vector of such a halfspace is extreme and, hence, belongs to N . Thus, denoting
by H−(K, u) the supporting halfspace of K with outer unit normal vector u, we have K =⋂

u∈N H−(K, u). Therefore, if ε > 0 then⋂
u∈N

bd(K + εBd) ∩ H−(K, u) = ∅.

By compactness, there is a finite subset F ⊂ N such that the corresponding intersection is
empty, which implies that

P :=
⋂
u∈F

H−(K, u) ⊂ int(K + εBd).

Thus, P is a polytope in P (K, N) with δ(K, P ) < ε. Since ε > 0 was arbitrary, this shows
that K can be approximated arbitrarily closely by polytopes from P (K, N).

In the rest of this paper, c1, c2, . . . denote positive constants that depend only on K , ϕ, and
the dimension d .

Lemma 1. Let K ∈ Kd , and let ϕ be a probability measure on S
d−1. Let 0 < ε ≤ 1.

(a) If (2) holds then μ(K, ϕ, ε) > 0.

(b) If (7) holds then there exists a constant c1 such that

μ(K, ϕ, ε) ≥ c1ε
d . (11)

In the following statements it is assumed that (8) is satisfied.

(c) For ε ≤ D(K), where D(K) denotes the diameter of K , there exists a constant c2 such
that

μ(K, ϕ, ε) ≥ c2ε
d . (12)

(d) If a ball slides freely inside K then there exists a constant c3 such that

μ(K, ϕ, ε) ≥ c3ε
(d+1)/2. (13)

(e) If K is a polytope then there exists a constant c4 such that

μ(K, ϕ, ε) ≥ c4ε. (14)

Proof. (a) Let (2) be satisfied. Let y ∈ R
d \ K . Let Vd denote the volume and V the mixed

volume in R
d . Using a formula for mixed volumes ([10, Equation (5.19)]) and Minkowski’s

inequality (e.g. [10, Equation (7.18)]), we obtain

1

d

∫
Sd−1

[h(Ky, u) − h(K, u)] Sd−1(K, du) = V (Ky, K, . . . , K) − Vd(K)

≥ Vd(Ky)1/dVd(K)(d−1)/d − Vd(K)

= Vd(K)(d−1)/d [Vd(Ky)1/d − Vd(K)1/d ]
> 0.
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The integrand is nonnegative and continuous as a function of u. Since the integral is positive,
there exists a neighbourhood (in S

d−1) of some point u0 ∈ supp Sd−1(K, ·) on which the
integrand is positive. By (2), u0 ∈ supp ϕ, and, hence,

g(y) :=
∫

Sd−1
[h(Ky, u) − h(K, u)] ϕ(du) > 0.

The function g is continuous and, hence, on each compact subset of R
d \K it attains a minimum.

This proves that μ(K, ϕ, ε) > 0.
(b) Suppose that (7) holds. For the proof of (11), let K ∈ Kd be given. Let y ∈ bd K(ε),

and let x be the point in K nearest to y. Then N(x) := (y − x)/ε is an outer unit normal
vector of K at x. We denote by H− the closed halfspace bounded by the hyperplane through
x and orthogonal to N(x) and containing K . If D(K) denotes the diameter of K then K ⊂
H− ∩ (x + D(K)Bd). Define β = β(ε) ∈ [0, π/2) by cos β = D(K)/

√
D(K)2 + ε2, and let

S(y, ε) be the set of all u ∈ S
d−1 such that  (u, N(x)) ≤ β/2. Then

σ(S(y, ε)) ≥ c5 sind−1
(

β

2

)
≥ c6ε

d−1. (15)

For u ∈ S(y, ε) \ {N(x)}, there is a unique unit vector e orthogonal to N(x) such that u =
τN(x) + √

1 − τ 2 e with 0 < τ < 1. With z := D(K)e we then obtain

h(Ky, u) − h(K, u) ≥ 〈y, u〉 − 〈z, u〉
= 〈y − z, u〉
≥ D(K)

〈
y − z

‖y − z‖ , u

〉

≥ D(K) sin

(
β

2

)
≥ c7ε (16)

for all u ∈ S(y, ε). Combining (7), (15), and (16), we obtain

1

b

∫
Sd−1

[h(Ky, u) − h(K, u)] ϕ(du) ≥
∫

Sd−1
[h(Ky, u) − h(K, u)] σ(du)

≥ σ(S(y, ε))c7ε

≥ c8ε
d,

which completes the proof of (b).
Now suppose that (8) holds. From the estimate in the proof of (a) we obtain

1

bd

∫
Sd−1

[h(Ky, u) − h(K, u)] ϕ(du) ≥ 1

d

∫
Sd−1

[h(Ky, u) − h(K, u)] Sd−1(K, du)

≥ Vd(K)(d−1)/d [Vd(Ky)1/d − Vd(K)1/d ]
≥ c9[Vd(Ky) − Vd(K)].

(c) For the proof of (12), let y ∈ bd K(ε) and let C be the cone with apex y spanned by K .
Let y′ be the point in K nearest to y. The vector y − y′ has length ε, and the hyperplane H ′
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orthogonal to it and passing through y′ supports K . Let H be the other supporting hyperplane
of K parallel to H ′. Let  be the convex hull of y and H ∩ C, and let ′ be the convex hull of
y and H ′ ∩ C. Denoting by D(K) the diameter of K and assuming that ε ≤ D(K), we have

Vd(Ky) − Vd(K) ≥ Vd(′) ≥
(

ε

D(K) + ε

)d

Vd() ≥
(

ε

2D(K)

)d

Vd(K).

This gives (12).
(d) Suppose that a ball of radius r > 0 slides freely inside K . Since μ(·, ϕ, ε) is translation

invariant, we can assume that K contains the ball B(o, r) of radius r centred at o. Let R > 0
be such that K ⊂ B(o, R). For s > 0, the convex body

Ks := {x ∈ R
d : Vd(Kx) − Vd(K) ≤ s}

is known as an illumination body of K (cf. [12, p. 258]; the convexity follows from Satz 4
of [4]). Now let y ∈ bd K(ε), and put ν := Vd(Ky) − Vd(K). Then y ∈ bd Kν . Let x ∈ bd K

be determined by {x} = [o, y] ∩ bd K , and denote by N(x) the unique exterior unit normal
vector of K at x (the normal vector is unique since, by assumption, there is a ball B ′ of radius
r > 0 with x ∈ B ′ ⊂ K). Since B(o, r) ⊂ K , we have

〈x, N(x)〉 ≥ r,

〈
x

‖x‖ , N(x)

〉
≥ r

R
.

From ‖y‖ − ‖x‖ ≥ ε we obtain ‖y‖d − ‖x‖d ≥ drd−1ε. Therefore, Lemma 2 of [12] yields

ν2/(d+1) ≥ c10rr
(d−1)/(d+1)

((‖y‖
‖x‖

)d

− 1

)
≥ c11R

−d(‖y‖d − ‖x‖d) ≥ c12ε;

hence,
Vd(Ky) − Vd(K) ≥ c13 ε(d+1)/2,

which gives (13).
(e) Now suppose that K is a polytope. Let y ∈ bd K(ε), and let y′ be the point in K nearest

to y. Put v := (y − y′)/‖y − y′‖, and let F denote the unique (proper) face of K which
contains y′ in its relative interior. Let F1, . . . , Fm be the facets of K that contain F , and let
u1, . . . ,um be their outer unit normal vectors. By [10, p. 85 and Theorem 2.4.9], we have

v ∈ N(K, F) = N(K, y′) = pos{ui : i = 1, . . . , m},
where N(K, F) and N(K, y′) are the normal cones of K at F and y′, respectively, and pos
denotes the positive hull. For any unit vector w ∈ N(K, F), there is some i ∈ {1, . . . , m} such
that 〈w, ui〉 > 0; in particular,

a(F, w) := max{〈w, ui〉 : i = 1, . . . , m} > 0

and a(F, v) = 〈v, ui0〉 > 0 for some i0 ∈ {1, . . . , m}. Since N(K, F) ∩ S
d−1 is compact, we

have
a(F ) := min{a(F, w) : w ∈ N(K, F) ∩ S

d−1} > 0

and, thus,
c14 := min{a(F ) : F is a proper face of K} > 0.
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Therefore, with c15 := min{Vd−1(F ) : F is a facet of K} > 0, where Vd−1 denotes the (d−1)-
dimensional volume, we obtain∫

Sd−1
[h(Ky, u) − h(K, u)] Sd−1(K, du) ≥ 〈y − y′, ui0〉Vd−1(Fi0)

≥ ‖y − y′‖c14c15

= c16ε.

This yields (14).

Remark 1. Although in the case of a general convex body K , the derivation of estimate (12)
may seem rather crude, the order of εd cannot be improved. In fact, if (12) was replaced by
μ(K, ϕ, ε) ≥ c2ε

α with 1 < α < d, then a counterexample would be provided by a body K

which in a neighbourhood of some boundary point is congruent to a suitable part of a body of
revolution with meridian curve given by μ(t) = |t |r with 1 < r < (d − 1)/(α − 1).

Lemma 2. Let the convex body K ∈ Kd be such that a ball slides freely inside K . Assume
further that

aσ ≥ ϕ (17)

with some positive constant a. Then∫
Sd−1

[h(Ky, u) − h(K, u)] ϕ(du) ≤ c17ε
(d+1)/2

for ε > 0 and y ∈ bd K(ε).

Proof. Let y ∈ bd K(ε). From (17) we obtain∫
Sd−1

[h(Ky, u) − h(K, u)] ϕ(du) ≤ c18

∫
Sd−1

[h(Ky, u) − h(K, u)] σ(du).

Let x be the point in K nearest to y; then y = x + εN(x), where N(x) is the outer unit
normal vector of K at x. By assumption, a ball, say of radius r > 0, slides freely inside K . In
particular, some ball B of radius r satisfies x ∈ B ⊂ K . Let

Cap (y, ε) :=
{
u ∈ S

d−1 : 〈u, N(x)〉 ≥ r

r + ε

}
.

For u ∈ S
d−1 \ Cap (y, ε), we have h(Ky, u)−h(K, u) = 0. If h(Ky, u)−h(K, u) = 0 then

h(Ky, u) − h(K, u) ≤ 〈y − x, u〉 ≤ ε.

With α(ε) := arccos r/(r + ε) this gives∫
Sd−1

[h(Ky, u) − h(K, u)] σ(du) ≤
∫

Cap (y,ε)

ε σ (du)

≤ c18ε sind−1 α(ε)

= c18ε

√
1 −

(
r

r + ε

)2
d−1

≤ c19ε
(d+1)/2.

This yields the assertion.
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The following lemma is sufficient for our purpose; it does not aim at an optimal order.

Lemma 3. Let K ∈ Kd be a convex body which slides freely in some ball. There are constants
c20, c21 > 0 such that the following holds. For 0 < ε < c20, let m(ε) be the largest number
m such that there are m points in bd K(ε) with the property that each segment connecting any
two of them intersects the interior of K . Then

m(ε) ≥ c21ε
−1/2.

Proof. The convex body K (which has interior points, by our general assumption) contains
some ball, without loss of generality the ball rBd . Let R be such that K slides freely in a ball
of radius R. We put c20 := min{2R, (πr)2/64R}, and assume that 0 < ε < c20.

For points x, y ∈ bd K(ε), we assert that

‖x − y‖ ≥ 4
√

Rε �⇒ [x, y] ∩ int K = ∅. (18)

For the proof, let x, y ∈ bd K(ε) and suppose that [x, y] ∩ int K = ∅. Let p ∈ K and
q ∈ aff {x, y} be points of smallest distance. If p = q then the hyperplane H through p

orthogonal to q − p supports K . If p = q then the line through x and y touches K , and we
choose H as a supporting hyperplane of K containing that line. The body K slides freely in a
ball, say B, of radius R; hence, K is a summand of B (see [10, Theorem 3.2.2]). This means
that there exists a compact convex set M ⊂ R

d such that K + M = B.
Let u denote the outer unit normal vector of the supporting hyperplane H of K at p, so that

h(K, u) = 〈p, u〉. There is a point t ∈ M with h(M, u) = 〈t, u〉, and the point z := p + t

satisfies z ∈ B and h(B, u) = 〈z, u〉. It follows that K ⊂ B − t and that H is a supporting
hyperplane of B − t at p.

The ball (B − t) + εBd contains K(ε) and, hence, the segment [x, y]. The line parallel to
[x, y] through p lies in H and intersects the ball (B − t) + εBd in a segment S, which is not
shorter than [x, y]. Thus, ‖x − y‖ ≤ length(S) = 2

√
2Rε + ε2 < 4

√
Rε, since ε < 2R. This

proves (18).
Let m be the largest integer with

m ≤ πr

4
√

R
ε−1/2.

Then m ≥ 2 (by the choice of c20), and there is a constant c21 with m ≥ c21/
√

ε. Let C be an
arbitrary great circle of the ball rBd . On C, we choose m equidistant points y1, . . . , ym. For
i = j , we have ‖yi − yj‖ ≥ 2r sin(π/m) > rπ/m. Let xi = λiyi ∈ bd K(ε) with λi > 0.

Then λi > 1 for i = 1, . . . , m and, hence, ‖xi − xj‖ > rπ/m ≥ 4
√

Rε for i = j . By (18),
this completes the proof.

3. Proof of Theorem 1

We assume that X and K are as in Theorem 1 and satisfy the assumptions mentioned above,
that is, ϕ is not concentrated on a great subsphere, γ ≥ 1, and inclusion (2) holds. Without loss
of generality, we may assume that o ∈ int K . Recalling that Z0 denotes the zero cell of X, we
note that by the independence properties of the Poisson process we have

P{ZK ⊂ K(ε)} = P{Z0 ⊂ K(ε) | K ⊂ Z0}.
The conditional probability involving the zero cell is slightly more convenient to handle.

https://doi.org/10.1239/aap/1418396237 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396237


Approximation properties of random polytopes SGSA • 929

For a compact convex set L ⊂ R
d , we define

HL := {H ∈ Hd : H ∩ L = ∅}

and

�(L) := �(HL).

By (1) we have

�(L) = 2γ

∫
Sd−1

h(L, u) ϕ(du). (19)

The following two lemmas use ideas from the proofs of Lemmas 3 and 5 of [5], but the
present situation is simpler. As there, we use the abbreviation

H−
1 ∩ · · · ∩ H−

n =: P(H(n)),

where H1, . . . , Hn are hyperplanes not passing through o and H−
i is the closed halfspace

bounded by Hi that contains o.
Let ‖x‖K = min{λ ≥ 0 : x ∈ λK} for x ∈ R

d . For a nonempty compact convex set L, we
define ‖L‖K := max{‖x‖K : x ∈ L}. For ε ≥ 0 and m ∈ N, let

Kd
ε (m) := {L ∈ Kd : K ⊂ L ⊂ K(ε), ‖L‖K ∈ (m, m + 1]}

and

qε(m) := P{Z0 ∈ Kd
ε (m)}.

We abbreviate

(m + 1)K =: Km.

We have

qε(m) =
∞∑

N=d+1

P{X(HKm) = N}p(N, m, ε) (20)

with

p(N, m, ε) := P{Z0 ∈ Kd
ε (m) | X(HKm) = N}

= �(Km)−N

∫
HN

Km

1{P(H(N)) ∈ Kd
ε (m)} �N(d(H1, . . . , HN)),

the latter by a well-known property of Poisson processes (see, e.g. [11, Theorem 3.2.2(b)]), and

P{X(HKm) = N} = �(Km)N

N ! exp[−�(Km)]. (21)

Lemma 4. There exists a number m0, depending only on K , ϕ, and d, such that

q0(m) ≤ c22 exp[−�(K) − c23γm]

for m ≥ m0.
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Proof. We modify and adapt the proof of Lemma 3 of [5]. If H1, . . . , HN ∈ HKm and if
P := P(H(N)) ∈ Kd

0 (m), then P has a vertex v with m < ‖v‖K ≤ m + 1. Since v is the
intersection of some d facets of P , there exists a d-element set J ⊂ {1, . . . , N} with

{v} =
⋂
j∈J

Hj .

We denote the segment [o, v] by S = S(Hi, i ∈ J ) (where it is assumed that the hyperplanes
Hi, i ∈ J , have linearly independent normal vectors) and note that

Hi ∩ relint S = ∅ for i = 1, . . . , N.

For any segment S = [o, v] with ‖v‖K ≥ m, we have (writing a+ := max{a, 0})

�(S) = 2γ

∫
Sd−1

〈v, u〉+ϕ(du) ≥ 2c24γm

with a positive constant c24. This follows from the fact that the function

v1 �→
∫

Sd−1
〈v1, u〉+ϕ(du), v1 ∈ S

d−1,

is positive (since ϕ is not concentrated on a great subsphere) and continuous. Let m0 be the
smallest integer greater than or equal to (2/c24)

∫
Sd−1 h(K, u) ϕ(du). For m ≥ m0, we then

have

�(S) ≥ �(K) + c24γm,

and, hence,∫
HKm

1{H ∩ S = ∅} �(dH) = �(Km) − �(S) ≤ �(Km) − �(K) − c24γm,

where we used the fact that S ⊂ Km, since ‖v‖K ≤ m + 1. Now we obtain

p(N, m, ε) ≤
(

N

d

)
�(Km)−N

×
∫

Hd
Km

1{‖S(Hj , j ∈ {1, . . . , d})‖K ≥ m}

×
∫

HN−d
Km

1{Hi ∩ S(Hj , j ∈ {1, . . . , d}) = ∅ for i = d + 1, . . . , N}

× �N−d(d(Hd+1, . . . , HN)) �d(d(H1, . . . , Hd))

≤
(

N

d

)
�(Km)−N

∫
Hd

Km

[�(Km) − �(K) − c24γm]N−d �d(d(H1, . . . , Hd))

=
(

N

d

)
�(Km)d−N [�(Km) − �(K) − c24γm]N−d .
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With (20) (for ε = 0) and (21) this gives

q0(m) ≤
∞∑

N=d+1

�(Km)N

N ! exp[−�(Km)]
(

N

d

)
�(Km)d−N [�(Km) − �(K) − c24γm]N−d

= 1

d!�(Km)d exp[−�(Km)]
∞∑

N=d+1

1

(N − d)! [�(Km) − �(K) − c24γm]N−d

≤ 1

d!�(Km)d exp[−�(K) − c24γm]

= 1

d!
(

2γ (m + 1)

∫
Sd−1

h(K, u) ϕ(du)

)d

exp[−�(K) − c24γm]
≤ c22 exp[−�(K) − c23γm]

with c23 = c24/2, say.

Lemma 5. Let 0 < ε ≤ 1. Then, for m ∈ N,

qε(m) ≤ c25(γm)d exp[−�(K) − 2γμ(K, ϕ, ε)].
Proof. With H1, . . . , HN ∈ HKm and P = P(H(N)) ∈ Kd

0 (m) as in the previous proof, the
polytope P has a vertex x ∈ Km \K(ε). This vertex is the intersection of d facets of P . Hence,
there exists an index set J ⊂ {1, . . . , N} with d elements such that

{x} =
⋂
j∈J

Hj .

There exists a point y ∈ bd K(ε) such that

�(conv(K ∪ {x})) ≥ �(conv(K ∪ {y})) = �(Ky) ≥ �(K) + 2γμ(K, ϕ, ε),

where the last inequality follows from (19) and (3), together with the monotonicity of �. This
gives ∫

HKm

1{H ∩ conv(K ∪ {x}) = ∅} �(dH) = �(Km) − �(conv(K ∪ {x}))

≤ �(Km) − �(K) − 2γμ(K, ϕ, ε).

We write x = x(H1, . . . , Hd) for the intersection point of the hyperplanes H1, . . . , Hd (sup-
posed in general position) and obtain

p(N, m, ε) ≤
(

N

d

)
�(Km)−N

×
∫

Hd
Km

1{x(H1, . . . , Hd) ∈ Km \ K(ε)}

×
∫

HN−d
Km

1{Hi ∩ conv(K ∪ {x(H1, . . . , Hd)}) = ∅ for i = d + 1, . . . , N}

× �N−d(d(Hd+1, . . . , HN)) �d(d(H1, . . . , Hd))

≤
(

N

d

)
�(Km)d−N [�(Km) − �(K) − 2γμ(K, ϕ, ε)]N−d .
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Similarly as in the proof of Lemma 4, summation over N gives

qε(m) ≤
∞∑

N=d+1

�(Km)N

N ! exp[−�(Km)]
(

N

d

)
�(Km)d−N

× [�(Km) − �(K) − 2γμ(K, ϕ, ε)]N−d

≤ 1

d!�(Km)d exp[−�(K) − 2γμ(K, ϕ, ε)]
≤ c25(γm)d exp[−�(K) − 2γμ(K, ϕ, ε)].

Proof of Theorem 1. We have

P{δ(K, ZK) > ε} = P{Z0 ⊂ K(ε) | K ⊂ Z0}
= P{K ⊂ Z0, Z0 ⊂ K(ε)}

P{K ⊂ Z0}
=

∑∞
m=1 qε(m)

exp[−�(K)] .

To estimate the last numerator, we choose m0 according to Lemma 4, and use Lemma 5 for
m ≤ m0 and Lemma 4 together with qε(m) ≤ q0(m) for m > m0. By the assumptions of
Theorem 1, relation (2) is satisfied. We obtain

P{Z0 ⊂ K(ε) | K ⊂ Z0} ≤
m0∑

m=1

c25(γm)d exp[−2γμ(K, ϕ, ε)] +
∑

m>m0

c22 exp[−c23γm].

The first sum can be estimated by

m0∑
m=1

c25(γm)d exp[−2γμ(K, ϕ, ε)] ≤ c25m
d+1
0 γ d exp[−γμ(K, ϕ, ε)] exp[−γμ(K, ϕ, ε)]

≤ c26(ε) exp[−γμ(K, ϕ, ε)], (22)

since μ(K, ϕ, ε) > 0 by condition (2) and Lemma 1.
The second sum can be estimated by∑
m>m0

c22 exp[−c23γm] ≤ c22 exp[−c23γ ]
∑

m>m0

exp[−c23(m − 1)] ≤ c27 exp[−c23γ ],

where we have used the facts that γ ≥ 1 (by assumption) and the last sum converges. Both
estimates together yield (4).

4. Proofs of Theorems 2 and 3

Under assumptions (7) or (8), we can conclude from Lemma 1 that μ(K, ϕ, ε) ≥ c28ε
α with

suitable α ≤ d . Therefore, in estimating (22) we can use the fact that

γ d exp[−γμ(K, ϕ, ε)] ≤ γ d exp(−γ c28ε
α) ≤ c29ε

−dα.

This gives
m0∑

m=1

c25(γm)d exp[−2γμ(K, ϕ, ε)] ≤ c30ε
−dα exp[−c31γ εα].
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The estimation of the second sum above remains unchanged. Hence, under the assumptions of
Theorem 2 and with γ = n, we can conclude that

P{δ(K, Z
(n)
K ) > ε} ≤ c32ε

−dα exp[−c33nεα].

We choose

C >
d + 1

c33

and put

εn :=
(

C log n

n

)1/α

.

Then
∞∑

n=1

P{δ(K, Z
(n)
K ) > εn} ≤

∞∑
n=1

c32

(
n

C log n

)d

exp(−c33C log n)

= c34

∞∑
n=1

(log n)−dnd−c33C (23)

< ∞. (24)

The Borel–Cantelli lemma gives

P{δ(K, Z
(n)
K ) > εn for infinitely many n} = 0;

hence,

P

{
δ(K, Z

(n)
K ) ≤

(
C log n

n

)1/α

for sufficiently large n

}
= 1.

This completes the proof of Theorem 2.

Proof of Theorem 3. Since K slides freely in some ball, say of radius R, there is a convex
body L with K + L = RBd (see [10, Theorem 3.2.2]). From the polynomial expansion of
Sd−1(K + L, ·) (see [10, Equation (5.18)]), it follows that Sd−1(K, ·) ≤ Sd−1(RBd, ·) =
Rd−1σ . Together with assumption (10) this shows that (8) is satisfied. Therefore, Theorem 2
yields

δ(K, Z
(n)
K ) = O

((
log n

n

)2/(d+1))
almost surely (25)

as n → ∞.
Let 0 < ε < c20 (with c20 as in Lemma 3). According to Lemma 3, we can choose

m = m(ε) ≥ c21ε
−1/2

points x1, . . . , xm ∈ bd K(ε) such that the segment joining any two of them intersects the
interior of K . Let n ∈ N. Suppose that δ(K, Z

(n)
K ) < ε. Then each point xi is strictly

separated from K by some hyperplane from Xn. Let Ai ⊂ Hd be the set of hyperplanes
strictly separating xi and K . By the choice of the points x1, . . . , xm, the sets A1, . . . ,Am
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are pairwise disjoint. Since Xn is a Poisson process, the processes Xn A1, . . . , Xn Am are
stochastically independent (see, e.g. [11, Theorem 3.2.2]). It follows that

P{δ(K, Z
(n)
K ) < ε} ≤ P{Xn(Ai ) ≥ 1 for i = 1, . . . , m}

=
m∏

i=1

P{Xn(Ai ) ≥ 1}

=
m∏

i=1

[1 − P{Xn(Ai ) = 0}]

=
m∏

i=1

(1 − exp[−�n(Ai )]),

where �n is the intensity measure of Xn. Since the assumptions on K in Lemma 2 are satisfied,
we can conclude that

�n(Ai ) = �n(HKxi ) − �n(HK)

= 2n

∫
Sd−1

[h(Kxi , u) − h(K, u)] ϕ(du)

≤ 2nc17ε
(d+1)/2.

This gives
P{δ(K, Z

(n)
K ) < ε} ≤ (1 − exp[−2c17nε(d+1)/2])m(ε).

Now we choose

ε
(d+1)/2
n = c log n

n

with

0 < c <
1

4c17(d + 1)
.

Then
P{δ(K, Z

(n)
K ) < εn} ≤ (1 − n−2c17c)m(εn)

with

m(εn) ≥ c21ε
−1/2
n = c21

(
n

c log n

)1/(d+1)

> c35n
1/(2d+2)

for sufficiently large n. With p := 2c17c and q := 1/(2d + 2) we have q > p and

(1 − n−2c17c)m(εn) <

(
1 − 1

np

)c35n
q

=
[(

1 − 1

np

)npnq−p]c35

≤ (e−c35)n
q−p

.

It follows that ∞∑
n=1

P

{
δ(K, Z

(n)
K ) <

(
c log n

n

)2/(d+1)}
< ∞.

From the Borel–Cantelli lemma we conclude that

P

{
δ(K, Z

(n)
K ) <

(
c log n

n

)2/(d+1)

for infinitely many n

}
= 0
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and, hence,

P

{
δ(K, Z

(n)
K ) ≥

(
c log n

n

)2/(d+1)

for almost all n

}
= 1.

Together with (25), this completes the proof of Theorem 3.

Finally, we construct a directional distribution exhibiting property (6) for a given convex
body K . We do that at this stage since arguments appearing in the previous proofs are employed.

As explained before (6), we assume that a decreasing sequence (εn)n∈N with limn→∞ εn = 0
is given. For n ∈ N, let Xn be a stationary Poisson hyperplane process with intensity n and
directional distribution ϕ, to be constructed.

The d-dimensional convex body K contains some ball touching the boundary; hence, there
exists a number r > 0 and a point x ∈ bd K such that x is contained in a ball of radius r

that is contained in K . Let N(x) be the unique outer unit normal vector of K at x, and let
y = x + εN(x). Let n ∈ N, and suppose that δ(K, Z

(n)
K ) < εn. Then the point y is strictly

separated from K by some hyperplane of Xn. Similarly as in the proof of Theorem 3, this
yields

P{δ(K, Z
(n)
K ) < εn} ≤ 1 − exp[−2nεnϕ(Sn)]

with

Sn :=
{
u ∈ S

d−1 : 〈u, N(x)〉 ≥ r

r + εn

}
.

It is easy to construct an even, positive measurable function g on S
d−1 such that the measure

ϕ defined by dϕ = g dσ is a probability measure and that

2nεnϕ(Sn) < |log(1 − n−2)|
for all n ∈ N (for example, g can be a suitable constant on Sn\Sn+1). The directional distribution
ϕ then satisfies

1 − exp[−2nεnϕ(Sn)] <
1

n2

and, hence,
∞∑

n=1

P{δ(K, Z
(n)
K ) < εn} < ∞.

As in the proof of Theorem 3, this yields (6).
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