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QUANTUM DOUBLE FINITE GROUP ALGEBRAS
AND LINK POLYNOMIALS

I. TSOHANTJIS AND M.D. GOULD

Unitary representations of the braid group and corresponding link polynomials
are constructed corresponding to each irreducible representation of a quantum
double finite group algebra. Moreover the diagonal form of the braid generator is
derived from which a general closed formula is obtained for link polynomials. As
an example, link polynomials corresponding to certain induced representations of
the symmetric group and its subgroups are determined explicitly.

1. INTRODUCTION

A central problem in the theory of knots is the classification of topologically equiv-
alent links [13]. This task is facilitated through the introduction of link polynomials
which determine a topological invariant for knots. This approach dates back to the
pioneering work of Alexander [2] and Markov [16]. An alternative, but completely
compatible, geometric approach was also developed by Reidemeister [17] based on the
application of certain operations on links called Reidemeister moves.

The recent work of Jones [12] has revealed a remarkable connection between knot
theory and exactly solvable models in statistical mechanics [3, 14]. This connection
arises through the Yang-Baxter equation. Solutions to this equation give rise to exactly
solvable lattice models and at the same stroke afford a representation, in the spectral
parameter limit, of the braid group from which link polynomials can be obtained. A
systematic procedure for obtaining solutions to the Yang-Baxter equation came with
the introduction of quasi-triangular Hopf algebras [4], and quantum groups in particular
[4, 11].

It is now generally recognised [18, 20, 21] that one can obtain a representation
of the braid group and corresponding link polynomial from each irreducible represen-
tation of a quasi-triangular Hopf algebra. The representation theory and applications
of quantum groups in particular have been extensively studied recently [4, 11, 18, 21,
6, 7]. Here we investigate link polynomials arising from quantum double finite group
algebras and their representations.
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178 I. Tsohantjis and M.D. Gould [2]

Corresponding to any finite group G we obtain, through the quantum double con-
struction of Drinfeld [4], a quasi-triangular Hopf algebra of dimension |£7|2 called the
quantum double of G and denoted D(G). This paper is a continuation of a previous
investigation [8], herein referred to as / , in which the irreducible (unitary) represen-
tations of D(G) and corresponding characters were obtained. Below we apply these
results to the explicit construction of link polynomials arising from certain induced
representations of a finite group.

Unlike the case for quantum groups, representations of the braid group constructed
in this way are shown to be unitary. Moreover, it is demonstrated that the braid
generator can always be diagonalised on V ® V, V an arbitrary irreducible D{G)-
module, and a generalisation of the Reshetikhin form of the braid generator, previously
derived for quantum groups [18, 10], is obtained. As an application, a general closed
formula is determined for link polynomials.

The structure of the paper is as follows. Section 2 gives a brief introduction to some
aspects of the braid group. This is followed up in Section 3 with an outline of the role
of quasi-triangular Hopf algebras in the construction of braid group representations
and link polynomials. In Section 4 quantum double finite group algebras D(G) are
introduced and a brief summary of the results from / is given. In Section 5 we consider
link polynomials arising from the irreducible representations of D(G): in particular the
diagonalisability of the braid generator is established. We conclude in Section 6 with an
explicit example arising from the symmetric groups SN (N ^ 3) and their subgroups.

2. BRAID GROUP AND LINK POLYNOMIALS

We begin with the definition of an n-hraid which is constructed as follows. Consider
two rows of n points, numbered 1, . . . , n , so that the ith point of the first row is
directly above the ith point of the second. Then connect each point of the upper row
with one and only one point of the lower one allowing over and under crossings amongst
the connecting strings. The configuration so obtained is called an n-braid (see Figure
1). The trivial n-braid is the configuration in which the ith point of the upper row is
connected with the ith point of the lower one, for all i = 1, . . . , n. By convention, we
number the strings with the same number as the one assigned to their end points on
the upper row.

We introduce an elementary operation on n-braids which consists of making an
intersection of the ith string with the (i + l)st such that the ith string passes over the
(i + l)st. Obviously there are n — 1 such operations and to each one of them we assign
a generator <Ti, 1 ^ i < n (see Figure 2a). To the inverse operations we assign the
inverse generators ff^1, 1 ^ i < n (see Figure 2b). Any configuration can be obtained
from the trivial braid by successive applications of these operations and can thus be
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n - 1 n

Figure 1

represented as a word in the generators af* .

- 1

Figure 2 a Figure 2b

The n — 1 generators ffj and their inverses generate an infinite discrete group called
the braid group, denoted Bn, with identity given by the trivial braid. It is crucial to
observe that in general the expression of a braid configuration in terms of a word 9 is
not unique. We thus endow the braid group Bn with additional relations between the
generators <r<, which guarantee the equivalence between different words representing
the same braid configuration. These relations read as follows:

O~iO~i = i

(1)

and are considered as the defining relations of the braid group Bn •
For each 6 G Bn we let 0 denote the closure of the braid represented by 8:

obtained by joining opposite ends of the braid together. The diagram so obtained is
called a link diagram and may be considered as the projection (or shadow) of a link
onto the plane. Any closed braid represents a link and by Alexander's theorem [2]
every link is represented by a closed braid. It is important to note however, that the
representation of a link as a closed braid is not unique.

https://doi.org/10.1017/S0004972700016270 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016270
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The problem of non-uniqueness of this representation was resolved by Markov [16]
who defined two types of operations amongst braids giving the same link, which trans-
form one braid into the other. These operations are:

(I) 8T)^T)0, 0,T]£Bn

(ii) e-ea*^, ezBn^cBn

and are called Markov moves.

The process of classifying topologically equivalent (or ambient isotopic) links, with-
out the use of the braid group, can be highly tedious. The original approach of Rei-
demeister [17] involves the so-called Reidemeister moves which transform equivalent
links into each other by continuously deforming the link diagram in a particular way
without tearing the strings. The introduction of the braid group affords an elegant al-
gebraic method of constructing topological invariants which facilitate the classification
of equivalent links.

A central role in the construction of such invariants is played by the Markov trace
which is defined as a mapping (p: Bn —* C with the following properties:

(I) <p(6r,) = v{n$)t W,V G Bn

where z = y>(<Tn_i), ^ = y ( * 7 ' n - i ) -

A Unk polynomial L(0 ) , tf G 5 n , may then be constructed by setting

(3)

where e[6) is the sum of the exponents of the ffjs appearing in the word 6. Lid) is

clearly a topological invariant for links since it satisfies the following relations

W G #n-i C Bn

which are a direct consequence of the properties (2) of the Markov trace.

Well known examples of such link polynomials are afforded by the Alexander [2]

and Jones [12] polynomials. A large class of link polynomials is now known mainly as

a result of the successful attempts to construct representations of the braid group and
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corresponding Maxkov traces from exactly solvable models [14] and representations of
quantum groups and supergroups [18, 20, 21]. We now briefly outline the procedure
for constructing link polynomials corresponding to any finite dimensional irreducible
representation of a quasi-triangular Hopf algebra. We then focus attention on the
important special case of quantum double finite group algebras.

3. QUASI-TRIANGULAR H O P F ALGEBRAS AND LINK POLYNOMIALS

Let A be a Hopf algebra over C, with identity 1 G A, coproduct A : A —* A® A,
counit e: A —• C and bijective antipode 5 : A —> A. For the full defining relations of a
Hopf algebra we refer the reader to [19, 1]. Following Sweedler's sigma notation [19],
we write

J](1)«)a(2>) Vo G A

in terms of which the counit and antipode properties axe expressible

(4)
e(a) = Y

(«)
Next we introduce the twist map T: A®A—*A®A defined by

T(a®b) = b®a, Vo,5eA.

Then it is known [19] that A also constitutes a Hopf algebra under the opposite co-
product A T = T • A with antipode S" 1 and counit e. In the case that A T = A we
call A cocommutative: it can be shown [19] that if A is commutative or cocommuta-
tive then S2 = I, the identity map on A. Following Drinfeld [4] we can now define a
quasi-triangular Hopf algebra as follows:

DEFINITION 3.1: A Hopf algebra A is called qucui-triangular if there exists an

invertible element

(5) R = ^2 tn ® bt G A ® A
i

satisfying

(6) AT(a)R = iZA(o), Vo G A

and (A®I)R = Ri2Riz, (I ® A)R =

where we have adopted the usual convention

1, Ria = Ea,®l®6f etcetera
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182 I. Tsohantjis and M.D. Gould [6]

REMARKS. If A is a quasi-triangular Hopf algebra with canonical element R, then
RT = T • R is easily seen to satisfy

(7) A(a)RT = RTAT(a), Va e A

and (AT ® l)RT - RT2Rft> U ® AT)RT = RTSR.T2

so that A also constitutes a quasi-triangular Hopf algebra under the opposite coproduct
A T with canonical element RT.

A direct consequence of the above definition is that the canonical element R, called
the universal .R-matrix, satisfies the Yang-Baxter equation

(8) R12R13R23 = R23R13R12

of importance in the theory of exactly solvable models in statistical mechanics [3, 14].
Thus, corresponding to each irreducible /1-module V, a solution to the Yang-Baxter
equation on V ® V ® V is thereby obtained. As seen below, equation (8) is also
responsible for the connection with the braid group and link polynomials.

A large class of such algebras is afforded by the quantum double construction of
Drinfeld [4, 8] whereby a quasi-triangular Hopf algebra is manufactured (under certain
mild conditions) from any Hopf algebra and its dual. Important examples of quantum
double Hopf algebras are afforded by quantum groups, which have been extensively
studied recently [4, 11, 18, 21, 6, 7], and quantum double finite group algebras [8].
The representation theory of these latter algebras was investigated in [8] where the
universal .R-matrix was also determined in fully explicit form. Below we utilise these
results to obtain link polynomials arising from certain induced representations of a finite
group.

Returning to the general case, let A be a quasi-triangular Hopf algebra with canon-
ical element R. Following Drinfeld [5], if R, as given by equation (5), has inverse

then it can be shown that

(9O)

has inverse

(9*)

and satisfies
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[7] Link polynomials 183

(10a) S2{a)=uau-\ Va G A

The element u plays a crucial role in the construction of invariant bilinear forms and

central elements [10] for A.

Throughout, given a finite dimensional irreducible A-module V\, we let ir\ be the

representation afforded by VA and set

(11) du[A]=tr7rA(u)

herein called the u-dimension of VA. Recall that the centre C of A is given by

C = {c G A | ca = ac, Vo G 4 } .

The role of the element u in the construction of central elements is revealed in the
following result proved in [10]:

THEOREM 3 . 1 . If w G A ® End VA satisfies

)) Va G A

with I the identity map on A, then

belongs to the centre of A. Moreover the eigenvalue (c)^ of c on an irreducible module

VM is given by

COROLLARY. The elements

belong to the centre of A.

PROOF: In view of equations (6, 7) the elements

satisfy the condition of the theorem from which it follows that

are central elements. u
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REMARKS. The proof of Theorem 3.1 is a direct consequence of equation (10a) satisfied
by u. This relation clearly determines u uniquely modulo the set of invertible central
elements, herein denoted Ci. Note that 5 ( u - 1 ) satisfies (10o) and thus uS(u) is an
invertible central element. Any element of Ciu may be used in place of u for the
construction of central elements. In particular if S2 = I, the identity map on A, as is
the case for quantum double finite group algebras, it is convenient to take the identity
element 1 G A in place of u.

To see the connection with the braid group let V = V\ be a finite dimensional
irreducible A-module with non-zero it-dimension. Let P be the permutation operator
on V ® V defined by

Pv ®w — w®v, Vv,weV

and set

(12) <r = PR.

Here and below we regard elements of A as operators on V.

Then equation (6) implies

(13 a ) crA(a) = A(a)<r, Vo G A

and the Yang-Baxter equation (8) satisfied by R on V® F ® V may be written [4, 11 ,
18, 20, 21]

(136 ) ( / ® <r)(<r <g> / ) ( / ® a) ~ (a ® / ) ( / <g> <r)(<r ® / ) .

Equation (13 „) states that er and its inverse <r~1 = R~XP are invariants acting on
V <g> V. The next lemma then follows from Theorem 3.1.

LEMMA 3 . 1 . The operators

(14) C

where T2 denotes the partial trace taken over the second factor of the tensor product
space, are A-invariants [10] acting on V with eigenvalues given by

(15) ZA ~
7A =

respectively.

Turning our attention to the nth-rank tensor product space

Vn = V ® V ® . . . <g> V, (n factors)
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equation (13 j ) implies that the operators ffj,^1 € End(V n ) denned by

(16) a?1 = I ® •.. ® I®a ® I ® ... ® f, l < t < n
(t-l) (n-i-1)

satisfy the defining relations (1) of the braid group and thus give rise to a representation
of Bn: throughout, for notational simplicity, we identify elements of Bn with their
(matrix) representatives on Vn. We are now in a position to construct a Markov trace.

THEOREM 3 . 2 . <p: Bn -* C, defined by

<p{0) = tr(u®n0)/tr{u®n), 8 € Bn,

where the trace is taken over the n-fold tensor product space, satisfies the defining

relations (2) of a Markov trace with

(17) z = jA/d,[A], Z = 7A/<MA].

PROOF: By definition, on V ® V we have

(18) a2 = RTR

and hence, from equation (10^),

u ® u = A(u)<72 = a2 A(u).

It follows that u®u commutes with er and hence u®n must commute with the elements
of Bn acting on V™. From the properties of trace it follows immediately that

H>(<h) = %>M)> Vfl, r, € Bn

which is property (I) of the Markov trace.

As to property (II) we have, for any 0 € Bn-i C Bn,

where t r n _ i represents the trace taken over the first (n — 1) factors of the tensor
product space Vn and rn is the partial trace taken over the last factor space. Now

and, using Lemma 3.1,

https://doi.org/10.1017/S0004972700016270 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016270


186 I. Tsohantjis and M.D. Gould [10]

Hence substituting into equation (*) we obtain

and similarly )

with z, z as in equation (17). Q

Utilising the above Markov trace and equation (3), we immediately arrive at:

THEOREM 3 . 3 .

where e(8) is the sum of the exponents of the ai's appearing in 6, defines a Hnk

polynomial.

In this way link polynomials may be obtained corresponding to any finite dimen-
sional irreducible representation of a quasi-triangular Hopf algebra. Below we investi-
gate in detail link polynomials arising from quantum double finite group algebras.

4. QUANTUM DOUBLE FINITE GROUP ALGEBRAS

In this section we briefly summarise the results of paper I: we employ the same
notation and conventions throughout. Let A denote the group algebra of a finite group
G over the complex field C. Then A becomes a co-commutative Hopf algebra with
coproduct, antipode and counit respectively defined by

(19) A(5) = 5 ® 5 ) S{g) = g-\ e(g) = 1, V5 G G

which we extend linearly to all of A in an obvious way.

The dual space A* has a basis of elements g*, g € G, defined by

(g*,h) = S(g,h), VAGG

and becomes a commutative algebra with product

(20) g*h* = 6(g,h)g\ Vg,heG.

A* then inherits the structure of a Hopf algebra from that of A with coproduct Ao,
antipode So and counit Co given respectively by [8]

(21.) Ao(g')

(21») So(g') = (g-1)*, eo(g') = 6(g, 1), Wg e G
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[11] Link polynomials 187

where 1 denotes the identity element of G and A. We note that the identity of A* is
given by the counit e on A which is expressible

g€G

In view of equation (21) we have

= e<g>£, 50 (e)=e, eo(e) = 1.

We may now introduce the quantum double D(G) of the group algebra A which
is the \G\ -dimensional vector space spanned by all free products

gh\ g,heG

which becomes an associative algebra with the definition

h'g = gig-'hg)*.

Following the quantum double construction [4, 8], D(G) then becomes a quasi-
triangular Hopf algebra with coproduct A , antipode S and counit e given respectively
by

A(gh*) = A(5)Ao(/0 = I X

( 2 2 ) ?(gh-) = So(h*)S(9) = ( f t - 1 ) ^ - 1 = g-

e(gh*) = e{g)eo(h*) = S(h, 1), V5) he

The corresponding canonical element R is given by [8]

(23O) R

which necessarily satisfies the Yang-Baxter equation (8).

It can be shown [4] that the iZ-matrix (23 o ) has inverse

(230 R-1 = (S®I)R=
gea

as may be verified directly. As in / , we here regard A and A* as subalgebras of D(G)
by identifying g • e and 1 • g* with g, g* respectively, for all g £ G. We note that the
antipode S satisfies

(24) S2 = I,
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/ the identity map on D(G), so that D[G) is an xnvolutory Hopf algebra [15]. The

identity element of D(G) is given by 1 • e which we identify with l £ G .

We now say something about the representation theory of D(G). Following / , we

have:

DEFINITION 4.1: A finite dimensional D(G) module V is called unitary if it can
be equipped with an inner product ( , ) such that for all g, h G D{G)

(gh*v, w) = (v, li'j-'w), Vv,w G V.

D
Equivalently, if ir is the representation of D(G) afforded by V, then V is called

unitary if it can be equipped with an inner product such that

(25) *{h'g)* = *{g-lh*)

where \ denotes Hermitian conjugate. The following result was proved in / :

LEMMA 4 . 1 . Every Unite dimensional D{G) module is equivalent to a unitary
one.

It follows, from standard arguments, that every finite dimensional D[G) module
is completely reducible. In particular we have [8]:

THEOREM 4 . 1 . D(G) is a semi-simple of algebra..

The irreducible Z?(G)-modules were classified in / and may be constructed as
follows. Let Ck (1 ^ k ^ n) denote the conjugacy classes of G with C\ = {1} the
conjugacy class of the identity 1 G G. For each k = 1, . . . , n choose a fixed conjugacy
class representative gk G Cjt and let Zk be the centraliser subgroup of gt; namely

Zk = {h G G | hgk = gkh}.

We denote the group algebra of Zk by Ak: then [8]

dimAk = \Zk\ = \G\/\Ck\.

For 8 G Ck we choose a fixed T, G G such that

a = T.gtr'1;

for simplicity when s = gk we take T, = 1. Given an irreducible ^-module V£ we
have the corresponding induced j4-module

(26) Vkta

which is spanned by vectors

v{s) = r. ®v, veV*, s£Ck.
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[13] Link polynomials 189

Then VJt|Q becomes a D(G) module under the action defined by [8]

(27) gh*v{s) = S(h,

With this construction we have [8]:

THEOREM 4 . 2 . Vjfc)a is an irreducibie D(G)-module. Moreover every irreducible

D(G) module is isomorphic to one of the V j i a .

Following I, it can be shown that there is in fact a 1 — 1 correspondence between
the irreducible Z)(G)-modules and the induced modules Vjk>a as k runs through the
conjugacy classes of G and a through the non-isomorphic irreducible A*-modules.

It is worth noting that given an inner product ( , ) on V£, we have the induced
inner product on Vk,a defined by

and extended by linearity in an obvious way. With this definition it is easily verified
that Vk,a gives rise to an irreducible unitary D(G) module, provided V^ is assumed
unitary for Ak, in agreement with Lemma 4.1.

Hence, without loss of generality, we assume Vk,a gives rise to a unitary D(G)
module and we let irk,a be the matrix representation afforded by Vk,a. It follows from
equations (23) that the Ji-matrix

(28a) R =

has inverse

(28„)

and satisfies the Yang-Baxter equation (8) on Vj&* . We note that equation (25) implies
the Hermiticity condition

(29) Ri = R~\

so that R is a unitary operator.

To obtain the matrices (28) in more explicit form, introduce an orthononnal basis

{vi | 1 ^ i ^ <f*} for the irreducible At -module V"̂  so that the vectors

(30) 4
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give rise to an orthonormal basis for Vt,a: here and below, we follow / and set d£ =

dimV^, so that the irreducible D(G) module Vk,a has dimension

d[k,a} = \Ck\d
k
a.

We let Eyt (s,t€Ck) denote the corresponding elementary matrices with a 1 in
the (is, jt) position and zeros elsewhere.

According to equation (27) the action of D(G) in the basis (30) is given by [8]

gh'vWt = S(h, a)*-

where ir* is the representation of Ak afforded by V£: here we have adopted the
convention, maintained throughout the paper, of summing over repeated indices. We
thus arrive at the following construction for the matrix representation 7rjtiQ in the basis
(30):

(31) **.-(**•),-«,.•. = *(*> *)*(*> gsg-'Kirr'gr.)...

Substituting equation (31) into equations (28) we arrive at the following explicit
construction for the .R-matrices (28) in terms of elementary matrices [8]:

(32)

,,teck

In particular when a = to, corresponding to the identity representation of Ak , equations
(32) reduce to the |C*|2 x |Cjt| matrices given by

R= £ E;U~1®E;

(33) ,
R = 2^ Et ®E.-

;t€Ck

Following Section 3, we may use the above i2-matrix formulae to construct explic-
itly link polynomials corresponding to each irreducible module Vk,a • This problem is
investigated in detail in Section 5 below. We first require some results on the character
theory of D(G) and tensor product decompositions.

We define the character Xk,a , corresponding to the irreducible module Vk,a, in the
usual way; namely

XkAa) = tr **,«(«»), vo e D(G).
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[15] Link polynomials 191

From equation (31), we have immediately

( 0, s i Ck

[ S(a, gag ^ X ^ T . ^gr,), seCk

where Xa ls the character of the -A^-module Vjf. Following / , if we denote the cen-
traliser subgroup of s £ G by Z(s), then equation (34) implies

(35) XkAas*) = 0, unless g € Z{s).

As for the case of finite groups, we may now construct projection operators onto
the irreducible D(G) modules Vk,a according to [8]

(36) £»- = % r

d[k, a] r^ ^-v / - i »\ *

These operators form an orthogonal set of idempotents, adding up to the identity, and

spanning the centre C of D(G). This implies, in particular, the following [8]:

THEOREM 4 . 3 . The characters Xk,a satisfy the first orthogonality relation

) = \G\sklsaP.

REMARKS.

(1) It can be shown'[8] that the above characters also satisfy a second orthogonality
relation but this will not be required below.

(2) In the special case (fc, a) = (1, to) corresponding to the identity representation
of D(G), where to here refers to the identity representation of G = Z\, the central
idempotent (36) reduces to

and determines a left integral [19] in D(G).

Finally, for later use we note that given two irreducible modules Vjfeia, Vitp their
tensor product obviously becomes a D[G) module under the action determined by
the coproduct A . We write the decomposition of this tensor product module into
irreducible submodules as

where raj,-, € Z+ denotes the multiplicity of the irreducible module Vjn in the tensor
product space. We have:
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LEMMA 4 . 2 .

PROOF: It follows from Lemma 5.2 of I that

On the other hand, writing t = TtgkT^1 and using the invariance properties of characters
[8], we have

Substituting into the sum above and replacing s,g with r^srt, r^grt respectively,
we arrive at

1 '

which is sufficient to prove the result. D

REMARK. It is worth noting that 7nJt7 = 0 unless

Cj C Ci.Ck.

5. LINK POLYNOMIALS FROM D(G) AND DIAGONALISATION OF a

Throughout we let V = V*|Q be a fixed, but arbitrary, irreducible D(G)-module
and we let P be the permutation operator on V ® V considered in Section 3. In view of
equation (32) we obtain the following form for the braid generator (12) and its inverse
on V ® V, with respect to the orthonormal basis (30) for V:

(37)
*= E ^(v
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In the case a = a0 corresponds to a one-dimensional representation of Zk, these

expressions simplify to

(38.)

*=

In particular when a = io, corresponding to the identity representation of Zk, we
obtain [see equation (33)]

The above representation of the braid generator a, as we have seen, gives rise
to a representation of the braid group Bn on V®n. We may now proceed to define a
Markov trace and corresponding link polynomial as described in Section 3. Throughout,
we follow the convention of Section 3, and identify the elements of Bn, for simplicity,
with their matrix representatives on V®n.

The element u and its inverse of equations (9), in this case, are given by

(39)
I

which can be shown directly to satisfy equations (10). Moreover u ,«~ x are now central
elements: we denote their eigenvalues on V = V*iQ by (u*1)*,,, respectively. They are
related to the eigenvalues

of the Zjt-invariants g^1 respectively on the irreducible .^-module Vj}, by the following

lemma.

LEMMA 5 . 1 .

PROOF: Observe that

*"r*,a(«) = {u)k,ad[k, a].
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On the other hand, from equation (39), we have

trirk<a(u) =
9GG

= \Ck\xk
a(9k1)=d[k,a)/(gk)a

from which the result follows. D

Since u reduces to a scalar multiple (u)i,a = {^t)^1 of the identity on V = Vk,a,
the u-dimension of equation (11) reduces to

<fn[fc, a] = (u)kiad[k, a] .

The eigenvalues fk,a, 7*,a respectively of the invariants (14) are now given explicitly
by:

LEMMA 5 . 2 .

lk,a = 1, 7fc,a = (9k)Z2-

P R O O F : We have

In view of equation (15), we thus have

7fc,a = W®v[(u ® u)o-]/du[fc, a] = 1

a] =

which is sufficient to prove the result.

For the case at hand, Theorem 3.2 thus reduces to (notation as before)
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THEOREM 5 . 1 .

v{0) = ir{0)/(d[k, a])n, 8 G Bn

satisfies the defining relations (2) of a Markov trace with

z = {gk)/d[k,a], z = (g^)Jd[k, a].

The link polynomial of Theorem 3.3 now becomes

(40) L(0)=(d[k,a])n-1(gk)Z
eW<p(8), 6 e Bn

which enables families of link polynomials to be constructed corresponding to each
irreducible X)(G)-module VJt)Q. Such link polynomials may be directly evaluated with
the help of the characters of D(G).

We now demonstrate, for each irreducible D(G) module V = Vk,a> that a may
be diagonalised on V ® V and obtain an analogue of the Reshetikhin form of the braid
generator, obtained previously for quantum groups [18, 9]. This diagonal form of the
braid generator <r is well known [18, 21, 9] to be invaluable for the explicit construction
of link polynomials and for the determination of their generalised Skein relations, as
seen below.

The important point is that a, given by equation (12), satisfies

<rt = (PR?

and thus is a unitary operator: this is a direct consequence of the unitarity (29) of the
.R-matrix (28). In particular a is diagonalisable on V ® V with eigenvalues lying on
the unit circle in the complex plane: in fact it turns out that the eigenvalues of cr are
all roots of unity. From the point of view of the braid group, the matrix representation
(16) thus gives rise to a unitary representation of Bn.

Since a and its powers commute with the action of D(G) on V ® V, we may
decompose the tensor product space into irreducible £>(G)-modules on which a reduces
to a scalar multiple of the identity. To determine the eigenvalues of cr, suppose Vj^ C
V ® V is an irreducible D(G) module on which <r takes the eigenvalue (<r)i,p- Then
we have, from equations (10, 18)

= (g,)0/{gk)
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Thus the allowed eigenvalues of a on V ® V are given by

(42) y 2

where we take that square root in the right hand side of the complex plane (including
the positive, but excluding the negative, imaginary axis). Following the quantum group
case [18, 9], we refer to the phase ±1 occurring in equation (42) as the •parity of the
eigenvalue.

We let W± be the submodules of V ® V spanned by eigenvectors with parity ±1
respectively: since a is diagonalisable we have the decomposition

V®V = W+&W-.

We let .P[±] be the projection operators onto the submodules W± respectively: since
a is a Z)(G)-invariant, these projections commute with the co-product action of D(G)
on the tensor product module. We write the decomposition of W± into irreducible
submodules according to

(43)

where rnfp is the multiplicity of Vj^ in W± respectively. We clearly have

(44) mt,

where rn^p is the multiplicity of V\£ in Vh,a ® Vk,a as given in Lemma 4.2.
We let

be the projection operators onto the primary submodules occurring in the decomposition
(43). In view of the remarks above, we arrive at the following spectral decomposition
for <7 and its powers:

THEOREM 5 . 2 .

*m = (9k)Zm Y.W2 (P& + (-l)mJfo) , m e Z.

1,0

COROLLARY.
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Since <r and its powers trm are D(G)-invariants acting on V ® V it follows, from
Theorem 3.1 and the invariance of u, that the operators

(45) Cm = T2{<rm)

are D(G)-invariants acting on V = VfclQ: here, as before, r^ denotes the partial trace
over the second factor of the tensor product space. Their eigenvalues {Cm)k,a a r e given
by

THEOREM 5 . 3 .

(Cm)k,a = (9k)-
m

1,0

PROOF: In view of Theorem 5.2, we have

(Cm)k,ad[k, a] = trv®v(o-m)

The result is then seen to follow from

D
The multiplicities mf^ (possibly zero) may be determined explicitly with the help

of equation (44) and the following result:

LEMMA 5 . 3 .
(9k)+

ml,f3 ~ ml,0 =

where

(46)

PROOF: In view of equation (36) we have

«ec, g

\G\
1 ' < 6 G J £ C , g

https://doi.org/10.1017/S0004972700016270 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016270


198 I. Tsohantjis and M.D. Gould [22]

from which we obtain

«rv.v[«rS(E,,,)] = ^ f
1 ' .ec,

0

On the other hand, from Theorem 5.2, we have

It follows that

with

Finally using t = T^~1gicTt, together with the invariance properties of characters,
we arrive at

which is sufficient to prove the result.

REMARKS.

(1) In the case m ^ = 1, fiitp as above in fact gives the eigenvalue of a on

(2) From Theorem 5.3, the eigenvalues of the even and odd order invariants (45),
may thus be expressed

( 4 5 < ) " ai'm
(C2m+1)k,a = { 9 k ) - a

2 m 4 ^ \
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with /x/,/9 as above and m\^ as in Lemma 4.2. U

We note that Theorem 5.2 implies the following identity satisfied by the braid
generator a:

Here the prime signifies that we retain only those factors corresponding to mfp ^ 0.
Expanding the left-hand side into powers of a we arrive at the identity

m-l

am - J^ at*' = 0
(=o

which leads to the generalised Skein relations for the link polynomials (40). For example,
with

0 = 0i<rJ™02j 61,82 G Bn

we have
m-l

L(6)= J^ a,
1=0

Finally, to illustrate the utility of this formalism, we now obtain a general formula

for L(8), when 0 is a braid of the following form:

(47) * = K)miKrj k.,)"*-1, rmez
where ( i l 5 , »n_i) is an arbitrary permutation of (1 ,2 , , n —1). From

Theorem 5.3, together with the definition (40) of L{0), it is straightforward to show
that

(48)

= (d[k, a)f-n(gk):
2^ mi J[ I Yitoi))/*" [™U + (-l)mim^)d[l, 0]

For example, for the trefoil knot 0« corresponding to

8t = ffj £5j ,

we obtain
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In what follows we shall apply the above proceedure to obtain link polynomials
arising from a certain irreducible unitary representation of D(SN) , SN being the sym-
metric group.

6. LINK POLYNOMIALS FROM D(SN), N > 4

Let C2 C Sff be the conjugacy class of transpositions with representative 52 =

(N — 1 N). The centraliser subgroup Zi of gv is given by

Z2 = Sff-2 X S2

with £2 = {1, 52} and SN-2 the natural subgroup. Note that

as required. We let V* denote the one dimensional module corresponding to the identity
representation of Z2 • Here we diagonalise a on the tensor product module ^2,1 ® Vz%\

where Vi.i denotes the irreducible D(SN) module induced by V?: the dimension of
this module is given by

d[2,l] = \C2\

In view of the remark proceeding Lemma 4.2, it is easily seen that the only D(SN)
modules occurring in the above tensor product are those of the form Vt>a where Ck is
a conjugacy class occurring in

C 2 C 2 =Ci UC3UC5.

Here C\ = {1}, C3 is the class of 3 cycles, and C5 is the class of 2 x 2 cycles: note that

where, as usual,

( )=—UTT M> O^m^N.
\mj m\(N-my.

As coset representatives we choose

gi=l, 93={N-2N-1N), gs = (N-lN)(N-2N-3)

respectively. The corresponding centraliser subgroups in this case are

Z\ = SN, ZS = SN-3 x Cz
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where SNS is the obvious subgroup with C3 = {1, gs, g^1} the cyclic group of order
3, and

Zs = (STV-4 x S2 x 52)(f)T.

Here Sjv-4 is the natural subgroup,

T = {{N - 1 N - 3){N -2N), {N-2N- 1)(N - 3 N)},

and the two 52 groups are given respectively by

S2 = {1,(N-SN- 2)}, 52 = {1, (N - 1 N)}.

It is worth noting that these groups have orders

\Z!\=N\, \Za\ = 3(N-S)\, \Z5\ = 8(N-A)\

in agreement with
\Zh\ = \G\/\Ck\.

For the problem at hand we are only concerned with three irreducible Z\ mod-
ules, denoted V£ (1 ^ a ^ 3), which give rise to the irreducible representations of
Z\ = SN with Young diagrams [N], [N — 1 1], [N — 2 2] respectively: these corre-
spond to the identity representation and the irreducible representations of dimensions
N — 1 and N(N — 3)/2 respectively. The corresponding irreducible D{SN) modules
Vi,a (1 ^ a ^ 3) have the same dimensions so that

d[l,l] = l, d[l,2]=N-l, d[l,Z] = ±N(N-3).

For the centraliser subgroup Z3 = SN-3 x C3 we let V£ (1 ^ a ^ 3) denote the
irreducible one dimensional modules corresponding to the identity representation of
SJV-3 and the three irreducible representations of the cyclic group C3 : their respective
characters are thus determined by

where w = e*21/3 . Finally we let V^ (a = 1,2) be the one dimensional modules corre-
sponding to the identity representation of Z5 and the one dimensional representation
with character determined by

[ l , g£ SJV-4 x S2 x 52
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respectively. The corresponding irreducible induced D(SN) modules Vjia (1 ^ a ^ 3),
Vs,a ( a = 1)2) have dimensions

d[5, a] = |C» | = ±N(N - 1)(JV - 2)(JV - 3), a = 1,2.

For a suitable choice of T, a straightforward calculation using Lemma 4.2 yields
the tensor product decomposition

v2li <g> v2,i = vltl © Vi,2 © ^i,s © v3)i © Vj,2 © v3<3 © vs,i © vSl2.

Since this decomposition is multiplicity-free, the eigenvalues of a on the irreducible
modules above are given the corresponding /x-values of equation (46) which are listed
below:

M3.2 = W, /X3,3 = W, / i S i 2 = - 1 .

We thus arrive at the following spectral decomposition in terms of the (central)
projections A(-Ejfc|Cr) acting on the tensor product space:

a = A(E1A) + A(Elt2)

+ ufA(E3t2) + wS(

In this case the eigenvalues of the invariants (45) are given by

(Cm)2,i = («*[1, I))"1 (d[l, 1] + d[l, 2] + d[l, 3] + d[3, 1]

+umd[3, 2] + o;"1^, 3] + «*[5, 1] + (- l )md[5, 2])

which, using the dimensions given above, simplifies to

Substituting into equation (48) then gives the link polynomial

for 9 a braid of the general form (47).
In this way we obtain an infinite family of link polynomials corresponding to each

integer N > 4. Replacing JV by a parameter q, it is possible that the above in fact
determines a one-variable link polynomial. It would be of interest to examine in further
detail such link polynomials arising from more general representations of D(SN) .
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REMARK. It is still an open problem as to whether the iZ-matrices (32, 33) can be

Baxterised to yield solutions of the parameter-dependent Yang-Baxter equation [3, 14,

11) occurring in statistical mechanics. Such parameter-dependent solutions would then

define exactly solvable models associated with certain induced representations of a finite

group. Further work along these lines is now in progress.
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