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QUANTUM DOUBLE FINITE GROUP ALGEBRAS
AND LINK POLYNOMIALS

I. TsoHANTJIS AND M.D. GouLD

Unitary representations of the braid group and corresponding link polynomials
are constructed corresponding to each irreducible representation of a quantum
double finite group algebra. Moreover the diagonal form of the braid generator is
derived from which a general closed formula is obtained for link polynomials. As
an example, link polynomials corresponding to certain induced representations of
the symmetric group and its subgroups are determined explicitly.

1. INTRODUCTION

A central problem in the theory of knots is the classification of topologically equiv-
alent links [13]. This task is facilitated through the introduction of link polynomials
which determine a topological invariant for knots. This approach dates back to the
pioneering work of Alexander {2] and Markov [16]. An alternative, but completely
compatible, geometric approach was also developed by Reidemeister [17] based on the
application of certain operations on links called Reidemeister moves.

The recent work of Jones [12] has revealed a remarkable connection between knot
theory and exactly solvable models in statistical mechanics [3, 14]. This connection
arises through the Yang-Baxter equation. Solutions to this equation give rise to exactly
solvable lattice models and at the same stroke afford a representation, in the spectral
parameter limit, of the braid group from which link polynomials can be obtained. A
systematic procedure for obtaining solutions to the Yang-Baxter equation came with
the introduction of quasi-triangular Hopf algebras [4], and quantum groups in particular
4, 11].

It is now generally recognised [18, 20, 21] that one can obtain a representation
of the braid group and corresponding link polynomial from each irreducible represen-
tation of a quasi-triangular Hopf algebra. The representation theory and applications
of quantum groups in particular have been extensively studied recently [4, 11, 18, 21,
6, 7]. Here we investigate link polynomials arising from quantum double finite group
algebras and their representations.
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Corresponding to any finite group G we obtain, through the quantum double con-
struction of Drinfeld (4], a quasi-triangular Hopf algebra of dimension |G| called the
quantum double of G and denoted D(G). This paper is a continuation of a previous
investigation (8], herein referred to as I, in which the irreducible (unitary) represen-
tations of D(G) and corresponding characters were obtained. Below we apply these
results to the explicit construction of link polynomials arising from certain induced
representations of a finite group.

Unlike the case for quantum groups, representations of the braid group constructed
in this way are shown to be unitary. Moreover, it is demonstrated that the braid
generator can always be diagonalised on V ® V', V an arbitrary irreducible D(G)-
module, and a generalisation of the Reshetikhin form of the braid generator, previously
derived for quantum groups [18, 10}, is obtained. As an application, a general closed
formula is determined for link polynomials.

The structure of the paper is as follows. Section 2 gives a brief introduction to some
aspects of the braid group. This is followed up in Section 3 with an outline of the role
of quasi-triangular Hopf algebras in the construction of braid group representations
and link polynomials. In Section 4 quantum double finite group algebras D(G) are
introduced and a brief summary of the results from I is given. In Section 5 we consider
link polynomials arising from the irreducible representations of D(G): in particular the
diagonalisability of the braid generator is established. We conclude in Section 6 with an
explicit example arising from the symmetric groups Sy (N 2 3) and their subgroups.

2. BRAID GROUP AND LINK POLYNOMIALS

We begin with the definition of an n-breid which is constructed as follows. Consider
two rows of n points, numbered 1, ...,n, so that the ith point of the first row is
directly above the ith point of the second. Then connect each point of the upper row
with one and only one point of the lower one allowing over and under crossings amongst
the connecting strings. The configuration so obtained is called an n-braid (see Figure
1). The trivial n-braid is the configuration in which the ith point of the upper row is
connected with the ith point of the lower one, for all i =1, ..., n. By convention, we
number the sirings with the same number as the one assigned to their end points on
the upper row.

We introduce an elementary operation on n-braids which consists of making an
intersection of the ith string with the (i +1)st such that the ith string passes over the
(i + 1)st. Obviously there are n — 1 such operations and to each one of them we assign
a generator o;, 1 € i < n (see Figure 2a). To the inverse operations we assign the
inverse generators o', 1 < i < n (see Figure 2b). Any configuration can be obtained
from the trivial braid by successive applications of these operations and can thus be
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Figure 1

represented as a word in the generators a',?tl .

] i+1 ] i+1

N
// %

i i+1 1 i+1
Figure 2a Figure 2b

The n—1 generators o; and their inverses generate an infinite discrete group called
the braid group, denoted B,,, with identity given by the trivial braid. It is crucial to
observe that in general the expression of a braid configuration in terms of a word 0 is
not unique. We thus endow the braid group B, with additional] relations between the
generators o;, which guarantee the equivalence between different words representing
the same braid configuration. These relations read as follows:

0i0; = 005, |i—j| >2
(1)

0i0i410; = 0i410:i0541, 1€i<n-1

and are considered as the defining relations of the braid group B,.

For each 6 € B, we let 8 denote the closure of the braid represented by 8:
obtained by joining opposite ends of the braid together. The diagram so obtained is
called a link diagram and may be considered as the projection (or shadow) of a link
onto the plane. Any closed braid represents a link and by Alexander’s theorem [2]
every link is represented by a closed braid. It is important to note however, that the

representation of a link as a closed braid is not unique.
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The problem of non-uniqueness of this representation was resolved by Markov [16]
who defined two types of operations amongst braids giving the same link, which trans-
form one braid into the other. These operations are:

(I) 67— 79, 6,7 € B,
(1) 6—6ck,, 6cB,,CB,

and are called Markov moves.

The process of classifying topologically equivalent (or ambient isotopic) links, with-
out the use of the braid group, can be highly tedious. The original approach of Rei-
demeister [17] involves the so-called Reidemeister moves which transform equivalent
links into each other by continuously deforming the link diagram in a particular way
without tearing the strings. The introduction of the braid group affords an elegant al-
gebraic method of constructing topological invariants which facilitate the classification
of equivalent links.

A central role in the construction of such invariants is played by the Markov trace
which is defined as a mapping ¢: B, — C with the following properties:

(I) ()0(07’) = ‘P(ﬂo): V8,n € B,
(2) (11) p(fon-1) = zp(9), V0 € B,_; C B,
90(00';11) =z¢(6), V0e B,_, C B,
where z = p(On-1), zZ= (p(cr;il).

A link polynomial L(a ) , 8 € B,,, may then be constructed by setting

(3) L(a) = (zi)_(""l)/z (E) o v(8), V8e B,

where e(8) is the sum of the exponents of the o}s appearing in the word 6. L(a) 1s

clearly a topological invariant for links since it satisfies the following relations
L(iﬁ) = L(Eb), V8, € B,
—t1 o~
L(Oo',,_l) = L(o), V6 € Ba_y C B

which are a direct consequence of the properties (2) of the Markov trace.

Well known examples of such link polynomials are afforded by the Alexander [2]
and Jones [12] polynomials. A large class of link polynomials is now known mainly as
a result of the successful attempts to construct representations of the braid group and
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corresponding Markov traces from exactly solvable models [14] and representations of
quantum groups and supergroups [18, 20, 21]. We now briefly outline the procedure
for constructing link polynomials corresponding to any finite dimensional irreducible
representation of a quasi-triangular Hopf algebra. We then focus attention on the
important special case of quantum double finite group algebras.

3. QUASI-TRIANGULAR HOPF ALGEBRAS AND LINK POLYNOMIALS

Let A be a Hopf algebra over C, with identity 1 € 4, coproduct A: A - A®A,
counit £: A — C and bijective antipode S: A — A. For the full defining relations of a
Hopf algebra we refer the reader to [19, 1]. Following Sweedler’s sigma notation [19],
we write

Aa) = Z M ®a?, Ya€ A
(a)
in terms of which the counit and antipode properties are expressible

a=Y aMe (a(z)) = Ee(aﬂ))a")
(a) (a)

(4) e(a) = z g (a(z)) - E S(a(l))a(z)_
(a)

Next we introduce the twist map T': A® A - A ® A defined by
T(a®b)=b®a, Va,b € A.

Then it is known [19] that A also constitutes a Hopf algebra under the opposite co-
product AT = T - A with antipode S™! and counit €. In the case that AT = A we
call A cocommautative: it can be shown [19] that if A is commutative or cocommuta-
tive then §% = I, the identity map on A. Following Drinfeld [4] we can now define a
quasi-triangular Hopf algebra as follows:

DEeFINITION 3.1: A Hopf algebra A is called quasi-triangular if there exists an
invertible element

(5) R=Eai®bi€A®A
satisfying

(6) AT(a)R = RA(a), Va€ A

and (A ® I)R = Rji2Rys, (I@ A)R = RisR;2

where we have adopted the usual convention

Ria = Za,-®b,'®1, Rys = Za;@l@b.' et cetera.
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REMARKS. If A is a quasi-triangular Hopf algebra with canonical element R, then
RT =T . R is easily seen to satisfy

(7) A(a)RT = RTAT(a), Vac A
and (AT®I)RT = R,RY,, (I® AT)RT = RLRY,

so that A also constitutes a quasi-triangular Hopf algebra under the opposite coproduct
AT with canonical element RT.

A direct consequence of the above definition is that the canonical element R, called
the universal R-matrix, satisfies the Yang-Baxter equation

(8) Ry2RysRes = RasRysRyg

of importance in the theory of exactly solvable models in statistical mechanics {3, 14].
Thus, corresponding to each irreducible A-module V', a solution to the Yang-Baxter
equation on V® V ® V is thereby obtained. As seen below, equation (8) is also
responsible for the connection with the braid group and link polynomials.

A large class of such algebras is afforded by the quantum double construction of
Drinfeld {4, 8] whereby a quasi-triangular Hopf algebra is manufactured (under certain
mild conditions) from any Hopf algebra and its dual. Important examples of quantum
double Hopf algebras are afforded by quantum groups, which have been extensively
studied recently [4, 11, 18, 21, 6, 7], and quantum double finite group algebras [8].
The representation theory of these latter algebras was investigated in [8] where the
universal R-matrix was also determined in fully explicit form. Below we utilise these
results to obtain link polynomials arising from certain induced representations of a finite
group.

Returning to the general case, let A be a quasi-triangular Hopf algebra with canon-
ical element R. Following Drinfeld (5], if R, as given by equation (5), has inverse

R'=) codcA®4,

3

then it can be shown that

(9.) u=> S(b:)a;
i

has inverse

@) wt = Y5 e

and satisfies

https://doi.org/10.1017/50004972700016270 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700016270

{7 Link polynomials 183
(105) S*(a) =uau™', Vac 4
(10s) Aw) = (v ®u)(RTR) .

The element u plays a crucial role in the construction of invariant bilinear forms and
central elements [10] for A.

Throughout, given a finite dimensional irreducible A-module Vj, we let m5 be the
representation afforded by V4 and set

(11) dy[A] = trma(u)
herein called the u-dimension of V5. Recall that the centre C of A is given by
C={c€ A]lca=ac, Vac A}.

The role of the element u in the construction of central elements is revealed in the
following result proved in [10]:

THEOREM 3.1. Ifw € A® EndV, satisfies
(I®m)A(d)w =w(I @7y )A(e), Vac A
with I the identity map on A, then
c=I@tr{{l ® ma(u)lw}

belongs to the centre of A. Moreover the eigenvalue (c), of ¢ on an irreducible module
V. is given by
du[p](c)y = trv,ov, (v @ u)w).

COROLLARY. The elements
A =Itr{{1 @ m(w)](RTR)"}

belong to the centre of A.

PROOF: In view of equations (6, 7) the elements
wh = (I@m)(RTR)", meZ
satisfy the condition of the theorem from which it follows that
e = 1 ® tr{(1 ®ma(v))wp}

are central elements. 0
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REMARKS. The proof of Theorem 3.1 is a direct consequence of equation (10, ) satisfied
by u. This relation clearly determines u uniquely modulo the set of invertible central
elements, herein denoted Cr. Note that S(u~!) satisfies (10,) and thus uS(u) is an
invertible central element. Any element of Cru may be used in place of u for the
construction of central elements. In particular if §2 = I, the identity map on A4, as is
the case for quantum double finite group algebras, it is convenient to take the identity
element 1 € A in place of u.

To see the connection with the braid group let V = V, be a finite dimensional

irreducible A-module with non-zero u-dimension. Let P be the permutation operator
on V ® V defined by

Pr@w=wQ®v, Vo,weV
and set

(12) o = PR.

Here and below we regard elements of A as operatorson V.

Then equation (6) implies

(132) oA(a) = A(a)s, Va€ A

and the Yang-Baxter equation (8) satisfied by R on V ® V ® V may be written [4, 11,
18, 20, 21]

(13:) IQa)oe®NIQc)=(0cRI)NI®a)oQI).

Equation (13,) states that o and its inverse ¢! = R™!P are invariants acting on
V ® V. The next lemma then follows from Theorem 3.1.

LEMMA 3.1. The operators
(14) c=7n[1Q®u)s], t=n[1Qu)r ™},

where 12 denotes the partial trace taken over the second factor of the tensor product
space, are A-invariants [10] acting on V with eigenvalues given by

M = trvev((u @ u)o]/du[A]

(15) Fa = trvev[(u®u)‘7-1]/dﬂ[A]

respectively.

Turning our attention to the nth-rank tensor product space

VP=VRV®...0V, (nfactors)
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equation (133 ) implies that the operators o,0; ! € End(V™) defined by

(16) 0'=18..0I@RI1®...0I, 1<i<n

(i—1) (n—i-1)

satisfy the defining relations (1) of the braid group and thus give rise to a representation
of B,: throughout, for notational simplicity, we identify elements of B, with their
(matrix) representatives on V™. We are now in a position to construct a Markov trace.

THEOREM 3.2. ¢: B, — C, defined by
e(8) = tr(u®”9) /tr(ug"), 8 € B,

where the trace is taken over the n-fold tensor product space, satisfies the defining
relations (2) of a Markov trace with

(17) z= 7A/du[A]a E=7A/du[A]'
PRrOOF: By definition, on V ® V we have
(18) o*=RTR

and hence, from equation (10;),

uQ®u = Au)o? = a?Au).

It follows that u®u commutes with o and hence ©®® must commute with the elements
of B, acting on V™. From the properties of trace it follows immediately that

w(0n) = p(nd), V8,n€ B,

which is property (I) of the Markov trace.
As to property (II) we have, for any 6 € B,y C By,

* @(000-1) = trn_1[rn(u®"00,_1)]/trn_i[tn(u®")]

where tr,_;, represents the trace taken over the first (n —1) factors of the tensor
product space V™ and 7, is the partial trace taken over the last factor space. Now

72 (2®") = du[A]u®-1
and, using Lemma 3.1,
‘r,.(u®"0¢7,,_1) = ue("'l)ﬂrz[(l ® u)o)
B(n—1)g,

= ’YA’LL
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Hence substitut'ing into equation (*) we obtain

and similarly ¢(80,2,) = z4(6)

with z, Z as in equation (17). 1
Utilising the above Markov trace and equation (3), we immediately arrive at:
THEOREM 3.3.

" — —e(8)/2
£(8) = (@A) (w7 (1) (o), € B,
YA

where e(#) is the sum of the exponents of the o;’s appearing in 8, defines a link
polynomial.

In this way link polynomials may be obtained corresponding to any finite dimen-
sional irreducible representation of a quasi-triangular Hopf algebra. Below we investi-
gate in detail link polynomials arising from quantum double finite group algebras.

4. QUANTUM DOUBLE FINITE GROUP ALGEBRAS

In this section we briefly summarise the results of paper I: we employ the same
notation and conventions throughout. Let A denote the group algebra of a finite group
G over the complex field C. Then A becomes a co-commutative Hopf algebra with
coproduct, antipode and counit respectively defined by

(19) Alg)=9®g, S(g)=g7", e(g)=1, Vge@G

which we extend linearly to all of A in an obvious way.
The dual space A* has a basis of elements g*, g € G, defined by

(g%, h) = é(g, h)’ VheG
and becomes a commutative algebra with product
(20) g*h* =6(g, h)g*, Vg,h€G.

A* then inherits the structure of a Hopf algebra from that of A with coproduct Ag,
antipode So and counit €o given respectively by [8]

(21a) No(g) =Y (h'9)" @h* =S h* @ (gh7Y)"

heG hea
(21s) So(g*)=(¢7%)", eolg”) = 8(g,1), Vg€ @
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where 1 denotes the identity element of G and A. We note that the identity of A* is
given by the counit € on A which is expressible

E=Zg‘.

g€EG

In view of equation (21) we have
No(e) =e®e, So(e) =¢, eo(e)=1.

We may now introduce the quantum double D(G) of the group algebra A which
is the |G Iz-dimensional vector space spanned by all free products

gh‘: g,heG

which becomes an associative algebra with the definition
g =g(g " hg)".

Following the quantum double construction [4, 8], D(G) then becomes a quasi-

triangular Hopf algebra with coproduct A, antipode S and counit & given respectively
by

B(gh*) = Ag)Do(h*) = D g(k™'h)" @ gk
kEG
S(gh*) = So(h*)S(g) = (h?) g7 = g7 (gh7?g?)"
E(gh’) = e(g)eo(h*) = §(h, 1), Vg,h€G.

(22)

The corresponding canonical element R is given by [8]

(230) R= Zg@g'
g€eG

which necessarily satisfies the Yang-Baxter equation (8).
It can be shown [4] that the R-matrix (23, ) has inverse

(235) R'=@®NR=) g'ey",
geEG

as may be verified directly. Asin I, we here regard A and A* as subalgebras of D(G)
by identifying g-€ and 1- ¢g* with g, g* respectively, for all ¢ € G. We note that the
antipode S satisfies

(24) 5 =1,
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I the identity map on D(G), so that D(G) is an involutory Hopf algebra [15]. The
identity element of D(G) is given by 1-¢ which we identify with 1 € G.

We now say something about the representation theory of D(G). Following I, we
have:

DEFINITION 4.1: A finite dimensional D(G) module V is called unitary if it can
be equipped with an inner product ( , ) such that for all g,h € D(G)

gh*v, w) = (v, h*¢ 1w), Vv,we V.
( )= ( )

0

Equivalently, if 7 is the representation of D(G) afforded by V', then V is called
unitary if it can be equipped with an inner product such that

(25) n(h*g)' =m(g7'h")
where 1 denotes Hermitian conjugate. The following result was proved in I:

LEMMA 4.1. Every finite dimensional D(G) module is equivalent to a unitary

one.

It follows, from standard arguments, that every finite dimensional D(G) module
is completely reducible. In particular we have [8]:

THEOREM 4.1. D(G) is a semi-simple of algebra.

The irreducible D(G)-modules were classified in I and may be constructed as
follows. Let Cx (1 < k < n) denote the conjugacy classes of G with C; = {1} the
conjugacy class of the identity 1 € G. Foreach k=1, ..., n choose a fixed conjugacy
class representative gx € Cx and let Z; be the centraliser subgroup of g;; namely

Zy = {h € G| hgx = grh}.
We denote the group algebra of Z; by Ay: then (8]
dim A; = |Z,]| = |G|/ |Cal -
For s € Cx we choose a fixed 7, € G such that
8= -r,g,,-r,_l;

for simplicity when s = g, we take 7, = 1. Given an irreducible A;-module V* we
have the corresponding induced A-module

(26) Via=A®a, V2
which is spanned by vectors
v(s)=7,®v, veVE s€C.
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Then Vi,o becomes a D(G) module under the action defined by (8]

(7) gh*v(s) = 6(h, s) (1—1_, g'r.‘v) (9397?).

949
With this construction we have [8]:

THEOREM 4.2. Vi, is anirreducible D(G)-module. Moreover every irreducible
D(G) module is isomorphic to one of the Vi 4. '

Following I, it can be shown that there is in fact a 1 — 1 correspondence between
the irreducible D(G)-modules and the induced modules Vi, as k runs through the
conjugacy classes of G and a through the non-isomorphic irreducible Ax-modules.

It is worth noting that given an inner product ( , ) on V%, we have the induced
inner product on Vi, defined by

(w(t)’ v(s)) = 6(t’ 3)(“” v): Vv,w € V:’ s,t€Cy

and extended by linearity in an obvious way. With this definition it is easily verified
that Vi . gives rise to an irreducible unitary D(G) module, provided V.* is assumed
unitary for A;, in agreement with Lemma 4.1.

Hence, without loss of generality, we assume Vi gives rise to a unitary D(G)
module and we let 7 o be the matrix representation afforded by Vi o. It follows from
equations (23) that the R-matrix

(284) R=) mka(g)® mhalg”)
geEG

Z Tr,a(8) ® Tr,a(s™)

s€C,

has inverse

(285) R™? z T (871) @ M a(s*)

2€C,

and satisfies the Yang-Baxter equation (8) on VE‘: . We note that equation (25) implies
the Hermiticity condition

(29) Rt =R,

so that R is a unitary operator.

To obtain the matrices (28) in more explicit form, introduce an orthonormal basis
{vi |1 < i < dE} for the irreducible Ax-module V* so that the vectors

(30) vi(s), s€Ci, 1<igd*

(-3
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give rise to an orthonormal basis for Vi q: here and below, we follow I and set df =
dim V¥, so that the irreducible D(G) module V;, has dimension

dlk, o] = |Cx|dé.

We let EJ‘; (s,t € Cx) denote the corresponding elementary matrices with a 1 in
the(is, jt) position and zeros elsewhere. '

According to equation (27) the action of D(G) in the basis (30) is given by [8]
gh*v(s); = é(h, s)m§ (g;;_xyvu)j‘v(gay‘l)j

where 7% is the representation of Ay afforded by V%: here we have adopted the

convention, maintained throughout the paper, of summing over repeated indices. We

thus arrive at the following construction for the matrix representation m o in the basis
(30):

(31) Wk,a(gh*)jg,(. = 6("" 3)6(t1 939—1)7": (Tt—lgr')ji'

Substituting equation (31) into equations (28) we arrive at the following explicit
construction for the R-matrices (28) in terms of elementary matrices [8]:

_ k -1 ’) ste~?! ls
R = Z Ty (T.t'_lsTg)J,l, E}| ® E;}
8,t€Cy,

s .—1
-1 _ Ef_—1 -1 j s s s
R = Z Ty (7'._1“.9 'rt)j‘.E“ ® E;;.
l,teck

(32)

In particular when a = 4, corresponding to the identity representation of Ay, equations
(32) reduce to the |Cx|* x |Cx|* matrices given by

R= Y E* ®E:
l,teck

R'= Y ET“gE.
8,1€EC,

(33)

Following Section 3, we may use the above R-matrix formulae to construct explic-
itly link polynomials corresponding to each irreducible module Vg . This problem is
investigated in detail in Section 5 below. We first require some results on the character
theory of D(G) and tensor product decompositions.

We define the character Xt,qo, corresponding to the irreducible module Vi 4, in the
usual way; namely

Xka(a) = trmee(a),  Va€ D(G).
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From equation (31), we have immediately
0, 8¢Cx

34 «(gs*) =

(34) Xko{95") { 5(s, gsg™ )xb (77 2gm.), s€Ca

where x% is the character of the Aj-module V*. Following I, if we denote the cen-
traliser subgroup of s € G by Z(s), then equation (34) implies

(35) Xk,a(gs*) =0, unless g € Z(s).

As for the case of finite groups, we may now construct projection operators onto
the irreducible D(G) modules Vi o according to [8]

d[|k) la] E xk'u(g—lht)htg
g,h€eG

d[k a] Y Y xrale's?)ss

8€CE geZ(s)

(36) Epo =

These operators form an orthogonal set of idempotents, adding up to the identity, and
spanning the centre C of D(G). This implies, in particular, the following (8]:
THEOREM 4.3. The characters xx,o satisfy the first orthogonality relation

Y. xkal97 R )xus(hg) = |Gl Sxibap.
g,heG
REMARKS.

(1) It can be shown’[8] that the above characters also satisfy a second orthogonality
relation but this will not be required below.

(2) In the special case (k, a) = (1, o) corresponding to the identity representation
of D(G), where 1y here refers to the identity representatlon of G = Z,, the central
idempotent (36) reduces to

Ex'LO = IGI Zgl"
geG
and determines a left integral [19] in D(G).

Finally, for later use we note that given two irreducible modules Vi o, Vi g their
tensor product obviously becomes a D(G) module under the action determined by
the coproduct A. We write the decomposition of this tensor product module into
irreducible submodules as

Via®Vipg = @ My Vi
i
where mj, € Z denotes the multiplicity of the irreducible module V; . in the tensor
product space. We have:
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LEMMA 4.2.

1 - * * *
i = 174 D30 xialeTM69k) Ixkalgie)xie(s*g).
ki secigez,nz(a)
PRrooF: It follows from Lemma 5.2 of I that

1 - * * *
i = 1G] D XileT () xha(t 9)x18(579)
2,9,t€G

1 _ . . .
= ——IGI E : Z Xinlg l(at) Ixk,a(t"9)x1,8(s* 9).
‘Gcck gEZ(t)NZ(s)
s€C;

On the other hand, writing t = 7,gx7, ' and using the invariance properties of characters
[8], we have

Xj.'v[g_l(-’t)*] = Xj.‘v[("t_lg_l"'t) (r,"ls-rtg,‘) ‘]
Xk,a(t*9) = Xh,a(gimi '97e)
x1,6(5*9) = x1,8[(r s7e) " (77 7))

Substituting into the sum above and replacing s,g with 7, 's7, 7, g7, respectively,

we arrive at

My = |_(1;i N3 3 xjwleTMe9k) Txrel9ie)xia(s"g)

tE€C, #€C; gEZL NZ(s)

= 'll’(':Gill Z Z x.‘i-'Y[g_l(5gk)‘]xk'a(g:g)x"ﬁ(stg)

$€C; g€ Z;,NZ(a)
which is sufficient to prove the result. 0
REMARK. It is worth noting that m;. = 0 unless

C; C Ci.Cs.

5. LINK POLYNOMIALS FROM D(G) AND DIAGONALISATION OF ¢

Throughout we let V = Vi o be a fixed, but arbitrary, irreducible D(G)-module
and we let P be the permutation operator on V®V considered in Section 3. In view of
equation (32) we obtain the following form for the braid generator (12) and its inverse
on V ® V, with respect to the orthonormal basis (30) for V:

- i & -1
o= Z 1r§ ('r“:_,a‘rg)j‘,E!: ® Ei’ rte

5,1EC;

(37) -1 kf,.—1 -1 j s~ lts ls
a = Z L (Tu‘ltcs Tt)j"El s @E“.
8,tEC,

https://doi.org/10.1017/50004972700016270 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700016270

[17] Link polynomials 193

In the case @ = ag corresponds to a one-dimensional representation of Z, these
expressions simplify to

_ -1
o= Z X:o (‘r“:_1 STg)E: ® Eit
8,t€Cy N

-1 _ E (-1 -1 -1 P
o7t = Y xb (A, n)E Y @ B
8,t€Cy

(38.)

In particular when a = ¢, corresponding to the identity representation of Zi, we
obtain [see equation (33)]

o= Y El@EM
l,lech
o= Y ET“QE.

.,teck

(383)

The above representation of the braid generator o, as we have seen, gives rise
to a representation of the braid group B, on V®". We may now proceed to define a
Markov trace and corresponding link polynomial as described in Section 3. Throughout,
we follow the convention of Section 3, and identify the elements of B,, for simplicity,
with their matrix representatives on V7.

The element u and its inverse of equations (9), in this case, are given by

u=3) ()'9=Y 9(¢7")

€G G
(39) 1 g 9€
W= s= Yoo
g€G g9€EG

-1

which can be shown directly to satisfy equations (10). Moreover u,u~! are now central

elements: we denote their eigenvalues on V = Vi o by (u*!); . respectively. They are
related to the eigenvalues

(9" )a = x5 (g2") /dE

of the Z;-invariants _qfl respectively on the irreducible Ax-module V¥, by the following
lemma.

LEMMa 5.1.
(“il)k.a = [(gk)a];l .

PRrRooOF: Observe that

trig,a(u) = (u)r,odlk, a.
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On the other hand, from equation (39), we have

trmga(u) = Z Xka(9*97h)

9€G

= Z Xk, (s's‘l)

lECk

= Z Xr’;(r,_ls—l‘r,)

8€CE
= |CelxE (9:) = dlk, @)/ {gk)a

from which the result follows. 1

Since u reduces to a scalar multiple (u)k,o = (gx)5? of the identity on V = Vi q,
the u-dimension of equation (11) reduces to

dulk, o] = (u)r,dk, al.
The eigenvalues vy ,o, 7 o respectively of the invariants (14) are now given explicitly
by:
LEMMA 5.2.
Tk = 1, ;Yk,a = (gk);z‘
ProoF: We have

trvevi(v @ u)o®!] = (u)i LtrvevIP ) ¢® (¢*')]
9€G

= (u)} atrmial Y 9(s*')’]

gEG
= (u)i'at”‘ﬂ'k'a (u:Fl)

= (u)i a(w)fadlk, a].
In view of equation (15), we thus have

Tea = trvevi(z @ u)ol/dufk, a] =1
Yo = trvevi(u @u)o T /dulk, o] = (u)i o

which is sufficient to prove the result. 0

For the case at hand, Theorem 3.2 thus reduces to (notation as before)
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THEOREM 5.1,
p(6) = tr(8)/(d[k, a])”, 6 € Ba
satisfies the defining relations (2) of a Markov trace with
z=(ge)/d[k, o], Z=(g;")a/dlk, a].
The link polynomial of Theorem 3.3 now becomes
(40) L(8) = (dlk, a])*{g)z"V(6), 0 € Bn

which enables families of link polynomials to be constructed corresponding to each
irreducible D(G)-module Vi o. Such link polynomials may be directly evaluated with
the help of the characters of D(G).

We now demonstrate, for each irreducible D(G) module V = Vi o, that o may
be diagonalised on V ® V and obtain an analogue of the Reshetikhin form of the braid
generator, obtained previously for quantum groups {18, 9]. This diagonal form of the
braid generator o is well known [18, 21, 9] to be invaluable for the explicit construction
of link polynomials and for the determination of their generalised Skein relations, as

seen below.

The important point is that o, given by equation (12), satisfies

ot = (PR)!

=R'P

=R 'P=o¢"1
and thus is a unitary operator: this is a direct consequence of the unitarity (29) of the
R-matrix (28). In particular o is diagonalisable on V ® V with eigenvalues lying on
the unit circle in the complex plane: in fact it turns out that the eigenvalues of o are
all roots of unity. From the point of view of the braid group, the matrix representation
(16) thus gives rise to a unitary representation of B,.

Since o and its powers commute with the action of D(G) on V ® V, we may

decompose the tensor product space into irreducible D(G)-modules on which o reduces
to a scalar multiple of the identity. To determine the eigenvalues of o, suppose V; g C

V ® V is an irreducible D(G) module on which o takes the eigenvalue (o); 3. Then
we have, from equations (10, 18)

(0)ig=(o)18
= (RTR)i
= (v ®u)A(x " )hp
= (u)io/(e)is = (91)5/(9k)}
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Thus the allowed eigenvalues of & on V ® V are given by

(42) +(g)y /(gx)a

where we take that square root in the right hand side of the complex plane (including
the positive, but excluding the negative, imaginary axis). Following the quantum group
case (18, 9], we refer to the phase +1 occurring in equation (42) as the parity of the
eigenvalue.

We let W1 be the submodules of V @ V' spanned by eigenvectors with parity +1
respectively: since o is diagonalisable we have the decomposition

VeV=w,oW-.

We let P[+] be the projection operators onto the submodules W respectively: since
o is a D(G)-invariant, these projections commute with the co-product action of D(G)
on the tensor product module. We write the decomposition of W4 into irreducible
submodules according to

(43) Wi =D migVie
Lo

where mfﬁ is the multiplicity of Vis in W respectively. We clearly have
(44) mtp + m,',p =mg

where m g is the multiplicity of V; g in Vi o ® Vi o as given in Lemma 4.2.
We let
+ —
Pig = P[X]A(E )

be the projection operators onto the primary submodules occurring in the decomposition
(43). In view of the remarks above, we arrive at the following spectral decomposition
for o and its powers:

THEOREM 5.2.

o™ = (gr)a™ E(yu),’g"/z (P,*,;, + (—1)"‘P,;3) , meZ.
1.8

COROLLARY.

™ = (g)2*™ ) (95 D(Erp), mE€Z.
LA
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Since o and its powers o™ are D(G)-invariants acting on V ® V it follows, from
Theorem 3.1 and the invariance of u, that the operators

(45) Cm = 12(c™)

are D(G)-invariants acting on V = Vi o: here, as before, 72 denotes the partial trace

over the second factor of the tensor product space. Their eigenvalues {Cm)k,o are given
by :

THEOREM 5.3.

(Crdr = (a0)z™ (05" (il + (~1)"mis) ZEE0.

L.p
PROOF: In view of Theorem 5.2, we have
(Cm)k.ad[k, al = t'rV@v(a'"‘)

= (o)™ Yo (e *trvev (Pl + (1) Pp) -
1.8

The result is then seen to follow from
trV@V[Pff:p] = mfﬁd[l, Bl.

0

The multiplicities mfp (possibly zero) may be determined explicitly with the help
of equation (44) and the following result:

LEMMA 5.3. (00)
- Gk)a
m&_mm=_ﬁﬁmﬁ
(gl)p
where
1 _ e .
(46) prg =5 ¥ x1,8097 (9:99:97") Ixr,a(99x995)-
12l {5

PROOF: In view of equation (36) we have

o(Eig) = dll%lﬁ] E Zx:,p(y_l8‘)0§f-9'y)

€C; 9

- d[IIC,JIﬂ] 2.2 Y as(e s Pt s) g @17g]

tEG€EC; ¢
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from which we obtain

trvovloB(Ea)] = T T 5 xa(o™s e (1(715) ')
teck g
€0

d[l ﬂ] > D xus(s7 (totg™) ) xr.alotat?).

teC, g

On the other hand, from Theorem 5.2, we have

- (a0)g’ _
trvev(ocA(Eig)] = ( glj (mtﬁ - ml.ﬁ) d[l, Bl.
It follows that p
(90)5”
+ - B _
(ml.ﬂ B ml.ﬁ) Tona e

with
Hip = IGI D) xusle™ (tata™?) Ixn.algtat”).

teCy g

Finally using ¢t = 7,7 gi7;, together with the invariance properties of characters,

we arrive at

Bip = Z D xupla™ (9k99r97) "Ixk,al991997)
ltec 9

C
= Il G"IIZXz.p[g (9x99%97*) 1xk,a(99199%)

which is sufficient to prove the result.

REMARKS.

(1) In the case myg = 1, pig as above in fact gives the eigenvalue of o on
Vi € Via ® Via-

(2) From Theorem 5.3, the eigenvalues of the even and odd order invariants (45),
may thus be expressed

<C2m)k,a gk ZmE gl B ml,ﬁ d[[; li]]
(a5')
(Camirbia = (00057 S (aiF o o)

LB
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with ;g as above and mjg as in Lemma 4.2. 0

We note that Theorem 5.2 implies the following identity satisfied by the braid
generator o:

I (o= (o Howa) (o + (@03 Han)a) = 0.

llﬁ
Here the prime signifies that we retain only those factors corresponding to mfp #0.
Expanding the left-hand side into powers of & we arrive at the identity

m-1
o™ — E act =0
=0

which leads to the generalised Skein relations for the link polynomials (40). For example,

with
0 = 010'?02, 01,02 € Bn
we have
m—1
L@) =Y aL(biolty).
=0

Finally, to illustrate the utility of this formalism, we now obtain a general formula
for L(8), when 8 is a braid of the following form:

(47 0= (0i)"(o5;)™...... (a‘;n_l)m"—l, m; €Z
where (i1, ..... »in—1) is an arbitrary permutation of (1,2,..... ,n—1). From
Theorem 5.3, together with the definition (40) of L(@) , it is straightforward to show
that
(48)

n—1 . n—1

() = (g} 2t ™ [ (Crmi)m
i=1
1on, =230 ™ e 1/2m; (+ m; -
= (dlk, ) "Mgu)a <= ™ T Sotay™™ (mitg + (=1)™mis ) dl, B
i=1 | 18

For example, for the trefoil knot 8; corresponding to

0¢=U; EBz,

we obtain
L) = (912 Y (a3 (mifs — mig) —:[[z:’[fl
1,8 ,

- -5 d[la ﬂ]
- (gk)a g(gl)ﬁ”".ﬂ d[k, a]’
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In what follows we shall apply the above proceedure to obtain link polynomials
arising from a certain irreducible unitary representation of D(Sxn), Sy being the sym-
metric group.

6. LINK POLYNOMIALS FROM D(Sy), N >4

Let C2 € Sy be the conjugacy class of transpositions with representative g, =
(N — 1 N). The centraliser subgroup Z; of g, is given by

Zy =Sn_2 X85

with S; = {1, 9.} and Sn—2 the natural subgroup. Note that
1
(Col = SN(N 1) = ISl / 12|

as required. We let V2 denote the one dimensional module corresponding to the identity
representation of Z;. Here we diagonalise & on the tensor product module V2 ; ® V2,
where V;,; denotes the irreducible D(Sy) module induced by V;2: the dimension of
this module is given by

d[2,1] = |G| = %N(N -1).

In view of the remark proceeding Lemma 4.2, it is easily seen that the only D(Sx)
modules occurring in the above tensor product are those of the form Vi o where Cj is

a conjugacy class occurring in
c2 -Cz =C1 ch UCS-

Here C; = {1}, Cs is the class of 3 cycles, and C5 is the class of 2 x 2 cycles: note that

N N
il =1, |ca|=2(3), |c5|=3(4)

N N!
= <m<N.
(m) m{(N —m)!’ 0<m

where, as usual,

As coset representatives we choose
g1=1, gg=(N-2N-1N), gs=(N-1N)N-2N-3)
respectively. The corresponding centraliser subgroups in this case are

Zy =8N, Zs=SNn-3xCs

https://doi.org/10.1017/50004972700016270 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700016270

[25] Link polynomials 201

where Sy_3 is the obvious subgroup with Cs = {1, g3, g5 '} the cyclic group of order
3, and
Zs = (SN_q, X Sz X Sz)@T

Here Spn_4 is the natural subgroup,
T={(N-1N-3)(N-2N),(N—-2N-1)(N-3N)},
and the two S, groups are given respectively by
S;={1,(N-3N-2)}, S, ={1,(N~1N)}.
It is worth noting that these groups have orders
|Z1| = N!, |Z3| = 3(N - 3)!, [{Z5]| = 8(N — 4)!

in agreement with

1Zk| = 1G| /ICkl .

For the problem at hand we are only concerned with three irreducible Z; mod-
ules, denoted V! (1 < a < 3), which give rise to the irreducible representations of
Z, = Sy with Young diagrams [N], [N —11], [N — 2 2] respectively: these corre-
spond to the identity representation and the irreducible representations of dimensions
N —1 and N(N - 3)/2 respectively. The corresponding irreducible D(Sy) modules
Vi,a (1 < a < 3) have the same dimensions so that

d,1=1, d1,2)=N-1, dft, 3= N(N-3).

For the centraliser subgroup Z3 & Sy_3 x Cs we let V2 (1 € @ < 3) denote the
irreducible one dimensional modules corresponding to the identity representation of
Sn-3 and the three irreducible representations of the cyclic group Cs: their respective
characters are thus determined by

xi(gs) =1, x3(gs)=w, x3(g3)=w

where w = €'2"/3. Finally we let V (a = 1,2) be the one dimensional modules corre-
sponding to the identity representation of Zs and the one dimensional representation
with character determined by

1, QESN_q)(SzXSz

x3(9) = {

-1, geT
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respectively. The corresponding irreducible induced D(Sn) modules V3 o (1 < a < 3),
Vs,a (a =1,2) have dimensions

a3, o] = Cs| = TN(N ~1)(N -2), 1<a<3
d[5, a] = |Cs| = %N(N ~1)(N-2)(N=3), a=1,2.

For a suitable choice of 7, a straightforward calculation using Lemma 4.2 yields
the tensor product decomposition

V210V 1=V1,10 V1200 V13D V5,10 V2B Vs s D V5,1 D Vs 2.

Since this decomposition is multiplicity-free, the eigenvalues of o on the irreducible
modules above are given the corresponding u-values of equation (46) which are listed
below:

B11 = f1,2 = p13 = M3y = psy =1

H32 =W, p3s=w, ps2=—L

We thus arrive at the following spectral decomposition in terms of the (central)
projections A(Ey,o) acting on the tensor product space:

o = A(E1)) + A(Ey 2) + D(Ers) + A(Es,1)
. + @A(Es,2) + wA(Ess) + A(Es,;1) — A(Es 2).
In this case the eigenvalues of the invariants (45) are given by
(Cm)2,a = (d[1,1))7" (d[1, 1] + d[1, 2] +d[1, 3] + d[3, 1]
+@™d(3, 2] + w™d[3, 3] +d[5, 1] + (—1)™d[5, 2])
which, using the dimensions given above, simplifies to

2mmw

(Cmdaa =1+ 2(N ~2) [1+2cos< . )]+}1(N_2)(N—3)[1+(—1)'"].

Substituting into equation (48) then gives the link polynomial

n—1

L@ =] {1 + g(zv -2) [1 + 2cos (2";"")] + :II-(N —2)(N -3)[1+ (—1)'"-']}

i=1
for @ a braid of the general form (47).
In this way we obtain an infinite family of link polynomials corresponding to each

integer N > 4. Replacing N by a parameter g, it is possible that the above in fact
determines a one-variable link polynomial. It would be of interest to examine in further
detail such link polynomials arising from more general representations of D(Sn).
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REMARK. It is still an open problem as to whether the R-matrices (32, 33) can be
Bazterised to yield solutions of the parameter-dependent Yang-Baxter equation {3, 14,
11} occurring in statistical mechanics. Such parameter-dependent solutions would then
define exactly solvable models associated with certain induced representations of a finite
group. Further work along these lines is now in progress.
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