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Gene–environment interaction is likely to be a common and
important source of variation for complex behavioral traits.

Often conceptualized as the genetic control of sensitivity to
the environment, it can be incorporated in variance compo-
nents twin analyses by partitioning genetic effects into a mean
part, which is independent of the environment, and a part that
is a linear function of the environment. The model allows for
one or more environmental moderator variables (that possibly
interact with each other) that may i) be continuous or binary ii)
differ between twins within a pair iii) interact with residual
environmental as well as genetic effects iv) have nonlinear
moderating properties v) show scalar (different magnitudes) or
qualitative (different genes) interactions vi) be correlated with
genetic effects acting upon the trait, to allow for a test of
gene–environment interaction in the presence of gene–envi-
ronment correlation. Aspects and applications of a class of
models are explored by simulation, in the context of both indi-
vidual differences twin analysis and, in a companion paper
(Purcell & Sham, 2002) sibpair quantitative trait locus linkage
analysis. As well as elucidating environmental pathways, con-
sideration of gene–environment interaction in quantitative and
molecular studies will potentially direct and enhance gene-
mapping efforts.

Simple quantitative genetic models average over any group
differences within a population. The presence of gene–envi-
ronment interaction (G × E) will mean that a single statistic
is no longer adequate to describe a whole population, as
genetic effects will now depend on individuals’ environ-
ments. A heritability of 50%, for example, might equally
entail scenario S1 where, for all individuals, differences in
the trait are equally due to genetic and environmental
factors or scenario S2 where, for half the population, the
trait is completely genetically determined, whereas for the
other half the trait is completely environmentally deter-
mined. In the context of twin analysis, consideration of G
× E aims to distinguish between scenarios such as S1 and S2.
This requires that the E component of the G × E is a mea-
sured variable that indexes the differential etiologies present
in S2. For example, if the 50:50 split reflected males and
females, this would represent a G × sex interaction.

It is possible to detect G × E within various study
designs (Heath et al., 2002); G and E can be either latent
variables (e.g., additive genetic variance, shared environ-
ment) or measured variables (e.g., DRD4 genotype, age,
place of residence). When both G and E are latent vari-
ables, it is possible to detect G × E as a heteroscedastic

bivariate twin distribution, where twin pair difference cor-
relates with twin pair sum (Jinks & Fulker, 1970).
However, as well as suffering from low power, this test also
is sensitive to non-normality in the trait. More importantly,
beyond indicating that some form of interaction is occur-
ring, it sheds no light on underlying processes. Having
both G and E as measured variables provides the most
power for detecting G × E; the results will potentially be
very informative also, beginning to map onto the underly-
ing biology. For example, sex moderates the effect of the
APOE e4 allele on cognitive decline, where women show
higher e4-associated risk than men (Yaffe et al., 2000).
Additionally, the e4 allele moderates the impact of estrogen
in women on cognitive decline, as the estrogen use is asso-
ciated with less cognitive decline only in women without
the e4 risk allele.

In the present paper we consider the case of latent G ×
measured E, which is most relevant to the classical twin
study. For example, additive genetic effects on depression
symptoms interact with marital status in women, where
unmarried women show greater levels of genetic influence
(Heath et al., 1998). Another example of latent G × mea-
sured E is that a religious upbringing seems to attenuate
genetic influences on the personality trait of disinhibition
(Boomsma et al., 1999). Testing for G × E with a binary
moderator such as marital status is straightforward. The
parameters of interest (e.g., a 2, c 2 and e 2) are estimated for
“exposed” and “unexposed” individuals separately. A test of
G × E is given by equating the parameters across exposure
group and observing the associated decline in model fit
(i.e., testing for heterogeneity).

The concepts of G × E apply equally to quantitative
trait locus (QTL) studies as well as twin studies. A compan-
ion paper (Purcell & Sham, 2002) looks at two ways in
which interactions can be incorporated into the variance
components approach to sib-pair linkage analysis: testing
for environmentally-moderated QTL effects and utilizing
information about any residual interactions (i.e., not
involving the QTL) detected prior to analysis.
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Continuous Moderator Variables

Complex human traits are often best defined in quantita-
tive terms, to avoid the potential loss in power associated
with artificial dichotomization of a continuous variable.
Many potential moderator variables are also most naturally
defined in quantitative terms: some obvious examples
include age, gestational age, socioeconomic status, educa-
tional level, consumption of food, drugs or alcohol.
Although typical approaches to G × E are often limited to
binary moderators, it is equally possible to allow for contin-
uous moderating variables that may differ between twins in
a pair.

The most basic G × E interaction involving a continu-
ous moderating E variable implies that genetic effects
increase or decrease as a linear function of the moderator.
Although this formulation covers a large class of G × E, 
a second nonlinear class is also considered, where genetic
effects may, for example, be attenuated at extreme high and
extreme low levels of a moderator.

Gene–Environment Correlation

G × E is often conceptualized as genetic control of sensitiv-
ity to different environments. A related phenomenon, G–E
correlation (rGE) represents genetic control of exposure to
different environments (Kendler & Eaves, 1986).
Equivalently, of course, G × E is the environmental control
of differential gene effects, whereas rGE is the environmental
control of gene frequency. A recent example of rGE showed
that genetic influences on alcohol and drug misuse are cor-
related with various aspects of the family and school
environment (Jang et al., 2001) and we might expect rGE to
feature in many other complex traits. Typical approaches to
G × E in twin analyses involving stratification of a sample
by the environmental moderator variable (Neale & Cardon,
1992) have been unable to disentangle G × E and rGE in a
single analysis, however. For example, if individuals in a
certain environment show greater genetic influence, this
could be due to either (1) the environment modifying the
effects of certain genes or (2) certain trait-influencing genes
being more likely to be present in that environment. As
described below, the present method is able to discriminate
between these alternatives and to allow analysis of G × E in
the presence of rGE .

Unmodelled G × E and rGE

Before considering the modelling of G × E it is worth
reviewing the impact of G × E and rGE on standard twin
models, in terms of biased parameter estimates. In short,
interaction between A and C acts like A; interaction between
A and E acts like E. Correlation between A and C acts like
C; correlation between A and E acts like A. For example, in
the case of A × C interaction, if a standardized trait T=aA +
cC + iAC + eE then the expected variance is Var(T) = a2 + c2

+ i2 + e2, assuming that the latent variables A, C and E have
unit variance. The expected twin covariances are

Cov(T1,T2)= a2Cov(A1, A2) + c2Cov(C1, C2) 
+ e2Cov(E1, E2) + i 2Cov(A1C1, A2C2)

= a2 + c2 + i 2 for MZ twins

= a2/2 + c2 + i 2/2 for DZ twins

as Cov(A1, A2) is 1 for MZ twins, 0.5 for DZ twins; Cov(C1,
C2)=1 and Cov(E1, E2)=0 for all twins; also Cov(A1C1,
A2C2)=Cov(A1, A2)Cov(C1, C2)=Cov(A1, A2). Similar covari-
ance algebra can show that A × E interaction contributes to
the E component. If A is correlated with (rather than inter-
acting with) an environmental variable, say C, with
correlation rAC then the expected trait variance is Var(T)=a2

+ c2 + 2ac � rAC + e 2 and the expected twin covariances are

Cov(T1, T2)= a2Cov(A1, A2) + c2Cov(C1, C2) 
+ e 2Cov(E1, E2) + acCov(A1, C2) + acCov(A2, C1)

= a2 + c2 + 2ac � rAC for MZ twins

= a 2/2 + c 2 + 2ac � rAC for DZ twins

as Cov(A1, C2) = Cov(A2, C1) = rAC . Similarly, if A and E are
non-independent then

Cov(T1, T2) = a 2 + c 2 + 2ae � rAE forMZ twins

= a 2/2 + c 2 + ae � rAE for DZ twins

Current Aims

The initial framework for the analysis of G × E in the
context of the twin study has existed for some time. For
example, Martin et al. (1987) describe a model to handle
continuous moderator variables and interactions between
both latent and measured genetic and environmental
effects, as well as documenting the power of such tests. The
present study aims to extend this seminal work and to
provide more comprehensive simulation results. This
should help in interpreting the results of continuous mod-
erator models now appearing in the literature (e.g.,
Mustanski et al., 2002; Wichers et al., in press) . This paper
is split into five main sections: (1) the basic G × E model
involving a continuous moderator variable that can interact
with latent genetic and environmental effects (2) nonlinear
G × E using a quadratic approximation (3) G × E in the
presence of rGE (4) scalar (different magnitudes) and quali-
tative (different genes) interactions (5) the impact of
distributional factors on G × E analysis.

This paper introduces some notation in order to clarify
different moderating effects. Standard G × E will be called
A × M: the G is replaced by A to refer specifically to addi-
tive genetic effects; E is replaced by M (moderator), to
distinguish it from the latent nonshared twin environment.
Other types of interaction are C × M and E × M, where the
latent shared and nonshared environments, respectively,
interact with a measured moderator and, in the companion
paper, Q × M interaction, where a specific QTL interacts
with a moderator. The term G × E will still be used to refer
to the whole class of these effects.

G × E with Continuous Moderator Variables
A naive treatment of continuous moderation might
proceed as follows: stratify the sample into a number of
groups on the basis of the moderator, calculate heritability
within each strata, equate parameters across strata or test
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for a linear trend in heritability across strata. There are,
however, several problems with such an approach. Firstly,
the stratification procedure will effectively reduce the
sample size, especially if the moderator is not shared
between twins. Secondly, the use of heritability essentially
assumes equal variance across strata, whereas what is of
interest is whether the absolute magnitude of genetic effects
changes, not only the proportion. Thirdly, although it is
logical to initially assume a linear G × E interaction, this lin-
earity should be at the level of effect rather than the level of
variance component, as variance is a second-order statistic.

Consider the basic biometric model for a hypothetical
additive biallelic trait locus, with additive genetic value a
and increaser allele frequency p. The locus’ contribution to
the variance, 2p(1 – p)a 2, is a function of both the square of
magnitude of effect and how common it is. A linear A × M
interaction implies that the additive genetic value is a linear
function of the moderator M, namely a + βM where β is an
unknown parameter to be estimated. If β is significantly
non-zero, this is evidence of a A × M interaction. The con-
tribution to the variance is 2p(1 – p)(a + βM)2, indicating
that variance is a quadratic function of the moderator
under linear interaction. Figure 1 illustrates a linear interac-
tion effect for a single hypothetical QTL.

This hypothetical QTL model directly translates into
the twin model. Path coefficients represent the magnitude
of effect and so we express the path coefficients as linear
functions of a moderator. In other words, the additive
genetic path coefficient is no longer a, it is now a + βX M.
Therefore, if βX is significantly non-zero, this represents an
A × M interaction. The moderator may be obligatorily
shared or it can be specified separately for each twin 
(e.g., age and parental income are obligatorily shared;
weight and exposure to violence are not). Binary modera-
tors can be coded as “0/1”, in which case the model reduces
to the standard “stratify by environment” approach.

Any variable which has a moderating, or interactive,
effect on a trait may also have a mediating, or main, effect.
Therefore, the moderator can also be entered in the means

model, where the parameter βM represents the standard
phenotypic regression coefficient. Additionally, we allow 
for C × M and E × M interaction: that is, of the measured
moderator with either the residual latent shared
or nonshared environmental variables, assessed by βY and
βZ respectively.

For each twin pair conditional on the twins’ moderator
M, the expected trait mean for twin i is µ + βM Mi and the
expected trait variance is

Var(Ti ) = (a + βX Mi )
2 + (c + βY Mi )

2

+ (e + βZ Mi )
2

for i = 1,2. The expected MZ covariance is

CovMZ (T1, T2) = (a + βX M1)(a + βX M2)
+(c + βY M1)(c + βY M2)

the expected DZ covariance is

CovDZ (T1, T2) = 0.5(a + βX M1)(a + βX M2)
+(c + βY M1) (c + βY M2).

This is equivalent to the model used by Martin et al.
(1987), in which, for example, variance due to additive
genetic effects and G × E is a 2⋅(1 + βM)2 (i.e., in the
current formulation, their interaction coefficient is βX /a).

Seven parameters (unmoderated components a, c and e;
moderated components βX , βY and βZ ; main effect βM ) are
now estimated under the full model, ACE-XYZ-M. Figure 2
shows a partial path diagram representing the ACE-XYZ-M
model. The best-fitting model can be obtained by succes-
sively dropping either moderating, main effect and/or
unmoderated components. Assuming that at least one
moderated parameter remains estimated in the model, the
results must be considered in the context of a sensible range
of moderator variable values. The expected variance compo-
nents representing additive genetic, shared environmental
and nonshared environmental effects can be plotted as a
function of M. For example, the additive genetic compo-
nent is (a + βX M)2 for a sensible range of M. Clearly, to
extrapolate beyond the range of M observed in the data
could be misleading: an approach to a clearer visualization
of moderated variance components is outlined further
below. Table 1 presents a simple example of calculating the
additive genetic variance and heritability given parameter
values for the ACE-XYZ-M model — this indicates what an
interaction of βX = 0.2 (a value subsequently used in many
of the simulations) actually “looks like”.

An Example

A normally-distributed trait was simulated with A, C and E
components representing 25%, 25% and 50% of the trait
variance respectively. In addition, an obligatorily shared
moderator variable was created with (1) a substantial main
effect on the trait and (2) a marked interactive effect on the
A component of the trait. The A × M was such that genetic
effects were attenuated at intermediate values of the moder-
ator but exaggerated at extreme high or extreme low values.

Figure 1
The biometric model incorporating linear A × M interaction; 
the coefficient β assess the extent of interaction.

https://doi.org/10.1375/twin.5.6.554 Published online by Cambridge University Press

https://doi.org/10.1375/twin.5.6.554


557Twin Research December 2002

Variance Components Models for Gene–Environment Interaction in Twin Analysis

Fitting the various models starting with the full ACE-
XYZ-M model, the best-fitting model was the ACE-X-M
model, which correctly represents the simulation procedure
described above. Figure 3 represents the variance compo-
nents under the basic ACE model (i.e., equivalent to looking
only at the trait and completely ignoring the moderator)
and the best-fit model ACE-X-M. The signatures of media-
tion and moderation are clearly visible. Note that under the
ACE model the C component is much greater than the A
component, even though both residual components were
simulated to account for 25% of the variance, because C
includes the variance due to the main effect of the modera-
tor (the moderator was obligatorily shared between twins).
When the main effect is explicitly accounted for by the M
component in the best-fitting ACE-X-M model, the C com-
ponent drops to the appropriate level (i.e., half of E ). As the
βX parameter is nonzero in the best-fitting model, we
observe that the additive genetic variance varies as a func-
tion of the moderator, in a way which directly corresponds
to the simulated properties (i.e., no genetic effects at inter-
mediate levels of the moderator, exaggerated genetic effects
at extreme values of the moderator).

If one were to standardize the variance components (for
example, by plotting

the results will indicate proportions of variance. In the
current example, genetic influences increase at extreme
values of the moderator whilst environmental effects are
constant. Proportionally, however, the environmental
effects necessarily get smaller at extreme values, relative to
genetic effects, as illustrated in Figure 4 which plots the

(a + βX M)2

—————
(a + βX M)2 + (c + βY Μ)2 + (e + βZM)2

Table 1

An A x M Interaction: Additive Genetic Variance and Heritability is Tabulated Against Different Values of the Moderating Variable. Parameter
Values are a = c = e =1 and β X = 0.2, β Y = βZ = 0

SD from mean (a + βXM) (a + βXM)2 Var(T) h2

–3 0.4 0.16 2.16 0.07
–2 0.6 0.36 2.36 0.15
–1 0.8 0.64 2.64 0.24

0 1.0 1.00 3.00 0.33
1 1.2 1.44 3.44 0.42
2 1.4 1.96 3.96 0.49
3 1.6 2.56 4.56 0.56

Figure 2
Partial path diagram for the ACE–XYZ – M model, shown for one twin
only. Latent variables have unit variance.

Figure 3
Modelling moderating and main effects: a) ACE model 
b) ACE – X – M model.

https://doi.org/10.1375/twin.5.6.554 Published online by Cambridge University Press

https://doi.org/10.1375/twin.5.6.554


558 Twin Research December 2002

Shaun Purcell

Table 2

Average Parameter Estimates and Fit Statistics for Twin Models of Linear A x M, C x M and E x M Interaction

True model Analytic model βX βY βZ –2LL AIC % selected 
ACE-X ACE-XYZ 0.18 0.01 0.01 7433.95 –552.05 4 

ACE-YZ — 0.16 0.04 7438.00 –550.00 6 
ACE-XZ 0.20 — 0.00 7434.88 –553.13 14 
ACE-XY 0.20 0.00 — 7435.08 –552.92 8 
ACE-X 0.20 — — 7435.99 –554.01 62 
ACE-Y — 0.18 — 7440.42 –549.58 6 
ACE-Z — — 0.07 7447.48 –542.52 0 
ACE — — 7455.44 –536.56 0 

ACE-Y ACE-XYZ 0.05 0.16 0.00 7436.76 –549.24 2 
ACE-YZ — 0.21 0.00 7437.95 –550.05 10 
ACE-XZ 0.20 — –0.02 7440.31 –547.69 6 
ACE-XY 0.04 0.16 — 7437.63 –550.37 6 
ACE-X 0.18 — — 7441.45 –548.55 18 
ACE-Y — 0.21 — 7438.85 –551.15 58 
ACE-Z — — 0.05 7453.59 –536.41 0 
ACE — — — 7457.70 –534.30 0 

ACE-Z ACE-XYZ –0.03 0.03 0.21 7415.41 –570.59 6 
ACE-YZ — 0.00 0.21 7416.57 –571.43 12 
ACE-XZ –0.01 — 0.21 7416.55 –571.45 4 
ACE-XY 0.26 –0.06 — 7452.27 –535.73 0 
ACE-X 0.21 — — 7453.87 –536.13 0 
ACE-Y — 0.15 — 7462.24 –527.76 0 
ACE-Z — — 0.21 7417.56 –572.44 78 
ACE — — — 7472.70 –519.30 0 

expected variance and twin covariances as well as the stan-
dardized variance components for the current example.
Arguably, this is somewhat misleading, and plotting only
unstandardized results is encouraged.

Further Simulations

A more comprehensive set of simulations was conducted in
order to explore some of the properties of this model. A
moderately large sample size of 500 MZ pairs and 500 DZ
pairs was used under all models. Twin data were simulated
for a continuous, normally-distributed trait and moderator
variable. In all cases, the unmoderated parameter values
were set at a = c = e = 1 (to give a variance of 3 excluding
moderating and main effects). Table 2 gives the average
parameter estimates and fit statistics for several conditions.
Data were simulated under three true model conditions;
each condition was replicated 50 times; each replicate was
analysed under 8 nested models. The three true models
were ACE-X, ACE-Y and ACE-Z, representing A × M, C ×
M and E × M interactions. The β interaction coefficients
were either set at 0 (if not in the model) or 0.2. In all cases
the moderator variable was set to have a twin correlation
(for both MZ and DZ twins) of 0.5. Results not shown
here indicate a very similar pattern for other values, includ-
ing 0 and 1 for these simulations (also, the next set of
simulations varies the moderator twin correlation). No
main effects of the moderator are simulated or included in
the model in this first set of simulations.

Table 2 shows the average best-fit parameter estimates
as well as the averaged minus twice log-likelihood of the
data and AIC index. The last column, “% selected” refers
to the percentage of the 50 replicates that were selected

Figure 4
The impact of standardization: a) the expected variance and twin
covariance as a function of a moderator; in this example, the total trait
variance differs across the range of the moderator; b) the standard-
ized variance components.
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from the 8 analytic models on the basis of AIC. The para-
meter estimates for the mean and unmoderated parameters
are not shown: they were all very close to simulated values.

Under the full ACE-XYZ model, the model generally
recovers the interaction parameters quite well. For
example, for data simulated under the ACE-X model, the
average values of βX , βY and βZ are 0.18, 0.01 and 0.01
(i.e., true values 0.20, 0.00 and 0.00). In this case, the
average –2LL is 7433.95, whereas under the ACE-X model
it is 7435.99. The average difference, from dropping the 
Y and Z components is only 2.04, which is not significant
for a χ 2

2 at α = 0.05, suggesting that these terms can be
dropped from the model.

There is clearly an issue of specificity here, however. For
example, note that the βY coefficient of the ACE-Y model is
0.18 even when the data were simulated under the ACE-X
model. That is, these interaction parameters are quite
highly correlated (as are a and c), which can lead to some
reduction in power to detect one in the presence of the
other. However, on the basis of lowest AIC, the correct
model was selected the majority of the time under all three
conditions (62%, 58% and 78%). Typically, the second
most selected model contained the correct interaction term,
also. In none of the cases was the basic ACE model with no
interaction terms supported.

Figure 5 illustrates the relationship between variance
components and the expectations for twin variance and
covariance as a function of a moderator variable. Quite dif-
ferent patterns of interaction can give rise to quite similar
patterns of variance and covariance. Given that analysis
moves from the observed variances and covariances to the
inferred variance components, the relative indistinguisha-
bility of the models is unsurprising. Generally, however, the
parameter estimates under the full model can serve as a
guide to the true model. One strategy, therefore, is to plot
the variance components using the parameter estimates of
the full model — the general outline of this plot should not
change greatly under nested submodels. This does highlight
the danger of only testing for A × M interaction within this
framework, however. For example, for data simulated under
the ACE-Y model, the average difference in –2LL between
the ACE-X and ACE models is 16.25, which is highly sig-
nificant for 1 degree of freedom.

Several other properties are explored in the next set 
of simulations, the results of which are given in Table 3.
Data were simulated under four models, and under differ-
ent twin correlations for the moderator variable (r = 0, 0.5
and 1). The first model is simply the null model with no
moderating or mediating effects. The second model repre-
sents combined interactive effects, with βX = βY = βZ = 0.2.

Figure 5
Relationship between variance components and expected variance, twin covariance. In both cases a = c = e = 1. In panel (a), βx = 0.2 whilst βY =
βZ = 0. In panel (b), βY = 0.2 whilst βX = βZ = 0. Despite the marked difference in etiology (lefthand graphs), the expected variances and covariances
are remarkably similar (righthand graphs).
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The third model also includes a main effect, βM = 0.2. The
final model has two opposing interactive effects, βX = 0.2
and βY = – 0.2.

In these simulations there is no genetic component to
the moderator (i.e., the MZ correlation always equals the
DZ correlation for the moderator). However, genetic effects
on the moderator should not have any great impact, unless
the genetic effects are also shared with the trait (this scenario
is investigated further below, G × E in the presence of rGE).

The likelihood ratio test (LRT) column of Table 3 rep-
resents a 4 degree of freedom test between ACE-XYZ-M
and ACE models. As can be seen, the average parameter
estimates all fall very close to the simulated values. The
LRT is as expected under the null (around 4 for a 4 degree
of freedom test). For the combined interactive effects, the
LRT values are very high, indicating that a joint test of all
moderating effects is very powerful in this case. It appears
that moderator variables that are uncorrelated between
twins offer slightly more resolving power in G × E analysis.
Finally, note that when the interactive effects are in opposi-
tion and almost canceling each other out, as in the fourth
model, the power to detect them jointly is much smaller
(although the power to detect them individually would pre-
sumably be greater than usual).

Multiple Moderator Variables

Within this framework, it is possible to incorporate more
than one moderator variable along with any interactions
between them. As a concrete example, age might moderate
genetic effects but only in males. In this case, considering
only A × M, two moderator variables, age (MAge , continu-
ous) and sex (MSe x, binary) would have their own
interaction coefficients, βAge and βSex ; additionally, an inter-
action parameter βAg e × Se x captures any difference in
age-moderated genetic effects between sexes. The additive
genetic variance component is now

(a + βAgeMAge + βSexMSex + βAge×SexMAgeMSex)
2

This kind of extension should probably be limited to cases
where prior knowledge or analyses have at least suggested a

moderating effect for both variables. The results will be
easiest to visualize when one of the moderators is binary
(i.e., two plots of variance components as a function of the
continuous moderator one for each level of the binary
moderator). A significant interaction parameter for the two
moderators means that the slope for a particular variance
component will differ between plots.

As an example, a single dataset involving two-variable
moderation was simulated. For 500 MZ and 500 DZ twin
pairs, continuous (C) and binary (B) moderators were sim-
ulated for each individual (only moderation of additive
genetic effects is considered in this example). For the “0/1”
binary parameter, additive genetic effects were moderated
with βB = 0.5. The continuous moderator variable had 
a coefficient of 0.2, but only for individuals scoring “1” 
on the binary moderator (i.e., βC = 0 and βB × C = 0.2).
Residual components were set at a = c = e = 1. The esti-
mates were as follows: βB = 0.558, βC = 0.046, βB × C

= 0.204, with –2LL = 7603.025. Fixing the interaction
moderating parameter, βB×C to 0, the minus twice log-likeli-
hood rose to 7610.854 — a significant difference for 1
degree of freedom.

Summary

This section described a basic G × E model which allows
for one or more continuous or binary moderating variables
to have main effects on a trait as well as interacting with
any or all of the genetic and environmental latent variables.
In general, simulation results suggest that the model will
perform well although there may be issues of specificity,
e.g., distinguishing between A × M and C × M.

Nonlinear G × E with Continuous Moderator Variables

So far we have assumed that, at the level of effect, all G × E
interactions are linear. In order to more accurately charac-
terize a conceptually interesting class of G × E models,
however, it is necessary to extend the basic model to allow
for certain nonlinear interactions. Imagine that at least
some level of exposure to an environmental risk is necessary
to develop disease, whilst high levels of exposure are suffi-
cient to cause disease, and that otherwise disease status is

Table 3

Linear G x E Interaction in Twins. The LRT Represents the Difference in Model Fit Between the ACE and ACE-XYZ-M Models (i.e., Fixing βX, βY, βZ

and βM to 0) Which Is Distributed as a χ2 on 4 Degrees of Freedom

Simulated Estimated
βX βY βZ βM r βX βY βZ βM LRT
— — — — 0 0.01 0.00 –0.01 0.00 3.87 

0.5 0.00 0.00 0.00 0.00 3.94 
1 -0.01 0.01 0.00 0.00 4.20 

0.2 0.2 0.2 — 0 0.20 0.20 0.21 0.00 211.28 
0.5 0.19 0.21 0.20 0.00 185.22 
1 0.20 0.21 0.20 0.00 168.43 

0.2 0.2 0.2 0.2 0 0.20 0.20 0.21 0.20 249.62 
0.5 0.21 0.19 0.21 0.20 217.14 
1 0.22 0.20 0.20 0.20 185.95 

0.2 –0.2 — — 0 0.18 -0.18 0.00 0.00 11.14 
0.5 0.16 -0.17 0.01 -0.01 9.14 
1 0.19 -0.18 0.00 0.00 9.43
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influenced by genes. At both extreme low levels of the
moderator (nobody has the disease) and extreme high levels
(everybody has the disease) there is no genetic variation; at
intermediate values of the moderator there is variation due
to genes. Although this scenario has been expressed in
terms of a binary disease for clarity, similar principles
would apply to quantitative traits, as Figure 6 illustrates.
The leftmost figure illustrates variation (due to genes) only
occurring at intermediate values of the moderator, due to
the above kind of process. The second figure illustrates the
residual variation after the main effect of the moderator has
been partialled out in the means model (βM). This shows
the characteristic pattern of genetic variation being attenu-
ated at the extremes of the moderator. The rightmost figure
returns to the biometrical model for the hypothetical QTL
– there is a nonlinear interaction at the level of effect. This
kind of nonlinear interaction can be well approximated by
a quadratic term being added to the equation describing
the additive genetic effect. In other words, the additive
genetic path now becomes (a + βX M + βX2 M 2). The full
model is now ACE-XYZ-X 2Y 2Z 2-M. The variance is

Var (T ) = (a + βX M + βX 2 M 2)2

+ (c + βY M + βY 2 M 2)2 + (e + βZM + βZ 2 M 2)2

This kind of model might be of interest in a wide variety of
circumstances. For example, it is possible that exposure to
combat and post-traumatic stress disorder would follow a
similar pattern. Eaves et al. (1977) noted that there are
many situations in which we might find significant nonlin-
ear trends: “Society may react in a uniform way to extreme
deviations on either side of the population mean. This
would produce a pattern ... which shows greater environ-
mental variation in the middle of the scale than either
end,” which would represent nonlinear E × E in our termi-
nology. The authors continue: “In practice, this kind of
interaction is common in psychometric data because of
floor and ceiling effects.” Alternatively, we may expect
genes to operate maximally only in their “average expected
environment” (Scarr, 1992) such that genetic variation is
attenuated at both environmental extremes.

An Example

Twin data were simulated under an AE model such that rMZ

= 0.8 and rDZ = 0.4. On top of these residual components, a

moderator variable was simulated with two properties, (1) a
main effect on the trait, such that the phenotypic trait-
moderator correlation was r = 0.25 and (2) a moderating
effect such that all genetic effects were exaggerated at inter-
mediate values of the moderator but attenuated at extreme
values of the moderator.

This moderating effect is the converse of that in the
example linear G × E simulation, where intermediate values
were attenuated and extreme values exaggerated. Note that
although the two scenarios display superficial similarity, a
nonlinear term is required in this case. For the linear G × E
models, it is clear that (1) the variance components cannot
be negative and (2) they are a function of the moderator up
to a second-order term. Consequentially, any curve will
always be “U-shaped” where the stationary point is also the
global minimum. This is not a constraint as such — it
follows naturally from assuming a linear G × E interaction,
but it also illustrates the need for the nonlinear models.

Figure 7 displays the results for this simulation (left-
most figure), as well as illustrating a further problem with
visualizing the variance components (other two figures).
The best-fitting model is the AE-X 2-M which precisely
recovers the simulated architecture. However, the leftmost
figure shows the expected variance components plotted as a
function of the moderator, revealing a pattern that only
partially corresponds to our intuitions regarding the simu-
lated properties (i.e., exaggerated at intermediate levels,
attenuated at extreme levels). That is, the curve describing
the A component seems to suggest that, moving in either
direction away from the moderator mean, genetic influ-
ences decrease and then sharply increase at even more
extreme values. Although this is merely an artifact of over-
extrapolation and over-fitting, it raises the question of the
precise range of the moderator used to visualize the results.
In this case, the x-axis corresponds exactly to the observed
range of the moderator, which seems a sensible choice (i.e.,
rather than artificially truncating the moderator distribu-
tion). How would one interpret these results in the absence
of prior knowledge (i.e., on non-simulated data)?

Consideration of the distribution of the moderator
(shown in the middle figure) is useful. As hardly any cases
score at those extreme values of the moderator, there is little
or no power to estimate the true location of the curve at
these points. Although the estimates have over-fit to the

Figure 6
Nonlinear interaction and the biometric model. Please see the text for a full description.

https://doi.org/10.1375/twin.5.6.554 Published online by Cambridge University Press

https://doi.org/10.1375/twin.5.6.554


562 Twin Research December 2002

Shaun Purcell

data somewhat, there would be very little change to the
sample log-likelihood if the curve were drastically altered at
these extreme values. A method of visualization is pro-
posed, and illustrated in the rightmost figure, such that the
intensity of the line is directly proportional to the fre-
quency of the moderator within x bins across the
distribution. In this way, the visibility of the line is related
to the contribution to the sample log-likelihood for that
portion of the distribution: if the line is invisible it is
because there is little or no power to place it. Although this
is not an exact method, it should help to interpret results
more clearly, as illustrated in this example, where the curve
now approximates the simulated architecture. (For ease of
presentation, standard plots will be utilized for the rest of
this paper, however.)

Further Simulations

A different approach was adopted for this set of simula-
tions, with only 3 replicate datasets simulated under 4
different models in order to allow a closer inspection of the
solutions. All results are presented graphically in Figure 8.
The four rows of plots represent the four models. The left-
most column of plots represent the true parameter values
used to simulate the data. In all cases 500 MZ and 500 DZ
twins were simulated, with a moderator variable correlated
0.5 between twins. The middle column represents the vari-
ance components estimated in three simulated samples,
superimposed upon each other, from the ACE-XYZ-X2Y2Z2

model. The third column represents the superimposed
ACE-X-X2 model estimates. In all 12 simulations, the ACE-
X-X2 model was selected as the best-fitting model, which
corresponds to the simulated values chosen.

The four models were chosen to represent different sce-
narios that involve nonlinear interaction terms. In all cases,
the interactions involved only the A additive genetic com-
ponent; also c = 1 and e = 1.5. The first model (row a) a =
2, βX = 0 and βX 2 = –0.2 is similar to the last example. The
second model (row b) is similar to the first linear example
although involving a quadratic interaction term: a = 1, βX =
0 and βX 2 = 0.2. The third model (row c) represents a kind
of “threshold effect” where only above a certain critical
value on the moderator does the genetic variance shoot up,
in this case around 1.5 standard deviations above the

mean): a = 0, βX = –0.8 and βX2 = –0.2. The final model
(row d) represents a similar scenario: a threshold type effect
for extreme low scorers, but also a linear increasing trend
above the mean that plateaus out above 2 SD (a = 1, βX = 1
and βX 2 = –0.2).

Although not shown on Figure 8, other models were fit
to the data: in all cases, there was no significant reduction
in model fit from dropping the non-genetic interaction
terms (i.e., ACE-XYZ-X 2Y 2Z 2 versus ACE-X-X 2). In con-
trast, comparing ACE-XYZ-X 2Y 2Z 2 and ACE-YZ-Y 2Z 2

models, in 11 out of 12 cases the genetic interaction terms
could not be dropped. None of the genetic interaction terms
could be dropped from the ACE-X-X 2 model, however.
Using AIC criterion, the ACE-X-X 2 model was the best fit
model in all cases, of the models compared: ACE-XYZ-
X 2Y 2Z 2, ACE-YZ-Y 2Z 2, ACE-X-X 2, ACE-X and ACE.

As can be seen from Figure 8, the parameters are recov-
ered quite well, allowing for sample-to-sample variation.
Under the full model the plots are a little messy, but under
the ACE-X-X 2 model (the best-fitting model in all cases),
the simulated structure is recovered very well indeed. The
simulated effects are quite large, although nonlinear effects
have been found in real, modestly-sized datasets also
(unpublished work). Again, it is important to remember
whilst looking at the plots, that most of the sample will fall
with 1–2 SD above and below the mean, so the models are
not quite as extreme as they first seem.

Although generally robust with this sample size, these
problems are sensitive to starting values and prone to local
minima, as well as being computationally expensive. Care
must be taken when fitting these models.

Summary

In order to characterize a large class of potential G × E, in
which an effect is attenuated at both high and low extremes
of a moderator, a quadratic term was entered in the model.
Simulation results suggest that it is possible to discriminate
between the nonlinear models and to estimate the interac-
tion coefficients (of which there are up to 6) quite well
using only moderately large sample sizes.

Figure 7
Visualization of variance components for the nonlinear G x E example.
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Gene–Environment Correlation
Potential moderators will typically be correlated with the
trait — in the absence of strong a priori reasons, it is likely
to be the phenotypic association that flagged up the vari-
able as a potential moderator in the first case. Although this
correlation may be due to trait-mediating effects of the
moderator, it may alternatively be due to other shared
causes, which includes the possibility of shared genes. 
It is well known that many “environmental” variables
demonstrate substantial heritable components (Plomin et
al., 2001). Many environmental variables may in fact be
correlated with the genetic effects on the trait (rGE ) rather
than modifying the genetic effects on the trait (G × E). 

As mentioned earlier, rGE can appear as G × E in typical
analyses of G × E. However, the current approach can be
easily extended to model G × E in the presence of rGE .

Entering the moderator in the means model to allow
for a main effect will effectively remove from the covariance
model any genetic effects that are shared between trait and
moderator. That is, rGE will appear as a main effect, βM , due
to the moderator acting as a proxy measure for the additive
genetic effects on the trait. Any interactions detected will
not be due to rGE , but rather will be interactions between
the moderator and variance components specific to the
trait. In this way, evidence for G × E will never reflect a
“false-positive” claim for interaction. However, this
approach will also fail to detect G × E interaction where the

Figure 8
Nonlinear models: simulation under four genetic models (a–d). The left column of figures represent the true model; the middle column represents
the variance components estimated in three samples of 500 MZ and 500 DZ twins simulated under each model, superimposed on the graph, from
the ACE – XYZ – X2Y2Z2 model. The third column represents the ACE – X – X2 model estimates from three replicates superimposed — this was the
best fitting model in each case.

True Model ACE–XYZ–X2Y2Z2 ACE–X–X2
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moderated genetic component is common between trait
and moderator (i.e., G × E in the presence of rGE.).

Table 4 illustrates the application of the basic G × E
presented in this paper so far in the presence of a genetic
correlation between moderator and trait. Again, 500 MZ
and 500 DZ twins were simulated 50 times under each
condition; a = c = e = 1 and the twin correlation for the
moderator is 0.5. Note that the estimate of βM is inflated
due to the shared genetic effects. More importantly, the
tests of G × E not allowing for any main effect (the last
column) show inflated test statistics when there is no inter-
action but there is a gene–environment correlation. That is,
the third and sixth rows have average values of 4.01 and
11.06 for this test, both of which are greater than the criti-
cal value for this 1 degree of freedom test. Note however
that the test of an interaction that allows for a main effect
(second to last column) does not show such an effect.

G × E in the Presence of rGE

In the previous simulations, the interactive effect was simu-
lated for the genetic effects specific to the trait. If in fact the
interaction was with only the genetic effect shared with the
moderator, the above model would have failed to detect it.
As mentioned, this is because these effects have already
been partialled out in the means model. For a continuous
moderator, the current model can be re-formulated as a
bivariate model of both trait and moderator in order to
detect these effects of G × E in the presence of rGE ,
however. Figure 9 shows the partial path diagram for one
twin to illustrate this approach. Here the moderator fea-
tures twice in the model — as a dependent variable to be
modelled as well as a moderator variable to define the paths
to the trait. The main effect in the means model has been
replaced with a path indicating shared genetic effects. The
trait is now influenced by two sources of genetic influence:
that which is shared with the moderator, and that which is
not (common and unique paths aC and aU ). Each path can
interact with the moderator, represented by the coefficients
βX C

and βX U
. The C and E components (not shown on the

path diagram) follow the standard bivariate Cholesky para-
meterization, but without moderation. From these
parameters, rGE can be calculated as

aM aC /(aM�a 2�C�+� a� 2
U�)

if there is no G × E but otherwise gives rGE at the mean
value of the moderator (assuming a zero-centered modera-
tor). In the presence of G × E, rGE must be calculated
conditional on M as it will also vary as a function of the
moderator

rGE⏐M = 

whilst calculating the average rGE for the sample involves
integrating over the distribution of the moderator.

The following set of simulations illustrates this model’s
ability to distinguish between the two types of interaction,
whether or not there is a genetic correlation. Results are
shown in Table 5. The conditions (each consisting of 25
replicate samples of 500 MZ and 500 DZ twins) varied the
genetic correlation between moderator and trait and the
presence or absence of moderating effects on the common
and unique genetic paths, as described above. The genetic
correlations correspond to the correlation of unmoderated
effects only. That is, rGE = 0 corresponds to aM = 1, aC = 0
and aU = 1; rGE = 0.5 corresponds to aM = 1, aC = �0�.2�5� and
aU = �0.�75�; rGE = 1 corresponds to aM = 1, aC = 1 and aU =
0. Shared and nonshared environmental effects were simu-
lated for each component to have a variance of 1 and be
uncorrelated between trait and moderator (i.e., cM = eM = 1,
cC = eC = 0 and cU = eU = 1). The 15 conditions are arranged
in five blocks: (1) no moderation (2) moderation of
common path (3) moderation of unique path (4) modera-
tion of common and unique path, similar effects (5)
moderation of common and unique paths, opposing
effects. Four models were analysed: ACE-XC XU, ACE-XC,
ACE-XU and ACE. Three likelihood ratio test statistics
were constructed (final three columns in Table 5): in order

aM(aC + βXC M )
————

aM �(a�C�+� β�XC�M�)2� +� (�aU� +� β�XU�M�)2�

Table 4

Performance of the Basic G × E model in the presence of rGE (i.e., the Moderator M has Shared Genetic Influence with the Trait, Measured by the
Genetic Correlation, rGE ). The Table Presents Parameter Estimates for the ACE-X-M Model and Three Likelihood Ratio Tests: of a Main Effect in the
Presence of an Interaction; of Interaction in the Presence of a Main Effect; of Interaction not Allowing for any Main Effect

Likelihood ratio tests
Simulated Estimated ACE-X-M ACE-X-M ACE-X
rGE βX βM a c e βX βM ACE-X ACE-M ACE
0 — — 0.99 0.99 0.99 -0.01 0.00 0.83 1.03 1.03 
0.5 — — 0.95 0.98 1.01 0.00 0.14 37.86 1.04 1.07 
1 — — 0.66 1.05 1.04 0.00 0.28  155.51 1.76 4.01 
0 — 0.2 0.99 1.01 1.00 0.00 0.20 79.66 0.99 0.95 
0.5 — 0.2 0.93 1.02 1.00 0.00 0.34 215.67 1.06 2.07 
1 — 0.2 0.65 1.06 1.04 0.00 0.48 406.74 1.36 11.06 
0 0.2 — 0.99 1.00 1.00 0.21 0.00 0.97 49.60 49.73 
0.5 0.2 — 0.94 1.00 1.00 0.20 0.12 25.72 46.54 55.07 
1 0.2 — 0.68 1.05 1.02 0.25 0.25 100.40 46.19 88.90 
0 0.2 0.2 1.01 0.98 0.99 0.21 0.20 74.03 52.61 56.26 
0.5 0.2 0.2 0.94 1.00 1.00 0.20 0.31 167.17 44.99 77.03 
1 0.2 0.2 0.70 1.04 1.02 0.25 0.45 308.27 43.88 146.27 
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of the columns (1) moderation for both common and
unique genetic effects (2) moderation for common effects
only (3) moderation for unique effects only. The parame-
ter estimates under the full ACE-XC XU model are also
shown in the Table.

Under the null (first three rows), the models perform as
expected: the β coefficients are all near zero, and the tests of
moderation show average χ 2 values close to their expected
values under no moderation. The average unmoderated
genetic parameter values are close to their simulated values,
with the exception of aU when rGE = 1, which is simulated at

0, but has an average estimated value of 0.26. This artifact,
which also exists in the other rGE = 1 conditions, is
explained further below.

The second three conditions simulate a moderating
effect of shared genetic influence between the trait and
moderator. This effect is recovered well and detected, no
matter what the background genetic correlation between
trait and moderator. The specific tests of βXC (the second
column of likelihood ratio tests in the Table) show highly
significant average values, whereas the βXU parameters
average near zero. Power seems to increase as rGE increases.
The third three conditions simulate a moderating effect of
genetic influence specific to the trait. Again, the parameters
are recovered well, although power to detect βXU drops off
as rGE increases. The final six rows of Table 5 show that the
model works when both βXC and βXU are nonzero.

When rGE = 1 some subtle properties of the model
emerge — they are worth considering in further detail. The
contribution to the variance of total unique genetic effects
is (aU + βXU M)2 = aU

2 + 2aU βXU M + βX
2
U M 2. As mentioned

above, the power to detect βXU decreases with increasing
rGE , because when rGE = 1 then aU → 0 and so 2aU βXUM
→0 which reduces the impact of βXU on the variance by
canceling this cross-product term. A similar logic applies to
the relationship between aC and rGE .

Additionally, as aU and therefore 2aU βXU M approach 0,
then βXU only makes squared contributions to the variance.
Therefore, when rGE = 1, the estimate of aU is likely to be
near zero, which reduces the power to identify the sign of
βXU although the absolute value can still be identified.
Although the contribution to the variance will be the same
(and so this is not an issue for the analysis of real data),
taking the average of the unsquared parameter in repeated
simulation would lead to an apparrent bias in parameter
estimate for βXU when rGE = 1. The average values for βXU

(not shown in the Table) were in fact –0.03, 0.02 and

Figure 9
Extended G × E model to allow for gene–environment correlation.

Table 5

Performance of the Extended G × E model in the presence of rGE. The Table presents Parameter Estimates for the ACE-XCXU Model and Three
Likelihood Ratio Tests: Of Moderation for Both Common and Unique Genetic Effects; of Moderation for Common Effects Only; of Moderation for
Unique Effects Only

Likelihood ratio tests
Simulated Estimated ACE-XC XU ACE-XC XU ACE-XC XU

rGE βxC βxU aM aC aU βxC βxU ACE ACE-XU ACE-XC

0  — — 0.99  –0.01  0.97  0.01  0.01  2.83  1.77  1.03 
0.5  — — 0.98  0.48  0.78  0.01  0.00  1.72  0.92  0.83 
1  —  —  1.04  0.98  0.26  0.00  0.03  1.92  0.87  1.04
0  0.2  — 1.01  –0.01  0.94  0.20  0.01  59.74  57.72  1.27 
0.5  0.2  — 1.04  0.49  0.84  0.19  0.00  63.82  53.67  1.00 
1 0.2  — 1.03  0.94  0.29  0.20  0.03  86.77  53.99  0.70 
0  — 0.2  1.02  0.00  0.99  0.00  0.19  46.28  0.65  26.81
0.5  — 0.2  1.03  0.45  0.88  0.01  0.20  41.68  1.04  22.80
1  — 0.2  1.00  0.94  0.26  0.00  0.18  8.43  1.14  6.85 
0  0.2  0.2  1.05  -0.07  0.97  0.19  0.22  99.28  44.28  19.64 
0.5  0.2  0.2  1.02  0.48  0.88  0.19  0.20  123.36  45.12  8.82 
1  0.2  0.2  1.00  0.93  0.20  0.19  0.17  86.29  40.42  5.88 
0  0.2  –0.2  1.04  –0.01  0.99  0.18  -0.20  94.53  40.40  15.33 
0.5  0.2  –0.2  1.02  0.44  0.88  0.21  -0.19  80.46  49.79  15.49 
1  0.2  –0.2  0.99  1.00  0.18  0.20  -0.20  86.30  47.22  4.48 
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–0.12, in the 9th, 12th and 15th rows, respectively: making
the signs all positive (or all negative in row 15) produces
the unbiased average parameter estimates as shown in the
Table (0.18, 0.17 and –0.20).

As noted above, there is also an apparent bias in the
estimates of aU when rGE = 1. This parameter has a large
standard error, and it can be fixed to 0 when rGE = 1 with
no significant reduction in fit, on average. Again, under
certain conditions the sign of aU is not identified; however,
optimization favors the positive values, probably due to a
positive starting value being specified. This apparent bias is
therefore not important in real analysis, it is only a conse-
quence of taking averages.

The current model of G × E in the presence of rGE

could be extended in a number of ways. For example, a
third variable that is a potential index of genetic sensitivity
to an environmental factor can be incorporated, to produce
models similar to recent Markov Chain Monte Carlo
methods which handle G × E in the presence of rGE (Eaves
& Erkanli, 2002).

Summary

In the basic model, any genetic effects that are shared
between the trait and the moderator will be modelled as
main effects of the moderator. An extension to the basic
model explicitly models shared genetic effects, as well as
any interactions between these effects and the moderator,
allowing for the analysis of G × E in the presence of rGE .

Qualitative G × E with Continuous 
Moderator Variables
All the previous models of G × E have implicitly addressed
scalar, or quantitative, moderation, meaning that the mag-
nitude of polygenic effect has varied as a function of the
moderator. However, it is also possible that different poly-
genic effects operate at different points along the
moderating continuum. The same distinction is found in
“sex-limitation” models, where males and females may have

different magnitudes of genetic (or environmental) effects
but may also differ in which genes operate in males and
females. Evidence for the “different genes” hypothesis is
reduced covariance between twins discordant for the mod-
erating variable (i.e., sex).

To allow for qualitative G × E with continuous modera-
tor variables, we adopt the most simple biological model:
that there are two independent sets of polygenes, A1 and
A2, which show different profiles of scalar interaction with
the moderator. Figure 10 illustrates this concept. The left
panel depicts a standard moderated variance component,
which is consistent with at least some genetic effects being
amplified at higher values of the moderator. This curve
could also have come about as a result of different genes
operating at higher levels of the moderator, however, as
shown in the right panel. Here we see that the A1 set of
polygenes is not moderated, whereas the A2 set only have
an effect at high levels of the moderator. In this way, indi-
viduals high on the moderator have a different profile of
genes operating compared to individuals low on the moder-
ator (not just greater or lesser effects of the same genes).

It is worth drawing a distinction between qualitative
interaction and rGE . Qualitative interaction implies that dif-
ferent loci have an effect depending on the value of the
moderator. Gene–environment correlation implies that
certain alleles of certain loci are present depending on the
value of the moderator. In the latter case, an association
between an individual’s genetic loading and the moderator
ensues, which has to be explicitly modelled. This is not the
case for qualitative interaction however.

Noting that a model with both sets of polygenes
showing scalar interaction is not identified, the expected
additive genetic variance for twin i is now a1

2 + (a2 +
βX2Mi )

2; the additive genetic component of the MZ covari-
ance is a1

2 + (a2 + βX2 M1)(a2 + βX2 M2); the additive genetic
component of the DZ covariance is a1

2/2 + (a2 + βX2 M1)(a2

+ βX2 M2)/2. The formulation implies that the effective coef-
ficients of genetic relatedness will be attenuated for twin

Figure 10
Schematic illustrating scalar (left figure) and qualitative (right figure) G × E. See text for further explanation.
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Table 6

Scalar and Qualitative G x E: Results from Six Simulated Example Datasets

Simulated A 1 A 2 CE -X 2 ACE-X LRT
a1 a2 βx2 a1 a2 βx2 a βx χ 2 p
0 1 0.2 0.21 1.04 0.20 1.06 0.19  0.00 0.95 

0.00 1.10 0.17 1.10 0.17 0.00 1.00 
0.00 0.83 0.26 0.83 0.26 0.00 1.00 

1 0.5 0.25 1.08 0.44 0.22 1.16 0.09  2.56 0.11 
1.14 0.45 0.19 1.22 0.07  1.51 0.22 
0.95 0.39 0.28 1.02 0.11  5.95 0.01 

pairs discordant on the moderator under qualitative inter-
action. That is, the effective coefficients (normally 1 and
0.5 for MZ and DZ pairs respectively) are for MZ pairs

αMZ = 

and for DZ twins

αDZ = 

This model will be referred to as the A1A2CE-X2 model
(assuming that shared and nonshared environmental com-
ponents are also included). It can be seen that when M1 =
M2 then αMZ = 1 and αDZ = 0.5 for any values of a1, a2 and
βX2. Figure 11 shows the attenuation for MZ and DZ pairs
as a function of M1 and M2. Note that the exact shape of
this surface will depend on a1, a2 and βX2 and can go nega-
tive under certain conditions. Clearly, this model is not
applicable for obligatorily shared moderators.

Initial simulation results suggest poor power to discrim-
inate between scalar and qualitative G × E, however. Table

a 2
1/2 + (a2 + βX2 M1) (a2 + βX2 M2)/ 2

—————
�a2

1� +� (�a2� +� β�X2� M�1)�2� �a�2
1�+� (�a2� +� β�X2�M�2 )�2�

a2
1 + (a2 + βX2M1) (a2 + βX2M2)—————

�a2�1+� (�a2� +� β�X2�M�1)�2� �a2
1� +� (�a2� +� β�X2�M�2)�2�

6 shows the results fitting the ACE-X (scalar) and A1A2CE-
X2 (qualitative) models to six example datasets simulated
under either scalar G × E (first three rows) or qualiative G ×
E (second three rows). The likelihood ratio test statistic
(LRT column) is the χ2

1 increase in fit from qualitative to
scalar models. Simulating under a population value of a1 =
0 implies scalar interaction (i.e., there is only one set of
polygenes). Also, note that c = e = 1 and that 1000 pairs of
each zygosity were simulated (twice the usual sample size).
As can be seen, the qualitative model is correctly rejected in
all three scalar cases (first three rows). However, there is at
best only very weak evidence to support the qualitative
model in the second three datasets, with only 1 of the three
being significant at the 5% significance level. More exten-
sive simulation work is required to properly evaluate the
power of this test under a range of conditions.

Summary

An interaction may involve the same genes having different
effects (scalar interaction) or different genes operating
(qualitative interaction) at different levels of the moderator.
A simple model of qualitative interaction for continuous

Figure 11
Plot of αMZ (solid grid) and αDZ (dotted grid) for a1 = a2 = 1 and βx2 = 0.3. Along the diagonal M1 = M2, αMZ = 1 and αDZ = 0.5.
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variables was presented, although power to discriminate
between scalar and qualitative interaction empirically looks
likely to be low.

Other Distributional Factors Influencing 
G × E Analysis
The effect of mismatching continuous and binary moderators

Although many moderator variables may act continuously,
it is also entirely reasonable that some moderators act in a
more discrete manner, even if they can be measured on a
continuous scale. In this section we consider the impact of
“misclassifying” a moderator variable: either falsely
dichotomizing what is actually a continuous moderator or
using a continuous measure when the moderating effect is
really a threshold effect (e.g., only the top 10% individuals
show an increased genetic effect).

Samples were simulated under two kinds of model:
continuous or binary moderation. For the continuous case,
βX = 0.2; for the binary case, the continuous moderator was
transformed to a binary scale, with individuals more than
1.28 standard deviations above the mean scored “1”, all
others scored “0” (corresponding to a 9:1 ratio of “0”:“1”),
with βX = 0.8 (no direct comparison can be made between
the magnitude of interaction in the continuous and binary
cases in terms of βX alone however).

Similarly, analysis adopted either a continuous or
binary approach towards the moderator. The correctly clas-
sified scenarios are therefore when the data were generated
using a continuous moderator and also analyzed using a
continuous moderator; also, when the data were generated
using a binary moderator and analyzed using the same
binary moderator. The misclassified scenarios are when the
data were generated using a continuous moderator, which
was subsequently dichotomized for analysis; also, when the
data were generated using a binary variable but the analysis
used the underlying continuous “liability” instead.

In addition, some further analytic conditions were con-
sidered. A binary moderating effect could rightly be
described as “nonlinear” in terms of the underlying contin-
uous dimension — the nonlinear model was therefore
included when analyzing a continuous moderator to see
how well a quadratic function performs at approximating
the “step function” of a threshold effect. Finally, although it

is common for experimenters to dichotomize continuous 
or semi-continuous variables in analysis (e.g., taking the
top 5% of high scorers on the moderator) the chosen
threshold may not correspond to the actual threshold (e.g.,
actually the top 10% show a moderated effect). Two further
analysis conditions were included to represent this kind 
of misclassification of binary variables: the true threshold
was 10% and the classification was either too harsh (5%) 
or too inclusive (25%). In all cases, a = c = e = 1 for 500
MZ and 500 DZ twin pairs; 50 replicates were generated
under each condition.

Table 7 shows that, as expected, a continuous analysis
model works much better when the moderation is truly
continuous; likewise, a correctly specified binary moderator
in analysis performs best when the moderation is truly
binary. For continuously-moderated data, the average test
statistic under the continuous analysis models is typically 
at least double the binary analysis models. As expected,
allowing for a nonlinear continuous effect adds nothing.
For binary-moderated data, the 10% binary model in
analysis works best. However, the nonlinear model seems to
offer a good approximation, capturing around three-quar-
ters of the available information. Furthermore, when the
binary analysis model is misspecified (i.e., the dichotomy 
is either too harsh or too inclusive), then performance 
is worse than the nonlinear model and equal to the linear
continuous model.

From these results it seems to be a good strategy to
adopt continuous moderators whenever available, allowing
for nonlinear moderation to model any threshold effects.
Figure 12 shows the average estimated variance compo-
nents as a function of the moderator under different
analysis models for the case of a binary moderating effect in
the data, based on a liability with a sib correlation of 0.5.

Non-normal Trait Distributions

The current method relies on often relatively subtle differ-
ences in the variance, MZ covariance and DZ covariance
across the range of the moderator variable to infer the pres-
ence of any interactive effect. Whilst it would be expected
that deviations from multivariate normality may obscure
these subtle effects, it is also possible that certain forms of
measurement bias and error could lead to spurious evidence
for G × E.

Table 7

Continuous and Binary Moderators: Effects of Misspecifying Moderator Type. The LRT Represents the Difference in Model Fit Between 
the ACE and ACE-X (or ACE-X-X2) Models. All LRT are Distributed as a χ2 on 1 Degree of Freedom, Except for the Nonlinear Test Which 
is on 2 Degrees of Freedom

Model
Continuous Binary

Linear Nonlinear 10% 5% 25%
Data r βx LRT βx βx 2 LRT βx LRT βx LRT βx LRT
Continuous 0 0.20 22.05 0.20 0.00 23.36 0.36 8.17 0.41 6.88 0.33 12.58

0.5 0.20 18.05 0.20 0.01 19.16 0.36 7.72 0.40 5.67 0.32 10.82
1 0.22 17.04 0.23 –0.02 18.00 0.37 6.53 0.39 4.74 0.35 10.03 

Binary (10%) 0 0.17 16.12 0.15 0.10 27.40 0.79 41.30 0.71 17.95 0.37 16.12 
0.5 0.24 18.57 0.18 0.10 28.80 0.84 42.84 0.73 18.62 0.39 16.36 
1 0.20 12.63 0.15 0.10 19.88 0.81 28.77 0.73 13.30 0.35 10.71 
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Many behavioral measurements have skewed, or J-
shaped, distributions. For example, on a six-point symptom
scale, the majority of individuals might score 0 or 1, whilst
only a handful of individuals score above 4. If such a
measure does in fact represent of normally-distributed liabil-
ity, then the low end of the scale distribution is less
informative than the high end. If a second variable correlates
with the trait, then the second variable will also correlate
with the “informativeness” of the first measure. This would
be detected as an interactive effect. For example, the second
variable would predict that twins with similar low scores on
the liability are more likely to have identical scores on the
measurement than twins with similar high scores on the lia-
bility. This would be an example of heteroscedasticity.

A set of simulations investigated this effect. In all cases,
a = c = e = 1 for 500 MZ and 500 DZ twin pairs. A contin-
uous covariate was simulated with a sibling correlation of
0.5. Three conditions were assessed: (1) no moderation and
no main effect, βX = βM = 0 (2) a main effect only, βX = 0,
βM = 0.5 and (3) a true moderating effect and a main effect,
βX = 0.2, βM = 0.5. Twenty-five replicate datasets were 

Table 8

Tests of Moderation under Skewed Trait Distributions. 
The LRT Column is the 3 Degree of Freedom Likelihood Ratio Test
Statistic for βX = βY = βZ= 0

Simulated Estimated
βM βX βM βX βY βZ LRT

Untransformed 
— — 0.00 0.02 –0.02 –0.02 2.88 
0.5 — 0.51 –0.02 0.01 0.01 3.67 
0.5 0.2 0.50 0.16 0.03 0.01 19.16 

Transformation 1
— — 0.00 0.03 –0.02 –0.02 2.74 
0.5 — 0.50 -0.03 0.02 0.00 3.65 
0.5 0.2 0.50 0.16 0.03 0.02 18.32 

Transformation 2
— —  0.00 0.00 -0.01 0.00 3.60 
0.5 — 0.28 0.06 0.09 0.08 60.50 
0.5 0.2 0.30 0.17 0.10 0.09 126.69 

Figure 12
Binary moderators and continuous approximations, for data simulated with a binary moderating effect (10% threshold): (a) ACE model (b) ACE – X
model with continuous moderator (c) ACE – X – X2 model with continuous moderator (d) ACE – X model with binary moderator (10%) (e) ACE – X
model with binary moderator (5%) (f) ACE – X model with binary moderator (25%).

Figure 13
Example of data simulated and then transformed to investigate tests of moderation in skewed distributions. The first transformation bins the data-
points into 15 bins; the second transformation is more severe and introduces a skew in the data.
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simulated under each of the three models. In analysis, two
models were fit to the data: ACE-XYZ-M and ACE-M, the
difference in fit between which provides a 3 degree of
freedom test of any moderating effect. Each replicate
dataset was subjected to two transformation schemes, illus-
trated in Figure 13. Transformation 1 simply bins the
continuous trait score into a less informative 15-point scale;
transformation 2 bins the scores more severely and intro-
duces a skew into the distribution.

Table 8 gives the results for this set of simulations. We
would not expect the likelihood ratio test of ACE-XYZ-M
against ACE-M to be significant for scenario (1) or (2),
whereas it should be significant for (3) due to the simulated
interaction. This holds for the untransformed data and
under the first transformation (the critical value for a χ2

statistic with 3 df at the βX2 = 0.05 level is 7.815), but not
under the second transformation scheme: the difference in
fit is 60.5 which has a p-value of 4.6 x 10-13 for condition
(2) where no interaction is actually simulated. In other
words, the transformation scheme has induced evidence for
some kind of moderating effect.

This effect may seem to be a cause of concern, given
high prevalence of such measurement scales. Inspection of
the moderating coefficients should reveal a predictable sig-
nature however, βX ≈ βY ≈ βZ when a ≈ c ≈ e. Plotting the
expected variance components will reveal only a gentle
trend for all variance components to be attenuated similarly
at low levels of the moderator. Whilst possible as a real
model, researchers should be cautious in their conclusions,
especially in the presence of heteroscedasticity. A scenario
when βX , βY and βZ are all significant in a similar direction
is also consistent with what might be called “phenotypic
interaction” between the trait and the moderator, or “P ×
E ”. In this case, the moderator doesn’t interact with any
component of variance specifically; rather, it increases varia-
tion in the entire trait, at what can be thought of as a “later
stage” in the trait’s etiology.

Summary

The distributions of the moderator (binary versus continu-
ous) and of the trait (normal versus non-normal) were
investigated in this section. It appears that, under a nonlin-
ear model, using a continuously measured moderator works
well even if the actual moderation operates as a binary
threshold effect. It was also shown how certain types of
skewed trait distributions might generate spurious evidence
for interaction.

Discussion
As long as an individual’s genetic makeup is represented by
a single, latent “A”, then the possibilities of gene–environ-
ment interaction will approach an unavoidable limit. In the
future, the analysis of multiple measured genotypes inter-
acting with multiple measured environmental factors will
be necessary, in order to refine the broad brushstrokes we
currently use to characterize the quantitative genetics of
complex human traits. Nonetheless, twin analysis of
gene–environment interaction using continuous moderator
variables should still offer some interesting insights into the
etiology of many complex traits, although several issues not

yet covered may emerge in the application of these models
to real data.

The simulations presented in this paper generate data
that is “cleaner” than we might expect in practice. Although
this is typically the case with all simulation studies, the
present models rely on relatively subtle phenomena and so
the extent to which systematic and stochastic biases generate
misleading results has not been fully addressed. Most simu-
lations were conducted using a moderately large sample of
500 MZ twins and 500 DZ twins: the behavior of the
models in smaller and larger samples is of interest, also.

In addition to its cleanliness, a simulated dataset comes
with the knowledge of the true model, which inevitably
guides analysis. In practice, for a specific dataset it might
not be obvious how best to approach the various inter-
related questions that can be asked: binary versus
continuous moderation, linear versus nonlinear effects,
interactions versus main effects versus correlations, scalar
versus qualitative interactions, multiple moderators, etc. It
might therefore be useful to develop a “protocol”, by which
different models are sensibly and systematically evaluated
and compared.

Although standard bivariate models explain the rela-
tionship between any two traits in terms of shared or direct
causation, the kind of relationship involved in G × E might
also be plausible. In other words, it is not necessary that the
E component of G × E actually be “environmental” in any
traditional sense of the word. What constitutes an environ-
ment from the gene’s point of view is quite different from
an individual’s point of view. For example, the internal bio-
chemical state of the body in which a gene finds itself can
sensibly be called its environment. For appropriate traits, it
might therefore be worth considering the above interaction
models along with the standard bivariate ones. Consider a
fictitious example involving anorexia and neurotic symp-
toms. Say being anorexic has various consequences
including chronic low body weight. Low body weight may
in turn lead to genes being switched on or off, some of
which might operate to increase or decrease the chance of
neurotic symptoms. Therefore, there will be an increase 
in the genetic variance of neuroticism, as a consequence of
an anorexia-related state switching on genes. This scenario
is distinct from having a set of genes that operate jointly 
on anorexia and neuroticism (i.e., a genetic correlation); 
it is distinct from direct causation between anorexia and
neuroticism, in that although being anorexic leads to an
increased risk of being neurotic, this is only expressed in
genetically-predisposed individuals. As such, this dynamic
fits within the same analytic framework as the G × E
models considered so far: in this example, a GNeuroticism × E

Anorexia (→ Bodyweight) interaction. Such an effect might be called a
“Gene-for-trait 1 × trait 2”, or “G × T”, interaction.

Software
Scripts to perform the above analyses using Mx (Neale,
1997) and a Windows program for plotting variance com-
ponents can be found at http://statgen.iop.kcl.ac.uk/gxe/.
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