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Generalized Frobenius Algebras and Hopf
Algebras

Miodrag Cristian lovanov

Abstract. “Co-Frobenius” coalgebras were introduced as dualizations of Frobenius algebras. We pre-
viously showed that they admit left-right symmetric characterizations analogous to those of Frobenius
algebras. We consider the more general quasi-co-Frobenius (QcF) coalgebras. The first main result
in this paper is that these also admit symmetric characterizations: a coalgebra is QcF if it is weakly
isomorphic to its (left, or right) rational dual Rat(C*), in the sense that certain coproduct or product
powers of these objects are isomorphic. Fundamental results of Hopf algebras, such as the equiva-
lent characterizations of Hopf algebras with nonzero integrals as left (or right) co-Frobenius, QcF,
semiperfect or with nonzero rational dual, as well as the uniqueness of integrals and a short proof of
the bijectivity of the antipode for such Hopf algebras all follow as a consequence of these results. This
gives a purely representation theoretic approach to many of the basic fundamental results in the the-
ory of Hopf algebras. Furthermore, we introduce a general concept of Frobenius algebra, which makes
sense for infinite dimensional and for topological algebras, and specializes to the classical notion in the
finite case. This will be a topological algebra A that is isomorphic to its complete topological dual AV
We show that A is a (quasi)Frobenius algebra if and only if A is the dual C* of a (quasi)co-Frobenius
coalgebra C. We give many examples of co-Frobenius coalgebras and Hopf algebras connected to cat-
egory theory, homological algebra and the newer g-homological algebra, topology or graph theory,
showing the importance of the concept.

Introduction

A K algebra A over a field K is called Frobenius if A is isomorphic to A* as right
A-modules. This is equivalent to there being an isomorphism of left A-modules be-
tween A and A*. This is the modern algebra language formulation for an old question
posed by Frobenius. Given a finite dimensional algebra with a basis x1, . . . , x,,, the
left multiplication by an element a induces a representation A — Endg(A) = M, (K),
a v (aij)i; (ajj € K), wherea - x; = Z?Zl a;jx;. Similarly, the right multiplication
produces a matrix a/; by writing x;-a = 37"_, aj;xj, a]; € K, and this induces another
representation A > a — (af j)i7 j- Frobenius’ problem came as the natural question
of when the two representations are equivalent. Frobenius algebras occur in many
different fields of mathematics, such as topology (the cohomology ring of a com-
pact oriented manifold with coefficients in a field is a Frobenius algebra by Poincaré
duality), topological quantum field theory (there is a one-to-one correspondence be-
tween 2-dimensional quantum field theories and commutative Frobenius algebras;
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see [Ab]), Hopf algebras (a finite dimensional Hopf algebra is a Frobenius algebra),
and Frobenius algebras have subsequently developed into a research subfield of alge-
bra.

Co-Frobenius coalgebras were first introduced by Lin in [L] as a dualization of
Frobenius algebras. A coalgebra is left (right) co-Frobenius if there is a monomor-
phism of left (right) C*-modules C C C*. However, unlike the algebra case, this
concept is not left-right symmetric, as an example in [L] shows. Nevertheless, in
the case of Hopf algebras, it was observed that left co-Frobenius implies right co-
Frobenius. Also, a left (or right) co-Frobenius coalgebra can be infinite dimensional,
while a Frobenius algebra is necessarily finite dimensional. Co-Frobenius coalgebras
are coalgebras that are both left and right co-Frobenius. It recently turned out that
this notion of co-Frobenius has a nice characterization that is analogous to the char-
acterizations of Frobenius algebras and is also left-right symmetric: a coalgebra C is
co-Frobenius if it is isomorphic to its left (or equivalently to its right) rational dual
Rat(c-C*) (equivalently C ~ Rat(C¢.); see [I]). This also allowed for a categorical
characterization which is again analogous to a characterization of Frobenius algebras:
an algebra A is Frobenius if and only if the functors Homy4(—, A) (“the A-dual func-
tor”) and Homg (—, K) (“the K-dual functor”) are naturally isomorphic. Similarly, a
coalgebra is co-Frobenius if the C*-dual Hom¢+ (—, C*) and the K-dual Homg (—, K)
functors are isomorphic on comodules. If a coalgebra C is finite dimensional then it
is co-Frobenius if and only if C is Frobenius, showing that the co-Frobenius coalge-
bras (or rather their duals) can be seen as the infinite dimensional generalization of
Frobenius algebras. One very important example is again in the topological situa-
tion: the homology of a compact oriented manifold M admits a coalgebra structure
that is dual to that of the algebra in co-homology, and it becomes a co-Frobenius
coalgebra. For any topological space it can actually be described as follows: take
an n-simplex o: [0,1,...,n] — M in H,(M) and introduce the comultiplication
A(o) = Z?:o olio.1....i] ® olji....n> which in fact induces at homology level, that is,
the formula can be introduced for cohomology classes. Hence, we can then con-
sider the convolution product * on the dual algebra ( (H* (M )) 5 *) , and then by
the definition of the cup product the natural map (H* (M), U) — ( (H* (M)) *, *) ,
¢+ (0 > c(0)) obviously becomes a morphism of rings:

n

(cxd)(o) =Y clondlor) =Y c(alipr...i)d(0]fi...) = (cUd)(0).

i=0

In the case when M is a compact oriented manifold, this is an isomorphism turning
H, (M) into a co-Frobenius coalgebra.

Quasi-co-Frobenius (QcF) coalgebras were introduced in [GTN] (further inves-
tigated in [GMN]), as a natural dualization of quasi-Frobenius algebras (QF alge-
bras), which are algebras that are self-injective, cogenerators and artinian to the left,
equivalently, all these conditions to the right. However, in order to allow for infinite
dimensional QcF coalgebras (and thus obtain more a general notion), the definition
is a weakening of the classical one: a coalgebra is said to be left (right) QcF if it em-
bedsin [ [, C* (a direct coproduct of copies of C*) as left (right) C*-modules. These
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coalgebras were shown to bear many properties that were the dual analogue of the
properties of QF algebras. Again, this turned out not to be a left-right symmetric
concept, and QcF coalgebras were introduced to be the coalgebras that are both left
and right QcE Our first goal is to note that the results and techniques of [I] can be
extended and applied to obtain a symmetric characterization of these coalgebras. In
the first main result we show that a coalgebra is QcF if and only if C is “weakly” iso-
morphic to Rat(c+C*) as left C*-modules, in the sense that some (co)product powers
of these objects are isomorphic, and this is equivalent to asking that C* be “weakly”
isomorphic to Rat(C{.) (its right rational dual) as right C*-modules. In fact, it is
enough to have an isomorphism of countable powers of these objects. This also al-
lows for a nice categorical characterization, which states that C is QcF if and only
if the above C*-dual and K-dual functors are (again) “weakly” isomorphic. Besides
realizing QcF coalgebras as a left-right symmetric concept which is a generalization
of both Frobenius algebras, co-Frobenius co-algebras and co-Frobenius Hopf alge-
bras, we note that this also provides this characterization of finite dimensional quasi-
Frobenius algebras: A is QF if and only if A and A* are weakly isomorphic in the
above sense, equivalently, [T A ~ [ A*.

Thus these results give a nontrivial generalization of Frobenius algebras and of
quasi-Frobenius algebras, and the algebras arising as duals of QcF coalgebras are en-
titled to be called Generalized Frobenius Algebras, or rather Generalized QF Algebras.

These turn out to have a wide range of applications to Hopf algebras. In the the-
ory of Hopf algebras, some of the first fundamental results were concerned with the
characterization of Hopf algebras having a nonzero integral. These are in fact gen-
eralizations of well known results from the theory of compact groups. Recall that
if G is a (locally) compact group, then there is a unique left invariant (Haar) measure
and an associated integral f . Consider the algebra R.(G) of continuous represen-
tative functions on G, i.e., functions f: G — R such that there are f;,gi: G — K
fori = 1,nwith f(xy) = 31| fi(x)gi(y). This becomes a Hopf algebra with mul-
tiplication given by the usual multiplication of functions, comultiplication given by
f— >°L, fi®g and antipode S given by the composition with the taking of inverses
S(f)(x) = f(x~1). Then, the integral f of G restricted to R.(G) becomes an element
of R.(G)* that has the following property: « - f = a(l) f , with 1 being the con-
stant 1 function. Such an element in a general Hopf algebra is called a left integral,
and Hopf algebras (quantum groups) having a nonzero left integral can be viewed as
(“quantum”) generalizations of compact groups (the Hopf Algebra can be thought
of as the algebra of continuous representative functions on some abstract quantum
space). Among the first the fundamental results in Hopf algebras were the facts that
the existence of a left integral is equivalent to the existence of a right integral and
that this is equivalent to the (co)representation theoretic properties of the underly-
ing coalgebra of H of being left co-Frobenius, right co-Frobenius, left (or right) QcE,
or having nonzero rational dual. These were results obtained in several initiating re-
search papers on Hopf algebras [LS, MTW, R, Su, Sw1]. Then the natural question
arose of whether the integral in a Hopf algebra is unique (i.e., whether the space of
left integrals [, or that of right integrals |  is one dimensional), which would general-
ize the results from compact groups. The answer to this question turned out positive,
as was proved by Sullivan in [Sul; alternate proofs followed afterwards (see [Ra, St]).
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Another very important result is that of Radford, who showed that the antipode of a
Hopf algebra with nonzero integral is always bijective.

We re-obtain all these results as a byproduct of our co-representation theoretic
results and generalizations of Frobenius algebras; they will turn out to be an easy ap-
plication of these general results. We also note a very short proof of the bijectivity of
the antipode by constructing a certain derived comodule structure on H, obtained
by using the antipode and the so-called distinguished grouplike element of H, and
the properties of the comodule H”. The only way we need to use the Hopf alge-
bra structure of H is through the classical Fundamental theorem of Hopf modules,
which gives an isomorphism of H-Hopf modules fl ®H ~ Rat(g-H*); however, we
will only need to use that this is a isomorphism of comodules. We thus find almost
purely representation theoretic proofs of all these classical fundamental results from
the theory of Hopf algebras. Thus, the methods and results in this paper are also
intended to emphasize the potential of these representation theoretic approaches.

The next goal of this paper is to give a new interpretation and provide new un-
derstanding of the notion of QcF coalgebra, namely, as the dual of a naturally de-
fined notion of generalized (quasi-)Frobenius algebra. This will show that the du-
ality between finite dimensional (quasi-)Frobenius algebras and finite dimensional
(quasi-co-)Frobenius coalgebras can be fully extended to the infinite dimensional
situation and can be understood in this new generality. This will be a consequence of
the above-described symmetric characterizations of QcF coalgebras. More precisely,
given a topological algebra A whose topology has a basis of neighborhoods of 0 con-
sisting of two-sided ideals of finite codimension (which we call an AT-algebra), it
will be called generalized Frobenius if A is isomorphic as a left topological module
to a certain continuous dual AV of A. Algebras with this kind of topology occur
whenever one is interested in only a certain particular class of finite dimensional rep-
resentations of an arbitrary algebra. In particular, any algebra can be thought as an
AT-algebra by endowing it with the topology in which all cofinite ideals are open.
It turns out that these generalized Frobenius algebras are exactly algebras that are
the dual of some co-Frobenius coalgebra. Moreover, they also have categorical char-
acterizations which parallel those of finite dimensional Frobenius algebras and of
co-Frobenius coalgebras.

In the last section, we give many examples to show that Frobenius and quasi-co-
Frobenius coalgebras appear from many different mathematical situations and form
a large class. Also, some of these provide interesting examples of quantum groups.

One very important example comes from homological algebra and from the gen-
eralized q-homological algebra ([Kap96]; see [M42a, M42b] for the topological ori-
gins): the category of n-chain complexes (that is, representations of the line quiver
.-+ — e — e — .- but with the condition that the n-th power of the differential
is 0) is equivalent to the category of left comodules over a co-Frobenius coalgebra A,;,
which is in fact also a Hopf algebra. This was shown in [Par81] for n = 2 and
extended in general in [B]. This makes the category of these n-chain complexes a
monoidal category (and rigid if we restrict to finite dimensional ones), and gives a
way to explain, for example, the total complex of the tensor product bicomplex as a
the internal tensor product in the category, or the total complex of the Hom-complex
as the internal Hom in the monoidal category (see [W, 2.7]).
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Other examples of categories of comodules over a co-Frobenius coalgebra include
representations of a cyclic quiver 1 — 2 — .-+ — p — 1, but with the condition
that a certain fixed number m of compositions of the morphisms (arrows) in the
representation yields 0. Under some conditions (m divides #), this is also a Hopf
algebra. In particular, these are a class of quantum groups which generalize Taft
algebras.

Another example with connections to homological algebra is that of the category
of double chain-complexes, or generalizations to m, n-double chain complexes, with
d" = 0 on the horizontal and d” = 0 on the vertical: these categories are equivalent
to the category of left comodules over A,, ® A,. Many examples can be built from
(finite or infinite) graphs, where sometimes easy combinatorics can be employed to
decide whether the coalgebra is co-Frobenius or QcF. Finally, in many situations (for
example, over algebraically closed fields), tensor products of co-Frobenius coalgebras
give further examples of co-Frobenius coalgebras.

1 Quasi-co-Frobenius Coalgebras

Let C be a coalgebra over a field K. We denote by M (respectively ©M) the category
of right (left) C-comodules and by ¢+ M (respectively M+ ) the category of left (right)
C*-modules. We use the simplified Sweedler o-notation for the comultiplication
p: M — M ® C of a C-comodule M, p(m) = my ® m;. We will always use the
inclusion of categories MC — M, where the left C*-module structure on M is
given by ¢* - m = ¢*(m;)my.

Let S be a set of representatives for the types of isomorphism of simple left C-
comodules and T be a set of representatives for the simple right comodules. It is
well known that we have an isomorphism of left C-comodules (equivalently right
C*-modules) C ~ P E(S)"®, where E(S) is an injective envelope of the left C-
comodule S and n(S) are positive integers. Similarly, C ~ @TGTE(T)P(T) in MC,
with p(T) € N (we use the same notation for envelopes of left modules and for
those of right modules, as it will always be understood from the context what type
of modules we refer to). Also C* ~ Hses E(S)* in c+M and C* ~ HTG‘J’ E(T)*
in Mc«. We refer the reader to [A], [DNR] or [Sw] for these results and other basic
facts about coalgebras. We will use the finite topology on duals of vector spaces: given
a vector space V/, this is the linear topology on V* that has a basis of neighborhoods
of 0 formed by the sets F- = {f € V* | f|r = 0} for finite dimensional subspaces F
of V. We also writt W = {x € V | f(x) = 0,Vf € W} for subsets W of V*. Any
topological reference will be with respect to this topology.

For a module M, we write M) for the coproduct (direct sum) of I copies of M and
M for the product of I copies of M. We recall the following definition from [GTN].

Definition 1.1 A coalgebra C is called right (left) quasi-co-Frobenius, or briefly a
right QcF coalgebra, if there is a monomorphism C < (C*) of right (left) C*-
modules. C is called a QcF coalgebra if it is both a left and right QcF coalgebra.

We also recall the following definition (see [L]).
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Definition 1.2 A coalgebra C is called right semiperfect if the category M¢ of right
C-comodules is semiperfect, that is, every right C-comodule has a projective cover.

We note that C is right semiperfect if and only if E(S) is finite dimensional for
all S € S (see [L] and also [DNR, Chapter 3]). In fact, this is the definition (char-
acterization) we will need to use. For convenience, we also recall the following very
useful results on injective (projective) comodules, the first one originally given in
[D, Proposition 4, p. 34] and the second one being [L, Lemma 15]:

e [D, Proposition 4] Let Q be a finite-dimensional right C-comodule. Then Q is
right C-comodule.

e [L, Lemma 15] Let M be a finite-dimensional right C-comodule. Then M is an
injective right C-comodule if and only if M* is a projective left C-comodule.

We note the following proposition, which that will be useful in what follows. The
equivalence (i) < (ii) was given in [GTN], and our approach also gives here a differ-
ent proof, along with the new characterizations.

Proposition 1.3 Let C be a coalgebra. Then the following assertions are equivalent:

(i) Cisaright QcF coalgebra;

(ii) C is a right torsionless module, i.e., there is a monomorphism C — (C*)! (see
Definition 1.1);

(iii) there exists a dense morphism): C¥ — C*, that is, the image of 1) is dense in C*;

(iv) VS € 8, 3T € T such that E(S) ~ E(T)*;

(v) C embedsin C*™ as right C*-modules.

Proof (i) = (ii) is obvious, since (C*)D C (C*)!.
(ii) < (iii): We have the standard isomorphism of vector spaces

0: HomK(C, (C*)I) i>H0rn1<(C(I),C*)7

given by 1) = 0(¢p), where ¥)(x)(c) = p(c)(x). It is straightforward to note that this

induces an isomorphism 6: Homc- (C, (C*)!) — Homc+(C,C*) (i.e., ¥ = 0(p)
is a morphism of C*-modules if and only if ¢ is). Moreover, we also see that the fact
that ¢ is injective is equivalent to (Im1))* = 0, which is further equivalent to Im 1)
is dense in C* (for example, by [DNR, Corollary 1.2.9]).

(ii),(iii) = (iv): As Imt C Rat(c~C*), Rat(c~C*) is dense in C*, so C is right
semiperfect by [DNR, Proposition 3.2.1]. Thus E(S) is finite dimensional for S € 8.
Also by (ii) there is a monomorphism ¢: E(S) — Hje] E(T;)* with T; € T, and as
dim E(S) < oo there is a monomorphism to a finite direct sum E(S) < H]EF E(T))*
(F finite, F C J). Indeed, if p; are the projections of Hje]E(Tj)*, then note that
ﬂjejkerpj ot = 0, so there must be ﬂjeerrpj ot = 0 for a finite F C J. Then
E(S) is injective also as right C*-module (see for example [DNR, Corollary 2.4.19]),
and so E(S) ® X = @JEFE(T]-)* for some X. By [I, Lemma 1.4], the E(T;)*’s are
local indecomposable; they are also cyclic projective. We claim that E(S) ~ E(T;)* for
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some j € F. This can be seen in several ways using general results on indecomposable
decompositions into modules with local endomorphism rings. However, it can also
be shown directly: indeed, let us note that there is at least one nonzero morphism
ES) — ES) @ X = @jeF E(T))* — GajeF T]’f‘ — Si (one looks at Jacobson
radicals) and this projection then lifts to a morphism f: E(S) — E(T)* as E(S) is
obviously projective; this has to be surjective since E(T})* is cyclic local, and then f
splits; hence E(S) ~ E(Ty)* @Y with Y = 0, as E(S) is indecomposable.

(iv) = (v): Any isomorphism E(S) ~ E(T)* implies that E(S) is finite dimen-
sional, because then E(T)* is cyclic rational; therefore E(T) ~ E(S)*. Thus for each
S € 8 there is exactly one T € T such that E(S) ~ E(T)*. If T’ is the set of these T’s,

then
Cr@ES < HESV~ @ (B
ses ses TeT'CT
) (N) o (1) (N) .
= (@ (er)™) " (I (ED)"™) =
TeT TeT
(v) = (i) is obvious from the definition of QcF coalgebras. [ |

From the above proof, we see that when C is right QcF, the E(S)’s are finite dimen-
sional projective for S € 8, and we also conclude the following result already known
from [GTN] (in fact these conditions are even equivalent); see also [DNR, Theo-
rem 3.3.4].

Corollary 1.4 IfC is right QcFE, then C is also right semiperfect and projective as right
C*-module.

We also immediately conclude the following.

Corollary 1.5 A coalgebra C is QcF if and only if the application
{E(S)|S€8}5Q0—~ Q" ¢{E(T) | TeT}

is well-defined and bijective.

Definition 1.6

(i) Let C be a category having products. We say that M,N € C are weakly «-
isomorphic if and only if there are some sets I, J such that M! ~ N/; we write
M < N.

(ii) Let C be a category having coproducts. We say that M, N € C are weakly o-
isomorphic if and only if there are some sets I, ] such that MDD ~ ND; we
write M < N.

The study of objects of a (suitable) category € up to m-isomorphism (resp. o-

isomorphism) is the study of the localization of € with respect to the class of all
m-isomorphisms (resp. o-isomorphisms).
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Recall that in the category “M of left comodules, coproducts are the usual direct
sums of (right) C*-modules and the product [ is given, for a family of comodules
(My)icr, by [Tie; Mi = Rat([ T, Mi).

For easy future reference, we introduce the following conditions:

(C1) C K Rat(Cf.) in ©M (or equivalently, in Mc-).
(C2) C X Rat(Ck.) in “M.

(C3) Rat(C") ~ Rat(C*/) for some sets I, J.

(C2') C L Rat(Cg.) in M.

Lemma 1.7 Any one of the conditions (C1), (C2), (C3), (C2’) implies that C is QcF
(both left and right).

Proof Obviously (C2’) = (C2). In all of the above conditions one can find a mono-
morphism of right C*-modules C < (C*)’, and thus C is right QcE. Then each E(S)
for S € § is finite dimensional and projective by Corollary 1.4. We first show that C
is also left semiperfect, along the same lines as the proofs of [I, Proposition 2.1], and
[L, Proposition 2.6]. For sake of completeness, we include a short version of these ar-
guments here. Let Ty € T and assume, by contradiction, that E(T}) is infinite dimen-
sional. We first show that Rat(E(To)*) = 0. Indeed, assume otherwise. Then, since
C* = [lyeq E(D)*P™M and C = @5 E(S)"S as right C*-modules, it is straight-
forward to see that any one of conditions (C1)—(C3) implies that Rat(E(To)*) is
injective as left comodule, as a direct summand in an injective comodule. Thus,
as Rat(E(To)*) # 0, there is a monomorphism E(S) — Rat(E(To)*) C E(Ty)*
for some indecomposable injective E(S) (S € &8). This shows that E(S) is a direct
summand in E(Ty)*, since E(S) is injective also as right C*-module (by the above-
cited [D, Proposition 4]). But this is a contradiction since E(S) is finite dimensional,
E(Tp)* is indecomposable by [I, Lemma 1.4] and dim E(T)* = oo.

Next, use [I, Proposition 2.3] to get an exact sequence

0—>H—=E= @ ES,)"— E(Ty) > 0
a€A

with S, € 8. Since the E(S,)*’s are injective in ¢~M by [L, Lemma 15], we may as-
sume, by [I, Proposition 2.4] that H contains no nonzero injective right comodules.
For some 8 € A # &, put E' = D, () E(Sa)”. Then one sees that H + E' = E
(otherwise, since there is an epimorphism E(T) = % — %, the finite dimen-
sional rational right C*-module ( HfE/ * would be a nonzero rational submodule of
E(Ty)*), and this provides an epimorphism

H - H+E
HNE — E
But E(Sg)* is projective, so this epimorphism splits, and this comes in contradiction
with the assumption on H (the E(S3)*’s are injective in ¢« M).

This ends the proof of the fact that E(T) is finite dimensional for each T € T. Fi-
nally, we note that each of the conditions (C1), (C2), (C3) implies that each E(T)*—
which is a rational right C*-module by the above—is a direct summand in an injec-

tive left C-comodule, so it is an injective left comodule (right rational C*-module).
Thus, C is left QcE, too. |

H—

~ E(Sp)*.
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Now we note that if a coalgebra C is QcF, then all the conditions (C1)—(C3) are
fulfilled. Indeed, we have that each E(S) (S € 8) is isomorphic to exactly one E(T)*
(T € 7) and actually all E(T)*’s are isomorphic to some E(S). Then

()
c™ — (EB E(S)”(S)) — @ ES™ = @ ET1)™
se8 N TeT

Sy E(T)* (PN — ® (E(T)*p(T)) N _ (RatC*)™),
TeT TeT

where we use that Rat(C*) = @ E(T)*P(D) a5 right C*-modules for left and right
semiperfect coalgebras (see [DNR, Corollary 3.2.17])

ﬁc = Rat(C") = ﬁ @ E(S)"
N N Ses8
Cc C
=[TITES™ ()
N Se8

C C C .
_ H E(S)n(S)XN _ H E(S)N _ H E(T)*I\
Ses8 Ses TeT

C c C
=11 E(T)*NXP(T) =TI 11 E(T)*p<T)

TeT N TeT
c . c .
= TRat( I (E)"™)") = Rat( (D ETY")7)
N TeT N TeET
= lg[Rat(C*)
N

where for () we have used [I, Lemma 2.5] and the fact that E(T)* are all rational
since E(T) are finite dimensional in this case (recall that the product in the category
of left comodules is understood whenever HC is written); also (C3) holds because

Rat(CN) = H?e‘)‘ E(T)*N by the computations in lines 1 and 3 in the above equation
and because

C . c
Rat(C*") = Rat(H 11 E(T)*P<T>) — ] E(T)*»™*N = [T E(T)*™.
N TeT TeT TeT

Combining all of the above we obtain the following nice symmetric characteri-
zation which extends the one of co-Frobenius coalgebras from [I] and those of co-
Frobenius Hopf algebras and Frobenius Algebras.

Theorem 1.8 Let C be a coalgebra. Then the following assertions are equivalent.

(i)  Cisa QCcF coalgebra.

(ii) C < Rat(Ck.) or C X Rat(Cpk.) in “M or Rat(C!) ~ Rat(C*/) in CM (or Mc~)
for some sets 1, J.
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(iii) C™ ~ (Rat(C*)) ® o HgC ~ Hg Rat(C*) or Rat(C") ~ Rat(C*N) as left
C-comodules (right C*-modules).

(iv) The left-hand-side version of (i)—(iii).

(v)  The association Q — Q* determines a duality between the indecomposable injec-
tive left comodules and indecomposable injective right comodules.

We next note the connection to a recent characterization of quasi-Frobenius (co)
algebras from [INV06], and how these results allow a generalization of the character-
ization from [INV06].

Definition 1.9

(i) [INVO06] Let X,Y be two objects in a category C with coproducts. X is said to
divide Y (write X|Y) if Y" & X & Z for some Z. The objects X and Y are said to
be similar if X|Y and Y |X.

(ii) We say that X weakly divides Y and write X|,,Y if there is some set I and an
object Z of € such that Y!' = X @ Z (note that this is equivalent to asking there
are sets I, ] and an object Z with Y = XU @ 7). We call X and Y weakly
similar if X|,,Y and Y|, X.

We note that [INV06, Theorem 7.5] applied for coalgebras characterizes quasi-
Frobenius coalgebras, which are precisely the finite dimensional quasi-co-Frobenius
coalgebras (see (iv), (v)); this is a left and right symmetric concept, equivalent to
that of dual of a finite dimensional quasi-Frobenius algebra. We have the following
generalization valid for arbitrary coalgebras.

Theorem 1.10 The following are equivalent for a coalgebra C:
(1)  C is quasi-co-Frobenius.

(ii) C and Rat(c+«C*) are weakly similar.

(iii) C and Rat(C}.) are weakly similar.

Proof IfC is QcF then C™ 22 Rat(o«C*)™ easily implies (ii), and (iii) follows simi-
larly. Conversely, if C and Rat(¢+«C*) are weakly similar, then since Rat(c«C*) is a di-
rect summand in some C, it follows that Rat(c-C*) is an injective comodule (since
coproducts of injective comodules is injective), and so Rat(c+C*) = P E(S)Us)
(structure of injective left comodules). Also, since C is a direct summand of
Rat(c-C*)? for some set I, it follows that Rat(c~C*) contains all types of indecom-
posable simples, so Is # @ for all S € 8. Hence, if I := max{Is | S € 8} U{N},
then

Rat(c-C*) = @ E(O)W = P ES)? = @ E(§)"9* =W,
NS NS NS

so C is QcE |
1.1 Categorical Characterization of QcF Coalgebras

We give now a characterization similar to the functorial characterizations of co-
Frobenius coalgebras and of Frobenius algebras. For a set I let Aj: €M — (CM)!

https://doi.org/10.4153/CJM-2012-060-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-060-7

Generalized Frobenius Algebras and Hopf Algebras 215

be the diagonal functor and let F; be the composition functor

A S7)
Fr: ©M — (M) — S
that is F;(M) = M for any left C-comodule M.

Theorem 1.11 Let C be a coalgebra. Then the following assertions are equivalent:

(1) CisQcE

(ii) The functors Homg« (—, C*) o Fy and Hom(—, K) o F; from “M = Rat(Mc- ) to
kM are naturally isomorphic for some sets I, J.

(iii) The functors Homg= (—,C*) o Fy and Hom(—, K) o Fy are naturally isomorphic.

(iv) The functors Homc« (—,C*) and Hom(—, K) from “M = Rat(Mc+) to xM are
weakly similar.

(v)  The right-hand-side version (left-right symmetric) of (ii)—(iv).

Proof Since for any left comodule M, there is a natural isomorphism of left C*-
modules Homc+ (M, C) ~ Hom(M, K), then for any sets I, ] and any left C-comod-
ule M we have the following natural isomorphisms:

Hom(M"", K) ~ Homc- (M, C) ~ Homc- (M, C") ~ Homc- (M, Rat(C")),
Homc- (MY, C*) ~ Homc- (M, (C*)’) ~ Hom(M,Rat(C*)).

Therefore, by the Yoneda Lemma, the functors of (ii) are naturally isomorphic if and
only if Rat(CT) ~ Rat(C*/) as right C*-modules. Thus, by Theorem 1.8 (ii), these
functors are isomorphic if and only if C is QcF. Moreover, in this case, by the same
theorem the sets I, J can be chosen countable.

(iv) follows from Theorem 1.10 again by the application of the Yoneda Lemma,
and (v) follows by the symmetry of (i). [ |

Remark 1.12 The above theorem states that C is QcF if and only if the functors
C*-dual Hom(—,C*) and K-dual Hom(—, K) from “M to M are isomorphic in
a “weak” meaning, in the sense that they are isomorphic only on the objects of the
form M™ in a way that is natural in M, i.e., they are isomorphic on the subcategory
of M consisting of objects M™ with morphisms ™ induced by any f: M — N.
If we consider the category € of functors from “M to xM with morphisms the classes
(which are not necessarily sets) of natural transformations between functors, then
the isomorphism in (ii) can be restated as (Homc*(—7C*))I ~ (Hom(—,K)) J
in C, i.e., the C*-dual and the K-dual functors are weakly m-isomorphic objects of C.
This is also the setting of statement (iv) in the above theorem.

2 Applications to Hopf Algebras

Before giving the main applications to Hopf algebras, we start with two easy proposi-
tions that will contain the main ideas of the applications. First, for a QcF coalgebra C,
let o: & — T be the function defined by ¢(S) = T if and only if E(T) ~ E(S)* as left
C*-modules; by the above Corollary 1.5, ¢ is a bijection.
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Proposition 2.1

(i) Let C be a QcF coalgebra and I, ] sets such that Cch ~ (Rat(C*)
C*-modules. If one of I, ] is finite then so is the other.

(i1) Let C be a coalgebra. Then C is co-Frobenius if and only if C ~ Rat(c+C™) as left
C*-modules and if and only if C ~ Rat(C{.) as right C*-modules.

) D as right

Proof (i) Cisleftand right semiperfect (Corollary 1.4), so using again [DNR, Corol-
lary 3.2.17] we have Rat(C}.) = @TGTE(T)*I’(T) = Pycs E(S)P#*) and we get
Bses E©)" O ~ Py g E(S)P¥*J. From here, since the E(S)’s are indecom-
posable injective comodules we get an equivalence of sets n(S) x I ~ p((p(S)) x J
(or directly, by evaluating the socle of these comodules). This finishes the proof, as
n(S), p(cp(S)) are finite.

(ii) If C is co-Frobenius, then C is also QcF, and a monomorphism C < Rat(C¢.)
of right C*-modules implies

@ E(S)"(S) N @ E(T)*p(T) ~ @ E(S)P(#P(S))’
Ses TeT NS

sowegetn(S) < p ( cp(S)) forall S € 8. Similarly, as C is also left co-Frobenius we get
n(S) > p(go(S)) forall S € 8. Hence n(S) = p(gp(S)) for all S € S and this implies
C = Dyes E(S)"S) ~ @TE(TE(T)P(T) = Rat(Cg.). Conversely, if C ~ Rat(C{.),
by the proof of (i), when I and J have one element we get that n(S) = p(¢(S)) for
all S € 8, which implies that we also have C = @5 E(T)P") ~ P g E(S)*"S) =
Rat(c+C*), so C is co-Frobenius. [ |

The above Proposition 2.1 (ii), which was proved first in [I], is obtained as a con-
sequence of the first section, and so the results of this paper are indeed generalization
of the results in [I]. The following two propositions are not presented their potential
full generality but will be enough for the applications to Hopf algebras; however, they
show precisely what is the difference between the QcF and co-Frobenius properties.
Note that their (dual) version for finite dimensional QF and Frobenius algebras is
also true.

Proposition 2.2 With the above notations, let C be a QcF coalgebra and let p: § — T
be such that ©(S) = T if and only if E(S) = E(T)* (this is bijective by Theorem 1.8).
Then C is co-Frobenius if and only if n(S) = p(<p(S)) forall S € 8.
Proof Since C = P E(S)™S) and Rat(C*¢+) = @TGT(E(T)*) 21 as right C*-
modules (again for example, from [DNR, Corollary 3.2.17]), it follows that they are
isomorphic if and only if the indecomposable injective summands have the same
multiplicity in both. The multiplicity of E(S) in C is n(S) and the multiplicity of
E(S) = E(cp(S)) “in Rat(C*c«) is p(cp(S)) . Hence, the conclusion follows. [ |
Since S is the socle of E(S) and ¢(S)* is the “cosocle” or “top” of E(S) (the quotient
of E(S) modulo its Jacobson radical), the above proposition says that a QcF coalgebra

is co-Frobenius if the multiplicities of the socle and the cosocle (inside Cy) of any
indecomposable injective (left, or equivalently, right) comodule are equal. We make
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the following remark: if N is the unique maximal subcomodule of E(S) and L =
E(S)/N = p(S)*, then End(E(S)) is a local ring with maximal ideal

M= {f] f(S) =0} = {f | F(E(S)) € N}.

Using both the injectivity and projectivity of E(S), the quotient End(E(S)) /M is
easily seen to be isomorphic to both End(S) (via restriction to S) and End(L) (via
induction modulo N), so End(S) 22 End(L). Since as vector spaces S = End(S)"(,
L = End(L)"® = End(L*)?™"), the above proposition can be restated as follows.

Corollary 2.3 A QcF coalgebra is co-Frobenius if and only if the dimensions of the
socle and the cosocle (top) of any indecomposable injective left (or, equivalently, right)
comodule are equal.

We also have the following interesting consequence.

Corollary 2.4 IfC is a coalgebra and C* = (Rat(C.)) lfor some natural numbers
k,1 thenk = 1= 1 and C is co-Frobenius.

Proof As in the previous propositions, we get that k - n(S) = I- p(<p(S)) for all S.
Note that for any T € T, p(T) = n(T*). Indeed, it is enough to consider their
multiplicities in Cyp, and then it is enough to consider their multiplicities in the
simple subcoalgebra E of Cy in which they are included (same for both). Since
E* = My (End(T)) = M+ (End(T*)OP) , we get the same multiplicity for T
and its dual T*. Thus we have k - n(S) = I - n(cp(S)*) , L.e., ’7‘ -n(S) = n()\(S)) ,
where A: § — 8, A(S) = ¢(S)* is bijective. We therefore get n(/\i(S)) = (%)i -n(S),
foranyi € Z. Ifk > Iweget1 < n(N(S)) — Ofori - —ocoandifk < I
we get 1 < n()\i(S)) — 0 for i — oo. Therefore, we can only have k = I, and
n(S) = p(gp(S)) . Consequently, C is co-Frobenius by Proposition 2.2. ]

Hence, for a QcF coalgebra, either C = Rat(C*) or otherwise we need at least

countable sets I, J such that C¥) = (Rat(C*)) o
possible choice).

Let H be a Hopf algebra over a base field k. Recall that a left integral for H is
an element A € H* such that & - A = «a(1)A, for all @« € H*. The space of left
integrals for H is denoted by f,. The right integrals and the space of right integrals |’
are defined by analogy. For basic facts on Hopf algebras we refer to [A, DNR, M, Sw].
The Hopf algebra structure will come into play only through a basic theorem of Hopf
algebras, the fundamental theorem of Hopf modules which yields the isomorphism
of right H-Hopf modules fl ®H ~ Rat(y~H*). This isomorphism is given by t®h +—
t ~— h = S(h) — t, where forx € H, « € H*, x — « is defined by (x — «a)(y) =
a(yx) and a ~— x = S(x) — a. Yet, we will only need that this is an isomorphism of
right H-comodules (left H*-modules). Similarly, H @ [ ~ Rat(Hj;.).

(and I = J = N is then always a

Theorem 2.5 (Lin, Larson, Sweedler, Sullivan) If H is a Hopf algebra, then the fol-
lowing assertions are equivalent.

(1)  H is a right co-Frobenius coalgebra.
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(ii) H is a right QcF coalgebra.

(iii) H is a right semiperfect coalgebra.

(iv) Rat(z«H*) # 0.

W) J,#0.

(vi) dim ;= 1.

(vii) The left-hand-side versions of the above.

Proof (i) = (ii) = (iii) is clear and (iii) = (iv) is a property of semiperfect coalge-
bras (see [DNR, Section 3.2]).

(iv) = (v) follows by the isomorphism fl ®H ~ Rat(y-H*) and (vi) = (v) is
trivial.

(v) = (i), (vi) and (vii): Since fl®H ~ Rat(g~H*) in M, we have Hm() ~
Rat(y~H™*) so by Theorem 1.8 H is QcF (both left and right); it then follows that
fr # 0 (by the left-hand version of (ii) = (v)) and HAm() ~ Rat(Hfj.). We can
now apply Propositions 2.1 and 2.4 to first get that dim fl < 00, dim fr < oo and
then that H is co-Frobenius (both left and right) so (i) and (vii) hold. Again by
Proposition 2.4 we get that, more precisely, dim fl =dim [ = 1. []

The following corollary was the initial form of the result proved by Sweedler
[Swl].

Corollary 2.6 The following are equivalent for a Hopf algebra H:

(1)  H* contains a finite dimensional left ideal.
(ii) H contains a left coideal of finite codimension.
(iii) [, # 0.

(iv) Rat(H*) # 0.

Proof (i) < (ii): It can be seen by a straightforward computation that there is a
bijective correspondence between finite dimensional left ideals I of H* and coideals K
of finite codimension in H, given by I —+ K = I'-. Moreover, it follows that any such
finite-dimensional ideal I of H* is of the form I = K+ with dim(H/K) < oo, so
=Kt~ (H/K)* is then a rational left H*-module, thus I C Rat(H*). This shows
that (ii) = (iv) also holds, while (iii) = (ii) is trivial. [ |

The Bijectivity of the Antipode

We aim to give a short new proof for the bijectivity of the antipode of Hopf algebras
with nonzero integrals. We note that the method we introduce here is adopted also in
[IR12] and adapted to give a proof that is independent of the uniqueness of integrals.
We first recall a few basic facts. Let ¢ be a nonzero left integral for H. Then it is easy
to see that the one dimensional vector space kt is a two-sided ideal of H*. Also, by
the definition of integrals, kt C Rat(y«H*) = Rat(Hj;.) (since H is semiperfect as
a coalgebra). Thus kt also has a left comultiplication t — a ® t, a € H, and then
by the coassociativity and counit property for kt, a has to be a grouplike element.
This element is called the distinguished grouplike element of H. In particular ¢ - o =
a(a)t,Va € H*. See [DNR, Chapter 5] for some more details.
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For any right H-comodule M denote “M the left H-comodule structure on M with
comultiplication
M > me— m?, @ my=aS(m) Q my

(S denotes the antipode). It is straightforward to see that this defines an H-comodule
structure.

Proposition 2.7 Themap p: “H — Rat(H*), p(x) = x — t is a surjective morphism
of left H-comodules (right H*-modules).

Proof Since the above isomorphism H ~ [ ®H ~ Rat(H*) is given by
h—t<~ h=Sh) —t,

we get the surjectivity of p. We need to show that p(x)_; ® p(x)o = x%, ® p(x§),
and for this, having the left H-comodule structure of Rat(H*) in mind, it is enough
to show that for all « € H*, p(x)oa(p(x),l) = p(x) - a = a(x?,)p(x]). Indeed,
for ¢ € H we have:

((x—=1)-a)(g) =tgx)alg) =t(gxelx)) alg)
= t(gx)a(gxS(x3)) = t(gix1) (o — x3)(g2%2)
=t((gx)1) (@ — %) ((gx1)2) = (£- (a —x))(gx1)
— (@ — x)(a)t(gx1) (ais the distinguished grouplike of H)
= a(aS(x)) (x1 = 1)(g),
and this ends the proof, n

Let 7 be the composition map *H i> Rat(Hj;-) 5 H® J. ~ H, where the
isomorphism H ® [, ~ Hj;. is the left analogue of [ ®@H ~ Rat(y-H*). Since "H
is projective in M, this surjective map splits by a morphism of left H-comodules
p: H <= “H, somp = Idy. Then we can find another proof of the following theorem.

Theorem 2.8 The antipode of a co-Frobenius Hopf algebra is bijective.

Proof Since the injectivity of S is immediate from the injectivity of the map
H > x — t «— x € H*, as noticed by Sweedler [Sw1], we only observe the surjectiv-
ity. The fact that ¢ is a morphism of comodules reads ¢(x)? | ® p(x)§ = x1 ® p(x2),
ie., aS(ga(x)z) ® p(x); = x; ® ©(x,), and since a = S(a~!) = S*(a), by apply-
ing Id @em we get S(afl)S(go(x)z) sw(ga(x)l) = xiemp(xy) = x16(x) = x, so
x=S(em(p)1) p(x)at). [ ]

3 Generalized Frobenius Algebras

In this section, we apply these results to K-algebras, and introduce and characterize
the notion of Generalized Frobenius Algebra. For this we will first explain the natural
setting of the problem.
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Let A be a topological algebra. We say that the topology is of “algebraic type” if
the topology of A is A-linear and the topology of A has a basis of neighborhoods of 0
consisting of two-sided ideals of finite codimension. Here the field K is considered to
have the discrete topology. Let us call such an algebra a topological algebra of alge-
braic type, or AT-algebra for short. This is important, since it captures the following
type of situation: given an arbitrary K-algebra, one might be interested in the study
of a certain subcategory € (closed under finite sums, quotients and subobjects) of the
category Rep(A) of finite dimensional (left) A-modules (representations). Then, we
can introduce a topology v on A generated by a basis of 0 consisting of ideals of A that
are annihilators of objects of €. The category C can then be viewed as the category
of finite dimensional topological A-modules. In this respect, for an AT-algebra it is
natural to introduce the category A-Mod consisting of topological left A-modules
that have a basis of neighborhoods of 0 consisting of submodules of finite codimen-
sion. Call these modules topological modules of algebraic type. Such modules were
considered and studied by P. Gabriel in [G]. The pseudocompact modules are also
introduced (see [G] and [DNR]): they are modules that are separated, complete and
have a basis of neighborhoods of 0 consisting of submodules of finite codimension.
Let A-PSC denote the full subcategory of A-Mod consisting of pseudocompact A-
modules. In an analogous way we can define the right topological A-modules of
algebraic type Mod-A, and the right pseudocompact A-modules PSC-A.

We recall some known facts. For an AT-algebra, denote by A° (also denoted R.(A))
the set of continuous linear functions f: A — K, i.e., linear functions for which
ker(f) contains an open (and cofinite) ideal of A. Such functions are precisely the
representative functions of A: that is, continuous linear functions f for which there
are continuous linear functions g, hi: A — K such that f(ab) = ), fi(a)gi(b).
Equivalently, A° is spanned by the coefficient functions (7; i)i,j wheren: A — End(V)
is a continuous finite dimensional representation of A (that is, its annihilator is open)
and the coefficient functions are being considered with respect to some basis (v;);
of V. Then it is well known that A® is a coalgebra (with comultiplication A: A® —
A" ® A% A(f) = >, 4 ® h; and counit (f) = f(1)), and the category of finite
dimensional topological left A-modules is equivalent to that of finite dimensional
right A°-comodules f.d. MA’. Also, note that the category of pseudocompact left A-
modules is dual to the category of right A°-comodules. This follows in the same way
as for a pseudocompact algebra (see [DNR, Section 2.5]).

Using the same ideas as in [G] or [DNR] we in fact have the following.

Proposition 3.1 The forgetful functor U : A-PSC — A-Mod has a left adjoint

M
P: A-Mod — A-PSC  definedby P(M) = ligl <

X open

where the limit is taken over all the open left submodules X of M (automatically, of
finite codimension). The basis of open neighborhoods of 0 in P(M) is the set Kx =

ker(P(M) — M/X) X aper’

Proof We need to show that Homy_ MOd(P(M), P) =~ Homy- Mod (M7 U(P)) natu-
rally in M and P. A continuous morphism f: P(M) — P is given by a compatible
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family fy: P(M) — % with open kernel, that is, with ker( fy) = Kx(y), for some X(Y)
cofinite and open in M. The compatibility condition means that whenever Y C Y”,
the diagram

fr
PM) ——

P
Y
|
P

7

is commutative. This is equivalent to Kxy)y C Kx) whenever Y C Y’. But it
is not difficult to see that Ky C Ky if and only if X C X', for open X, X’ in M.
Thus, the compatibility condition is further equivalent to X(Y) C X(Y’) whenever
Y C Y'. The existence of the family of morphisms fy: P(M) — 5 is then equivalent

M)

to the existence of a family fy: 2(—

— L \hich is further equivalent to the exis-
X(Y) Y

tence of a family of morphisms of A-modules fT,': % — £, which are compatible:
X(Y) C X(Y') whenever Y C Y'. This is then equivalent to (the existence of) a fam-
ily of morphisms of A-modules fy : M — £ which have open kernels and which are

compatible in the sense that the following diagram is commutative whenever Y C Y

This defines equivalently a continuous morphism of A-modules f : M — P. The
naturality of this bijective correspondence holds as well, and we have proved the
proposition. [ ]

We can now explain the natural setting for a definition of a Generalized Frobe-
nius Algebra (GFA). Let A be a topological AT-algebra. In the spirit of the classical
definition of a Frobenius algebra and having the previous section in mind, we need
to define a suitable (left, right) dual of A and define the GFA by the property that A
is isomorphic to its left dual. We note that A is an object in A-Mod, so its dual will
have to be an object of this category too. Since A is a topological algebra, the algebra
of representative functions A° is the natural first step in the construction of this dual,
since it consists of the continuous functions on A. A* is canonically endowed with
the finite topology, which is in fact the product topology of K or equivalently, the
topology of point-wise convergence of functions. In order to view A* as an object of
A-Mod, we will consider the largest subtopology of the finite topology on A* that has
a basis of neighborhoods of 0 consisting of left (cofinite) A-modules. Then A? C A*
is regarded as a subobject of A* in A-Mod by using the trace topology. As usual, it
is then natural to look at a completion of this space of continuous functions with
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respect to this natural topology on it (which makes A® an object of the desired cate-
gory A-Mod); using the above notations, this is dual is denoted P(A°). We can now
introduce the following more general terminology.

Definition 3.2

(i)  Given an object M € A-Mod, we consider the usual dual M* of M as a right A-
module of “algebraic type” (so as an object of Mod-A), with the subtopology of
the finite topology which has a basis of neighborhoods of 0 consisting of open
A-submodules.

(ii) Denote Hom.(M, K) the set of continuous linear functions on M; this is an
A-submodule of M (since if ker(f) O N, N open cofinite A-submodule then
ker(a- f) O N).

(iii) For M € A-Mod we define its dual M¥ € Mod-A by MY = P(Hom.(M, K)),
where on Homy. Mmod(M, K) we consider the trace topology of that described
in (i) for M*.

Note that the open subspaces of M* are A-submodules V+ where
vt ={m* e M* | m*|y =0}

and V is a finite dimensional subspace of M. In order for this to be a submodule,
we must have (m* - a)(v) = 0, foralla € A, m* € VL, v € V,ie,m*(a-v) = 0.
This means that a - v € (V1)L = V, so V must be a left submodule of M. Then
the open subspaces of Hom,(M, K) are of the form V+ N Hom (M, K), V left finite
dimensional submodule of M. Thus the dual MV of M is given by

MY~ lim Hom, (M, K) ’
— V4L NnHom.M,K)
V£d.CaM

with the limit taken over all finite dimensional submodules V of M.

We motivate definition (ii) by noting that the usual dual V* of a vector space is
always complete with respect to the finite topology, and it is common to expect the
dual of an object to be a complete object. Also, in our setting, the natural functions
on M are not only the linear functions but the linear continuous functions, and the
topology is induced on M* in order to make it an object of the category of right
modules of algebraic type.

We can now introduce the Generalized Frobenius Algebras.

Definition 3.3 An AT-algebra is called Generalized Frobenius if A =2 A as topo-
logical left A-modules (i.e. as objects of A-Mod). An AT-algebra is called Generalized
Quasi-Frobenius if A ~ A as topological left A-modules. Here, AV is the dual of the
right module A4, and A as a left topological AT-module has the topology with a basis
of neighborhoods of 0 consisting of left open ideals.

Note that the topology of A as a topological left A-module of algebraic type, which
has a basis of neighborhoods of 0 consisting of open left ideals, is the same as the
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topology of A as an AT-algebra. Indeed, any open (cofinite) ideal of A is a left ideal,
and if H is a left ideal of A which is open, it must contain an open (and cofinite) two-
sided ideal I, since these ideals form a basis of A around 0. Although the following
proposition is not needed in its generality, it explicitly describes the dual of an AT-
module.

Proposition 3.4 Let M € A-Mod be a left AT-module. Let My = [y opencm N be
the intersection of all open (and so, cofinite) submodules of M. Then the dual MV of M
is given by

MY = lim (

im ) = ( lim )
VELCaM V N M, V N M,

—
VEd.CyM
where the limit is taken over all finite dimensional submodules V' of M.

Proof For finite dimensional V, we first show that we have an exact sequence of left
M-modules:

0 — V* A Hom, (M, K) — Hom, (M, K) - ( = mMO) 50

where r is the restriction map, f — f|y. The map is well defined since for any
f € Hom.(M, K), there is N open cofinite with N C ker(f) so then My C ker(f).
This shows that f|y~p, = 0, so the restriction map r has image contained in the
kernel of the morphism V* — (V N My)*, which is (V /V N My)*.

Obviously, ker(r) = V+ N Hom.(M, K). We show that r is surjective. Since
VN My = (yopencm V NN and V N N are subspaces of the finite dimensional
space V, there is some N such that VNN =V N Mp. Let f: M — K be a linear map
which cancels on V N My = V N N, thus inducing a map f € (V/V N M,)*. Then f
extends to a linear map g as in the diagram below:

-
1 M
. R i
\%4 M
f VoN N
AN
K

and g from the above picture extends f to M. Moreover, by the diagram, ker(g)
contains N, so g € Hom (M, K).
Thus we have

v . Hom (M, K)
MY = lim
— VinHom.(M,K)
V£d.CyM
V * *
= lim ( ) —( li ) |
— V N M, — VN M,
A A
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Theorem 3.5 Let A be a topological algebra of algebraic type. Then A is a Generalized
(quasi)-Frobenius algebra if and only if A is pseudocompact with A = C*, where C is a
(quasi- )co-Frobenius coalgebra.

Proof First, if A is Generalized quasi-Frobenius, since AN > (AT as left topolog-
ical modules for some sets I', A, and AV is pseudocompact, it follows that (AY)" is
pseudocompact (complete and separated) and then so is A%, Since A can be viewed
also as a subspace of A%, it follows that A is separated. Since A* is complete, it eas-
ily follows that A is also complete. Therefore, it follows that A is a pseudocompact
algebra, and so A = C*, where C is the coalgebra

C=A"= lim (?)

—
I open ideal

(see for example [DNR, Section 2.6]).
Now, for the situation when A = C* is a pseudocompact algebra, we see that the
topological right dual of A is

(€)Y =( lim V).
VEd.Ccx,

Here we use the previous proposition and the fact that the intersection of the open
ideals of A = C* is 0. Hence, we actually get that ¢ (C*)¥ = (Rat(Cé* )) *. There-
fore, the condition that A = C* is Generalized quasi-Frobenius means (C*)* =
(Rat(Cé* )) T as topological modules for some sets A, I', which is equivalent to the
fact that (CM)* = (Rat(Cé* )(F)) " as (pseudocompact) topological modules. Since
the category of left pseudocompact modules over C* is dual to that of left comodules
over C, the condition translates equivalently to C (A) o Rat(C¢. Y as left comodules.
By Theorem 1.8 this is equivalent to C being QcF. When the sets A, I are singletons,
we obtain the characterization of Generalized Frobenius algebras. ]

Since any pseudocompact algebra is profinite (=inverse limit of finite dimensional
algebras), we get the following nice analogue of the fact that a Frobenius algebra is
finite dimensional.

Corollary 3.6 A generalized (quasi)-Frobenius algebra is profinite.

3.1 Further Remarks

One might introduce a less restrictive “Frobenius” notion which only involves the
category of finite dimensional topological modules. Let us call a topological AT alge-
bra weakly (quasi)-Frobenius, or a weak (quasi)-Frobenius algebra, if A° is a (quasi)-
co-Frobenius coalgebra or, equivalently, its pseudocompact completion (A%)* is a
(quasi)-Frobenius AT-algebra (topological algebra of algebraic type). Let us call a
continuous map f: X — Y between two topological spaces a trace map if the topol-
ogy on X is induced by that on Y through f; that is, for any x € X and U open
neighborhood of X, there is V open in Y such thatx € f~!(V) C U. Then we have
the following.
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Proposition 3.7 A is a weak (quasi)-Frobenius AT-algebra if and only if there is a
dense trace morphism of AT-algebras 1): A — C* for a (quasi)-co-Frobenius coalge-
bra C.

Proof We note that the canonical morphism A — (A%)* = lim; openca A/I is con-
tinuous, dense and trace, and this proves the only if part. Let ¢p: A — C* be a dense
trace morphism. For each finite dimensional subcoalgebra E C C, let Iz = P! (EH),
which is an open ideal of A. Also, since ¥ is a trace, for each I open in A, there is
a finite dimensional subcoalgebra E C C such that Iz C I. Hence, (Ig)g is a basis
around 0 for A. Moreover, by the density, for any ¢* € C* and any E, thereisa € A
such that p(a) |g= ¢* |g, which shows that the induced morphism A/I; — C*/E*+
is an isomorphism. Hence, we have an isomorphism

(A" = lim A/I = lim Allg — lim C*/E+ =C*.
I o(_p_en Efd. subé;a_lgebragc Efd. sub;;lgebragc
Thus, (A%)* =2 C* is (quasi)-Frobenius, and we are done. [ |

We note that for a coalgebra C, being QcF is a categorical property. Indeed, it is
not difficult to see that by Theorem 1.8, C is QcF if and only if it is left and right
semiperfect and projective finite dimensional comodules coincide with injective fi-
nite dimensional comodules. This can thus be rephrased equivalently that the cat-
egory of finite dimensional right (equivalently, left) comodules f.d. M® has enough
injectives and projectives, and injectives and projectives coincide (such a category is
called a Frobenius category). C is co-Frobenius if it further satisfies the socle-cosocle
multiplicity condition of Proposition 2.2.

Therefore, an AT-algebra A is weak quasi-Frobenius if the category f.d. A-Mod of
finite dimensional topological left A-modules is Frobenius or equivalently, the cate-
gory f.d. Mod-A is Frobenius. A is weak Frobenius if either of these categories, en-
riched with the natural dimension function, satisfy the multiplicity condition of 2.2
(which can be restated in terms of dimensions).

Non-topological Algebras

If A is an arbitrary algebra, we can think of it as an AT-algebra if we introduce the
topology which has a basis of neighborhoods of 0 consisting of all the ideals of finite
codimension. Thus it makes sense to talk about the above Frobenius type notions.
Recall that a coalgebra C is coreflexive if (C*)° = C (with the usual topology on C*).
We refer to [HR74] and [R1] for details on coreflexive coalgebras. Because of the
special topology, we have the following.

Proposition 3.8 An algebra A is Generalized (quasi)-Frobenius if and only if A = C*
where C is (quasi)-co-Frobenius and Cy is coreflexive.

Proof If A is Generalized (quasi)-Frobenius then A = C* withC = A% So C =
A% = (C*)" is coreflexive, and (quasi)-co-Frobenius. Conversely, if C is quasi-co-
Frobenius, then C is semiperfect. Then, since Cy is coreflexive, it follows that C
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is coreflexive. This follows, for example, from [CNO, 2.5, 2.12] and [HR74, Re-
mark 3.1.2] combined. Therefore, in C* any cofinite ideal I is closed (see for example
[R1, 2.10]) and so I = EL, for E finite dimensional subcoalgebra of C. Hence, I is
open and the topology on C* has all cofinite ideals as open ideals. ]

Note that the extra condition that C, is coreflexive is not a restrictive one. Indeed,
by the results of [HR74], if K is infinite, Cy is coreflexive if and only if the coalgebra
K®) is coreflexive. This is true whenever the set of simples § is non-measurable
(that is, every ultrafilter on & which is closed under countable intersections, an Ulam
ultrafilter, is principal). This is a reasonable condition as pointed out in [HR74,
Section 3.7] (in fact, no example of a measurable set is known).

4 Examples in “Nature”

In what follows, we give a large class of examples of co-Frobenius and QcF coalge-
bras, and implicitly, of Generalized (quasi)-Frobenius algebras. This section is meant
to provide examples of such coalgebras appearing in very natural contexts and of im-
portance in various places, such as representation theory, homological algebra and
even topology. In particular, some of these coalgebras form the base for a new class
of quantum groups introduced in [DIN]; there, Hopf algebras with non-zero inte-
grals and whose underlying coalgebra is a subcoalgebra of a quiver coalgebra and has
a basis of paths are classified.

First we mention a standard procedure of “simple object multiplicity change”.
Recall from [Tak77] that if C is a coalgebra, E is a quasi-finite injective cogenera-
tor of MC and B = coend®(E) then B is a coalgebra and MP is equivalent to MC
through the cotensor functor F(—) = —[3E: MB —5 MC and let G denote its
inverse. Also recall that the cohom functor is defined for two comodules M, N by

cohom(M,N) =lim _, Hom(N’, M)*, where the limit ranges over the finite
N’ £.d.CNC
dimensional subcomodules N’ of N. Hence coend(E) = lim _, Hom(E’ E)*
E’£d.CEC
and so we see that

coend(E)* = ( lim Hom®(E’,E)*)" = lim HomC(E',E)**
E'£d.CEC E/£d.CEC
= lim Hom®(E'.E) = Hom®( lim E',E) = End“(E).
B/ fd.CEC B/ fd.CEC

LetE = Preq E(T)"D), where h(T) are positive integers representing the multiplic-
ity of the injective indecomposable E(T) in E. Also,

End(E) = [] Hom® (E(T),E)""
TeT

as left End“(E)-modules, and it is standard to see that Hom(E(T)7E) are inde-
composable projective local End® (E)-modules, whose maximal simple quotient is
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Hom(T, E), with multiplicity #(T) in End“(E). Dually, since B* = End® (E) it fol-
lows that in B the corresponding simple comodule, which is G(T'), has multiplicity
h(T). Thus, the simple objects of C were “replaced” by G(T) in the the new coalge-
bra B, which is Morita equivalent to the old one.

Hence, if C is QcF, as noticed above, B will be QcF too, and the multiplicities of
the simple objects in B-(h(T))res can be chosen arbitrarily. As seen in Section 2, if
we denote by A\: T — T the bijective function given by

(3) AT) = cosocle of E(T)  (which is well defined),

then C is co-Frobenius if h(T) = h( )\(T)) for all T, i.e., if and only if / is constant
on the orbits of the action of Z on T through n - T — A"(T). Hence, each function
h: T/Z — N defines a co-Frobenius coalgebra equivalent to C. Obviously, any func-
tion 7 — Z which is non-constant on these orbits defines a QcF coalgebra that is not
co-Frobenius.

4.1 Examples from Representation Theory of “sub”-quiver Coalgebras

We now construct a concrete class of examples. Let I' be a graph and KT the quiver
coalgebra. Recall that it has a basis consisting of the paths in I and comultiplication
for each path p = [x(V) - .- x™] (with x¥) being arrows) starting at some a and ending

D
at some bgiven by p = [x(V ... xW] — S [xW . x0] @ [x® .. xM] (the term
for k = 0 being a ® p and the one for k = n being p ® b). Write s(p) = a and
t(p) = b for the source and target of a path p. The counit is e(p) = §},,0. Let
h: Vi — N* be an arbitrary (positive) function defined on the set Vp of vertices
of I, and let for every arrow x with s(x) = a,t(x) = b, build a set By = {x;; |
i=1,...,ha);j =1,...,h(b)} having h(a) - h(b) distinct elements x;;. Now for

each path p = [x(V) - - - x("] of T passing through the vertices ag, ai, . . ., a, we define
h(ao)h(a,) formally distinct elements of a new set B, = {p;j,i = 1,...,h(ap); j =
1,...,h(a,)}. For a vertex in T, we define h(a)? distinct words “of length 0” ajj, i =

1,...,h(a);j =1,...,h(a), and form a set B,. Now let K[I', h] be the vector space
with a basis B consisting of all p;; (including those of length 0, i.e., the a;;’s), so
B=U p-path in T Bp» and introduce a comultiplication and counit as follows:

n h(t(x®))
A([x(l) .o x(n)]lj) = Z Z [X(l) .. 'x(k)]i,s ® [x(k) .. 'x(”)]s,j
k=0 s=1
e(pij) = 9)p),00ij-

Comultiplication is written for short

h(t(p1)=s(p2)) h(t(q))=h(s(r))
Alpij) =Y Pis®@(P)ej =Y. > (@is® (1),
p s=1 p=qr s=1

where the second sum is taken over all possible decompositions of the path p = gr as
a concatenation of subpaths g, r and where D(p) = >, p1®p> = >, q®risthe
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comultiplication D of KT'. Using this, it is not difficult to check that (K[I', k], A, €)
is a coalgebra. The following proposition uses standard techniques of localization in
coalgebras, and it shows a concrete example of this phenomenon; it is also a gener-
alization of the result of [CKQ] describing the injective hulls of simple objects in a
path coalgebra (see [Si] for a similar result for incidence coalgebras of partially or-
dered sets).

Proposition 4.1 The simple types of right K[I', h]-comodules are T, = K{a,j | j =
1,...,h(a)} and the left simple comodules S, = K{a;; | i = 1,...,h(a)}, fora € Vr
(avertex inI'). Denoting T,; = K{a;j | j = 1,...,h(a)} = T, and Sy ; = K{b;j |
i=1,...,h(b)} = Sy, we have that the injective envelopes of T, ; and Sy, j in C are

E(Ta,i):K{pik| 5(p):avk:17"'7h(t(p))};
Moreover, K[I', h] is Morita equivalent to KT".

Proof The simple objects are obvious and injective envelopes follow immediately
because there is a decomposition of K[I', k] into right comodules:

K[th] = @K{sz | S(P) :avk: 177h(t(p))}

and T,; € K{pi | s(p) =a,k=1,...,h(t(p)) } (here, K{X} means the K-span
of the set X).

For the last assertion, let e be the idempotent of K[I', h]* which is equal to € on
all the the elements py; for paths p in I" and 0 on the other elements of B. For
C = K[I', h] we consider the coalgebra eCe defined in [Rad82]. It has a comultipli-
cation given by ece — ecje ® ece and counit ece — ec(ece). It is then easy to see
that KI' = eK[I', h]e as coalgebras by eK[I", h]e 3 ep;je — p1; € KT'. Also, in this
situation Ce is seen to be an injective cogenerator of M and each right indecompos-
able injective E(T,) has multiplicity 1 in E. Moreover, eCe = coend(Ce) (see [Rad82]
too), so K[I', h] is Morita equivalent to KI' 2 eCe (eCe is the basic coalgebra of C;
see also [CM]). [ |

Remark 4.2 For a more general construction, note that we may consider any sub-
coalgebra F of KI" which has a basis Br of paths (such coalgebras are also called
“monomial”) and consider a corresponding coalgebra F;, which will be a subcoal-
gebra of K[I', h] that will have a basis

Bew={pij | p€Bri=1,....h(s(p));j=1,....h(t(p))}.

Using the same idempotent as above, we will find that Br and B, are Morita equiv-
alent. If Br is QcF, then it must be co-Frobenius since the multiplicity of the simples
in By is 1. Then, choosing a suitable function /4, as before, we can get various QcF
coalgebras that are not co-Frobenius (provided the function A from equation (3) is
not constant).
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4.2 Co-Frobenius Coalgebras from Homological Algebra

We now give several examples of QcF and co-Frobenius coalgebras (and so, implic-
itly, of Generalized (quasi)-Frobenius algebras) that are connected to situations in
category theory, homological algebra and topology. Many of these will be obtained
from graphs as above.

Example 4.3 Let A be the “line” graph

Xn—1 Xn Xn+1
a4y —> 4y —> dpp] ——> -

and A; the subcoalgebra of coalgebra KA having a basis consisting of the paths of
length < 1: vertices a, and arrows x,,. This is the first term of the coradical filtration
of KA. The comultiplication and counit are given by

A:a, — a, ® ay,,
A:x, — a, Xy + X, @

ela,) =1; e(x,) =0.

This is co-Frobenius, since we can easily see that E(T,,) = E(S,,,,)* as right comod-
ules and E(S,,) = E(T,, ,)* as left comodules. This coalgebra is tightly connected
to homological algebra: the category of right A;-comodules is equivalent to the cat-
egory of chain complexes of K-modules (here, K can be any commutative ring)—
see [Par81]. In fact, this category has a monoidal structure, and A, has a Hopf algebra
structure, since it is isomorphic as coalgebras with the Hopf algebra K < s,¢,t~! >
/(s?, st + ts) with comultiplication A(t) =t ® t and A(s) = t7! @ s+ s ® 1, counit
e(s) = 1, e(t) = 1, and antipode S(t) = t7!, S(s) = st = —ts. The isomorphism at
coalgebra level is obviously provided by a,, <+ t", x,, <> ts.

Example 4.4 Let A, be the subcoalgebra of the quiver algebra of the line graph A
above, consisting of paths of length < p. For ease of use, let us denote the path
starting at a, and having length k in A (the line graph) by p, . In this case, with
notations as before, we have the injective hulls of right comodules

E(Tan) = K{anaxnﬂa [(Xps1Xns2], - oy [ - - 'xn+p]} = K{Pn,i | i< P}a

and the hulls of left comodules are
E(Sa,,) = K{anaxnfla [xn72xn71]7 sy [xnfp o 'xnfl]} = K{Pn—i,i | i é P}

So we get E( T(an)) = E(S,,,,)" as right comodules and E(S,,) = E(T,,_,)".

An+p

Remark 4.5 This coalgebra is furthermore a Hopf algebra. Assume K contains
a primitive p-th root of unity g and let H, be the Hopf algebra defined by H, =
K{s,t,t71)/(s, st — qts) as an algebra and with comultiplication A(t) = t ® t and
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AG) = t7!®@s+s® 1, counit (s) = 1, e(t) = 1, and antipode S(t) = t~},
S(s) = —ts = —gst. In order to see this is a Hopf algebra one only needs to show that
A can be defined as a morphism of algebras, and so, one needs to show that

Kis,t,t 7 ) os—t'@s+s®1

€ K(s,t,t 1) /(sP st — qts) @ K{s,t,t7)/(sP, st — qts)
and

K(s,t,t 7Y otr—t®t

€ K{s,t,t ") /(sP,st — qts) @ K(s,t,t ) /(s", st — qts)

factor through (s”, st — qts), that is, equivalently (t 7! @ s+s® 1)?» = 0and t @ t
is invertible. This follows in precisely the same manner as it does in the case of the
classical Taft algebras (for ¢ it is obvious); see [Taf71] or [M]. Similarly, one shows
that the antimorphism of algebras S defined this way on generators on K (s, ¢, 1) —
K{s,t,t™!) factors through the ideal (s, st — gts). Now, using the quantum binomial
formula we have

k L
' @s+s@ )k = E s @
tT' ®s+s5®1) (i>q s

i+j=k

are the g-binomial coefficients (e.g., see [Kas]). Dividing by

where (k)q — by

i/qg — (Dlg(fly
(k)!4, which is non-zero if k < p since g is a primitive p-th root of unity, it follows that

the correspondence on bases ﬁt”*ksk < Pnk gives an isomorphism of coalgebras
q

Ay =2 H, = K(s,t,t7") /(sP, st — qts) (the counit compatibility is obvious).

We note that there is a result in [B] that is analogous to that from [Par81] pointed
out in 4.3, which generalizes the result of [Par81] and which intimately connects
the coalgebra A, to the p-homological algebra introduced in [Kap96] with roots in
topology [M42a, M42b]. It was investigated later by Kassel and Wamst [KW] and
Dubois—Violette [D-V] (see also [B,ITh]). Let Ch, denote the category of p + 1-
chain complexes of K-modules, which are a sequences of morphisms

dy Ay
n—1 Mn Mn+1 > e

such that d?™ =0, i.e,d,dysy - - - dyip = 0 for all n. The morphisms of between two
objects M, and N, in this category are collections of the type f,: M, — N, making
all the appropriate diagrams commutative (i.e., f.d. = d. f.). This category also
has a monoidal structure with the tensor product of two complexes (X,) and (Y.)
being obtained by (X ® Y), = ,,,,_, Xn ® Y,, and with differential d(x ® y) =
q98dx(x) ® y + x ® dy(p). In the case p = 2 this coincides with what is usually
considered the total complex of a tensor product of complexes and with the one used
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in [Par81, p. 372], and it is similar to the tensor product used in [Kap96]. In fact, our
tensor product can be obtained from the tensor product @¥* of [Kap96] by what is
in the case p = 2 the usual “sign trick”: for each p — 1-complex X, we can define the
complex I(X) = (X,) but with differential I(d,) = %dn. Then one easily sees that I
is an equivalence of monoidal categories from

I
(Chp—l7 ®Kap7 1) — (Chp—la ®7 1)

wherel = --- = 0 = (K)o — 0 — --- is the unit object of these categories. We
have the following equivalent statement of the main results in [Par81] and [B].

Theorem 4.6 There exists an equivalence of categories Ch,_; ~ =M and one
of monoidal categories G: Ch,_; — "rM that commutes with the forgetful functors
U: Chy_y = kM, UX,) =P, Xy and V: M — ¢ M: VG2 U.

We remark that these inverse equivalences of categories are defined as follows: for
a p — 1-complex (X, dx.) define G(X) = @, X, and for a morphism of complexes
fe: X — Y, define G(f) = @, fu- Let us convey to identify the elements p, €
A,y with (kl)lqt””‘sk € H,. On G(X) introduce the following left H,-comodule
structure: pg(x): X — H, ® X such that for x, € X,,,

p—1 p—1
PG(X)(Xn) = an,i & dS((xn) = an‘,i & dX‘n-%—i—l e dX,n+ldX,n(xn)
i=0 i=0

Conversely, define T: #*M — Ch,_, as follows: if M € *Mlet M, = M - p}; ; and
dui1: My — M1, dnii (%) = X, - pyy > where the elements py, € Hj are the dual
“basis” for p,x, thatis, p; ((pmi) = dnm0k;. Thenlet T(M) = ((Mﬂ)n7 (dn)n). For
morphisms g: M — T in M we have g(x - Pno) = 8(X) - pposog(M,) C P,, and
we can define g,: M, - P, by g, =¢

M-

Example 4.7 Let I be the circle graph

T

a a, ap
~— 7 ~— 7 ~—_7

for a positive integer h and let p be another positive integer. For each vertex ay,
again denote by p,,; the path of length k in I' which starts at a,,. Then the coalgebra
', which is the subcoalgebra of KT" having a basis of the paths {p,x | k < p} is
co-Frobenius (and finite dimensional). Indeed, again we see that the right injective
indecomposables are E(T,,) = K{pux | k < p} and the right injective indecompos-
ables are E(S,,) = K{pn—kk | k < p} (here indices are taken mod ). Then we get
that E(T,,) = E(S,,,,)* and we can again use Theorem 1.8.

An+p
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Remark 4.8 By the standard representation theory of quivers, it follows that the
category of left I', ;-comodules is equivalent to the category of the representations of
the “cyclic” quiver I in the example above, with the condition that the composition
of p + 1 consecutive morphisms is 0; that is the category of diagrams of the form

S

— T

Vi V, v,
~— 7 ~—_ 7 ~— 7

fi £

and such that fi;, firp—1 - fis1 fi = 0 for all i, where indices are considered mod h.
Moreover, let us consider the ideal I = (t" — 1) of H, generated by " — 1. We note
that this is a Hopfideal: Ay, (t" — 1) =t"®@t"— 101 = ("- Do +1 (" —1)
and SHP(th —1)=t""—1=1t""1 —t"). Hence, the algebra

H,p = K (s, t,t=")/(sP, st — gts, -1

is a Hopf algebra. Now note that in this Hopf algebra H,,, we have s = st" =
qhths = qhs, and since s # 0, we must have qh = 1, i.e.,, p|h. If this is the case, then
applying Bergman’s Diamond Lemma we easily see that {s't/ | i = 0,...,p — 1;
j=0...,h— 1} isaK-basis for Hy, ;. Then, by considerations entirely analogous to
those in Theorem 4.6 and before, we can see that KI',_; , = H,,;, as coalgebras.

Note also that, denoting by Ch,_, j the category of such representations of this
quiver with condition f? = 0 (defined similarly to Ch,_,), we see that there is an
equivalence of tensor categories Ch,_;; =~ »*M. Note also that this Hopf alge-
bra H, j generalizes the Taft Hopf algebras of dimension p?, except that H,, , will have
dimension ph, with p|h. These algebras are part of the family of quantum groups
classified in [DIN].

Remark 4.9 Moreover, the existence of an antipode S of H, and H, j, implies that
the categories of finite dimensional comodules over H, and H,, are tensor cate-
gories, i.e., they are rigid (that is, they have left and right duals for objects). This
means Ch,_; and Ch,_, j are also tensor categories. By a straightforward computa-
tion using the equivalence between these categories and those of associated comod-
ules as well as the antipode of H, and H,, 5, we can see that the right dual of a “com-
plex” V in Ch,_; or Ch,_; j that is bounded and has all V,,’s finite dimensional,

dy dusy
Voo —— Vi Va Vin )
is the complex
Vi <— (Vg =— (V) =— (VH)pmy =— -+,
(d*)1—n (d)—n
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with (V*),, = (V_,)* as vector spaces and (d*),;1 = —q ""'(d_,)*. The left dual
of this object is given by

v ~—— ("V)iew =— (V) =— (V) =—— ;
("d)1—n (*d) —n
with (*V),, = (V_,)* as vector spaces and (*d),+1 = —q"(d_,)* (indices are consid-

ered mod h when we talk about Ch,,_; ;).

An Application. A well-known result about the category of (1)- chain (i.e., usual)
complexes (X, d) with d* = 0 is that any such complex is a direct sum of complexes of
thetype--- -0 — (K), 20— ---and--- -0 = (K), = (K)ps1 =0 — ---.
We note how the above equivalences and a result on coalgebras imply this result and
its generalization to p — 1-complexes as a consequence:

Theorem 4.10 Any (p— 1) complex in Ch,_, or Ch,_, j, is a direct sum of complexes
of the type

2 0= (K =7 (K =+ = Ky > 0= -+

withi =1,2,..., p (theindices are always mod h when we are talking about Ch,_, p,);
here (K); means the field K is on position i, and the morphisms are identities.

Proof We see that the injective envelopes of simple left comodules for the coalgebras
Hpyp =T, ypand Hy, = Ap_y are E(S,,) = K{pu—k | kK < p} and they are chain
(uniserial) comodules: that is, their lattice of submodules is a chain (see [CT04] or
[109] for details on serial coalgebras). This follows easily by noting that the socle
of the left comodule K{p, rx | i < k < p} = E(S,,)/K{pn—ki | k < i} has
socle K{pu—_kx}, which is simple. Thus, we can apply for example [109, Proposi-
tion 3.2] (in fact, it is not difficult to show that H,, ; are isomorphic to the p — 1-th
term of the coradical filtration of the coalgebra Kﬁ [X] of [109, Example 5.5] for o
a cyclic permutation). Then, since for these coalgebras by [CT04, Proposition 1.13]
any left comodule is a direct sum of indecomposable chain comodules, which must
be submodules of the injective envelopes E(S,, ), so they are isomorphic to some
Eni = K{pn—tx | 0 < k < i} for somei = 1,2,..., p. Using the equivalence
of categories proved previously in Theorem 4.6 and Remark 4.8, we get that each
complex is a direct sum of chain complexes corresponding to the E, ;’s, which are
of the form -+ — 0 = (K)yy1 — (K)yzo — -+ = (K)pyi — 0 — --- with
i=1,2...,p. |
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4.3 More Examples

Example 4.11 Consider the graph O, obtained by a “string of diamond dia-
grams”:

bn—l bn bnﬂ
/
—1
\
Cy—

an

1 Cn Cnt1

for all integers n. We can also obtain a variation of this graph Oy, if we “close” the
string of diamonds into a loop of h such diamonds. Consider the path coalgebra C
that is the subcoalgebra of KO, (h € ZU {o0}) with a basis consisting of the paths of
length 0 (vertices) and 1 and also the paths of length 2 (b,d,4+1b4+1), (chdns16n+1) and
the elements (a,b,a,4+1) + (ancyan41) With (uvw) representing the path through the
vertices u, v, w. This coalgebra is co-Frobenius: the left injective indecomposables are

* E(S,,) = K{ay, (by—1an), (cn—1ay), (an—1by—1a,) +(ay—1¢s—1a,)} (spanned by the
elements in C “ending” at a,,),

* E(Sy,) = K{by, (anby), by_1a,4b,},

o E(S.,) = K{cu, (ancn), ca1nCn}

and the right injective indecomposables are

e E(T,,) = K{an, (anby), (ascn), (anbyans1) + (aycndni)} (spanned by the paths in
C starting at a,),

® E(Tb,,) = K{bna (bnanﬂ)a bnanﬂbnﬂ}:

® E(Tcn) = K{Cn; (Cnan+1)7 Cnln+1Cn+1 }

Then we can see that E(T,,) = E(S,,.,)", E(Ty,) = E(Sp,.,)* and E(T,,) = E(S,,.,)*

as right C-comodules, which shows that C is co-Frobenius. Furthermore, we can

extend this example by considering C, to be the coalgebra with a basis consisting of

all paths of length < 2p starting at any b, ¢,, all paths of length < 2p — 1 starting at
any a,, and the elements

(anbpaniibys - - - an+p—1bn+p—1an+p) + -t (anCnlpriCur - an+p—lcn+p—1an+p)

(the sum contains all paths from a, to a,;,). We leave out the details, which are
similar to the ones in the previous examples.

Example 4.12 A more general example of the same type is obtained by looking at
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an infinite string of the following type of diagram

SRV (o R — S Y

a4, —> b2V s p2D ~ bEk) s g
pinh o pr2) o .. 5 pink)
n n n
This quiver A (ky, ..., k;) consists of such a diagram between a,, and a,.+; for each n

(r ki, ...,k are fixed). We consider the subcoalgebra C’ of the full path coalgebra
of this quiver, with a basis consisting of the following: the paths of length < k; + 1
starting at b and passing ONLY through points of the type b (thatis, paths which
continuing after a,; maintain level i), all paths starting at a,, but not reaching a,,
and the elements z, which equal the sum of all the paths between a, and a,4;. As
before, one can show this is a co-Frobenius coalgebra.

Remark 4.13 We note that in all given examples of co-Frobenius and QcF coalge-
bras, except Example 4.12, the lengths of the coradical filtrations (Loewy length) of
the injective indecomposables are all equal (see coming examples below too); in 4.12,
however, we see that they can vary if the ki, . . . , k, are different.

One might find it interesting to note that the above example can be thought of as
the quotient coalgebra @;_; A, /K{pu.0 — Puk;0 | i 7 j}, with the space spanned
by the elements { p,x, 0 — puk; 0 | i # j} beinga coideal, and a corresponding quotient
when we consider the closed “loop” case.

Example 4.14 Let C,D be two QcF coalgebras. Then, by [GMN, Theorem 2.3],
C ® Dis QcE.

Proposition 4.15 Let C and D be co-Frobenius K-coalgebras such that the endomor-
phism of every C and every D simple left comodule S is 1-dimensional (End(S) = K, in
particular, when K is algebraically closed). Then C ® D is co-Frobenius.

Proof If the condition holds, then Cy = @ M;, (K) and Dy = Py, M, (K) are
sums of comatrix coalgebras. In this case, (C ® D)y = Cy ® Dy = Py M,is_ms, (K)
and the simple left C ® D-comodules are S® S’ for S, S’ simple left C and respectively
D-comodules. Also, C = @ E(S)™ and D = @y, E(S')"" as left comodules easily
implies C ® D = (E(S) ® E(S’)) " s left C ® D-comodules. Since S ® S’ C
E(S) ® E(S’), it follows that E(S ® S’) = E(S) ® E(S’). We also have for each simple
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dk+1.n dk+1.n+l dk+l.n+2
o X1 —— X —— X1 —— -

’ ’ ’
dk+1.n—1 dk+1.n dk+1.n+l
dk.n dk,n+1 dk.n+2
(*) te > Xk,n—l Xk,n Xk,n+1 > v
/ ’7 7
dk.n —1 dk.n dk.nH
di—1n k141 k142

: > Xk—l,n—l > Xk—l,n > Xk—l,nJrl >

Figure 1

C ® D-comodule S ® S’ that E(S) = E(T)* and E(S’) = E(T’)* with T a simple
right C-comodule and T’ a simple right D-comodule, so E(S® S”) = E(S) ® E(S’) &
(E(T) & E(T')) f = (E(T ® T')) *, since these are finite dimensional vector spaces.
Therefore, if C and D are co-Frobenius, the multiplicities of S and T in C coincide
the multiplicities of S’ and T” in D coincide too. In this case, this means dim(S) =
dim(T) and dim(S’) = dim(T’) and it follows that dim(S ® S’) = dim(T ® T’),
i.e., the multiplicity in C ® D of the socle and cosocle of E(S® S’) = E(T @ T')*
are the same. By Proposition 2.2 and remark thereafter it follows that C ® D is co-
Frobenius. [ |

Example 4.16 Let BiCh be the category of bicomplexes in Figure 1, with the usual
conditions thatd; ,d;_, , = 0, dy ydy,—1 = 0and the squares commute: di ,,d} , | =
d{ ,dx—1,. This is the category of chain complexes in the abelian category Ch =
Ch; of chain complexes of vector spaces. The morphisms are considered, as usual,
families fi,: Xx, — Yk, making all the appropriate diagrams commutative. Note
that sometimes this category is considered to be such that squares “anticommute”:
dindy_y, = —di_| ,.1dk—1> but the two are equivalent by a standard sign trick
(see, for example [W, 1.2.5]). This category is then equivalent to the category of
left comodules over the coalgebra A; @ A,;. For this it suffices to see that A} ® A,
has a basis consisting of elements p, x ® p,,; with 0 < k,I < ['and to any bicomplex
(Xkn)k,n we can associate the left A} ® A;-comodule @, , X, with coaction p, which

for uy, € Xg, reads p(up,) = (A @ ay) @ gy + (Ax ® pu1) @ d(ug ) + (Pr1 @ a,) ®
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d () + (Pr1 @ pu1) @ dd’ (ug,) (note that dd’ = d’d, with appropriate indices
omitted). It is straightforward to check that this is a comodule structure. Conversely,
to each Ay ® A;-comodule Y we associate a double chain complex as follows. As
before, denote by ¢* the dual “basis” elements in (A; ® A;)* corresponding to ¢ €
{Pnk®pPmi| 0 <kI<1}. WeletYy, =Y (ar®a,)*, and note that in this situation
wehaveY = @k,n Yk . Moreover, for yi, € Y, weletd(yi,) = yin (@@ pu1)* =
Vi - (Pro @ put)* and d’ (yin) = Yin - (Pr1 @ Puo)*. The fact that d* = 0 and
(d")* = 0 follows as in the computations in [Par81] and the above examples, and
since (pro ® Pu,1)* * (Pr1 ® Puo)™ = (Pr1 ® Puo)™ * (Pro ® pu)™ can be tested by
direct application on all the elements of the basis, we get dd’ = d’d.

Since the computations are similar to those in Theorem 4.6 and in [Par81], we
leave the details to the reader.

By generalizing the above results, we get the following.

Theorem 4.17 Let Ch,_, ,_, be the category of double complexes of the type (*) from
Example 4.16 such that d? = 0, (d')" = 0, and the squares commute: dd’ = d'd. Then
Ch,_, is equivalent to the category of comodules over the Hopf algebra H, ® H,.
Moreover, this is an equivalence of monoidal categories.

Note that even more examples can be obtained by combining the Hopf algebras
H, and H,p; let H, .. = H,, so then we have defined H, ), for h = 1,2,3,...,
and h = oo (Hp is just a coalgebra if p { h). Then the category of comodules over
H,, , ® Hy can be thought of the category of double chain complexes, with h columns
and [ lines, where whenever £ or ! is finite, these are thought of as cycles. In these cat-
egories, squares commute and the relation d? = 0 is needed on the horizontal and
(d")" = 0 on the vertical. If h is finite and [ is infinite, then these diagrams can be
represented by an infinite cylinder with the required properties. When both h, [ are
finite, these diagrams can be represented by a torus with appropriate commutation
relations. For example, for H3 3 ® H, o, the category of comodules is tensor equiva-
lent to the category of diagrams of vector spaces of the following “cylindrical” shape
(some arrows are broken only for easier visualization):

and with morphisms being collections of pointwise linear maps ( f), making all the
appropriate diagrams commutative: f.d, = d. f.. Similarly, for another example,
the category of corepresentations (comodules) of the Hopf algebra (or coalgebra)
H,3 ® H,4 (with p = 3 and r € {2, 4} for Hopf algebras) is tensor equivalent to the
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category of diagrams of the following “torus shape”, with appropriate morphisms:

Acknowledgment The author wishes to thank the referee for several very useful
general remarks.
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