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Viscous fingering, a classic hydrodynamic instability, is governed by the the competition
between destabilising viscosity ratios and stabilising surface tension or thermal diffusion.
We show that the channel confinement can induce ‘diffusion’-like stabilising effects on
viscous fingering even in the absence of interfacial tension and thermal diffusion, when
a clear oil invades the mixture of the same oil and non-colloidal particles. The key lies
in the generation of long-range dipolar disturbance flows by highly confined particles
that form a monolayer inside a Hele-Shaw cell. We develop a coarse-grained model
whose results correctly predict universal fingering dynamics that is independent of particle
concentrations. This new mechanism offers insights into manipulating and harnessing
collective motion in non-equilibrium systems.
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1. Introduction
Viscous fingering (Saffman & Taylor 1958; Homsy 1987) occurs when a less viscous
fluid displaces a more viscous fluid inside porous media. First discovered in oil recovery
processes, viscous fingering has been studied extensively as a premier example of a
pattern-forming system whose fundamental physics has aided our understanding of
solidification and other growth phenomena (Couder 2000). Viscous fingering is driven by
the viscosity difference between the two fluids, while the interfacial tension γ stabilises
the system, setting the critical wavelength that scales as γ 1/2 (Chuoke, Van Meurs &
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Van Der Poel 1959; Park, Gorell & Homsy 1984; Park & Homsy 1984). In the limit
of zero interfacial tension, the instability between the two fluids is mediated by thermal
diffusion characterised by the Péclet number Pe, the ratio of flow advection to diffusion.
For relatively small pore-scale Pe where diffusion homogenises the flow within the pore,
viscous fingering can be described by a depth-averaged two-dimensional (2-D) model
(Tan & Homsy 1986; Booth 2010; Nijjer, Hewitt & Neufeld 2018). In such systems, thermal
diffusion determines the mixing region width and sets the wavelength of instability
(Wooding 1962; Hickernell & Yortsos 1986; Yortsos & Salin 2006; Booth 2010; Nijjer
et al. 2018).

In this paper, we uncover a new mechanism of wavelength selection of viscous fingering
in the limit of zero interfacial tension and Pe → ∞, with the use of a 2-D suspension. We
experimentally inject clear oil into the mixture of the same oil and non-colloidal particles
inside a rectangular Hele-Shaw cell, whose gap thickness is comparable to the particle
diameter. The inclusion of the particles in the oil increases the effective viscosity of the
mixture (Einstein 1906; Brady 1983) and generates the necessary condition for viscous
fingering. Despite the absence of thermal diffusion, our experiments reveal a striking
similarity to 2-D viscous fingering with miscible liquids at low Pe (Tan & Homsy 1986).
The invading oil is shown to finger into the suspension, and the characteristic finger width
gradually widens over time. This behaviour is a complete departure from the suppression
of fingering that is observed when a clear oil invades the suspension inside the channel
with a large gap (Luo, Chen & Lee 2020).

The key feature responsible for this surprising phenomenon is the channel confinement
that causes the flow disturbance by each particle to behave as a long-range dipole.
Such non-equilibrium many-body systems with slowly decaying disturbances have been
shown to exhibit complex collective dynamics, including hydrodynamic fluctuations of
2-D uniform suspension flows (Desreumaux et al. 2013), and clustering of magnetically
driven micro-rollers (Driscoll et al. 2017). To demonstrate this, we derive a coarse-grained
model accounting for the dipolar interactions between particles, whose results correctly
predict the development of gradually widening fingers even at Pe → ∞. Our model
further reveals universal fingering dynamics that is independent of the initial particle
concentration, which only sets the time-scale of the instability.

The paper is organised as follows. We introduce the experimental set-up and
observations in § 2, while the formulation of the mathematical model is included in § 3. We
discuss the model results and make the quantitative comparison with the experiments in
§ 4. In § 4.3, we uncover the physical origin of wavelength selection. Finally, we conclude
the paper with the summary and discussion in § 5.

2. Experiments
To induce viscous fingering with zero interfacial tension, we inject silicone oil (density
0.96 kg m−3, dynamic viscosity μ = 0.096 Pa s) into the mixture of the same oil and
polyethylene particles with diameter d = 0.625 ± 0.4 mm and density ρp = 0.98 g cm−3

inside a rectangular Hele-Shaw cell. Since Pe ∼ O(1010), the thermal diffusion of the
non-colloidal particles is negligible. As illustrated in figure 1(a), the Hele-Shaw cell
comprises two glass plates with width W = 60 mm separated by gap thickness b = 0.76 ±
0.03 mm, such that b/d ≈ 1 ensures the formation of a monolayer.

In our experiments, we fix the oil flow rate to Q = 3.62 ml min−1, and systematically
vary the particle volume fractions φi or the corresponding average number densities ρi .
Note that the average number density ρi is defined as the total number of particles over the
area of the domain. Varying φi or ρi is equivalent to varying the viscosity ratio between
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Figure 1. (a) Schematic of the experimental set-up: a 2-D Hele-Shaw cell consisting of two rectangular glass
plates that are separated by a thin gap. The images of flow patterns are captured from above using a CMOS
camera, as the clear oil invades the particle–oil mixture. (b) The time-sequential experimental images at φi =
10 % show the gradual widening of fingers over time in a single experiment. (c) The experimental images at
t̂ = 40 s show the increase in the critical wavelength λc as the initial concentration φi is increased: φi = 5 %,
15 %, 35 %. The solid line represents the location of the side wall.

the suspension (defending fluid) and the clear oil (invading fluid); viscosity ratios greater
than 1 are conducive to viscous fingering. We estimate the viscosity ratio of the current
system based on the following empirical expression of the effective viscosity (Brady 1983):
μe f f ≈ μ[1 + ρi (πd2/2)], which is valid for a 2-D suspension in a dilute regime. The
resultant viscosity ratios in the current experiments range from 1.2 to 1.8.

Successful experiments require generating a uniform suspension of φi and a relatively
uniform front of invading oil. We include the detailed description of our experimental
procedure in Appendix A. We conduct two complementary sets of experiments with and
without dyeing the invading oil for the purposes of visualisation. The experiments in which
we dye the invading oil allow us to directly visualise the miscible displacement pattern of
the invading oil (see figure 1b,c), while we track the motion of individual particle with
corresponding high-resolution experiments with no dyed oil.

The experimental images in figure 1 demonstrate two major observations from the
experiments. First, the invading oil is observed to form fingers into the suspension for
all φi or ρi tested. Second, the characteristic finger width λc (as quantified in Appendix B)
increases with both time and ρi . The experimental images in figure 1(b) demonstrate
coarsening of the finger width over time at φi = 10 % (ρi = 0.48 mm−2), while at fixed
time, fingers of the invading oil appear wider as ρi is systematically increased from 5 %
(ρi = 0.17 mm−2) to 35 % (ρi = 1.84 mm−2) in figure 1(c).

The appearance of miscible fingering at all φi is a clear deviation from the recent series
of studies on the displacement of miscible fluids at Pe → ∞ (Goyal & Meiburg 2006;
Bischofberger, Ramachandran & Nagel 2014; Nijjer et al. 2018; Videbæk & Nagel 2019;
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Videbæk 2020). These studies show that the displacement of miscible fluids is stable at
low viscosity ratios, including in the case of clear oil invading a suspension (Luo et al.
2020). The cause of stable displacements is understood to be the development of a three-
dimensional (3-D) structure inside the thin gap at Pe → ∞. Hence by working with highly
confined particles whose dynamics can be modelled as quasi-2-D, the onset of fingering is
no longer delayed even at low viscosity ratios. Here, we refer to the particles in a monolayer
as being ‘highly confined’ by the channel walls. Yet the emergence of a finite wavelength
that evolves with time and φi speaks to the existence of an alternate wavelength selection
mechanism, which we will rationalise with a minimal model.

3. Theoretical model
Given the simplicity of our experimental system with no interfacial tension and thermal
diffusion, we hypothesise that the hydrodynamic interactions between the highly confined
particles comprise both stabilising and destabilising effects, and thereby can describe
the observed fingering phenomena. To demonstrate this, we develop a coarse-grained
continuum model that takes into account pairwise interactions between particles immersed
in the Stokes flow and the initial jump in particle concentrations.

We model our system comprising N particles denoted with the index i (i = 1, . . . , N ).
Due to the friction of the bounding walls, a highly confined particle i moves slower
than the local oil flow, such that v̂ p,i = κ v̂, where v̂ p,i and v̂ are the in-plane velocities
of the particle and suspending oil in the absence of the particle i , respectively. Here,
κ<1 is an empirical constant whose value we determine by measuring the velocity of
individual particles in dilute suspension experiments. The velocity difference between
the particle and the fluid causes a dipolar disturbance to the suspending oil, v̂

dip.
The dipolar disturbance introduced at position r̂ by a particle at r̂ ′ can be modelled
as v̂

dip
(r̂, r̂ ′

) = S ∇̂((r̂ − r̂ ′
) · eX̂/

∣∣r̂ − r̂ ′∣∣2
), where S represents the dipolar strength

accounting for channel confinement and particle surface properties (Beatus et al. 2006,
2012), and eX̂ is the unit vector in the axial coordinate X̂ . The resultant streamlines of
v̂

dip are symmetric in the transverse direction and asymmetric in the flow direction. We
assume that the dipolar disturbances between particles are pairwise additive, such that
v̂=v̂

∞ + ∑
j �=i v̂

dip
(r̂ i , r̂ j ), where v̂

∞=v̂∞eX̂ is the uniform background flow.
Moving from the individual particle dynamics to a continuum description, we now

derive an equation for the local number density ρ(r̂, t̂) based on mass conservation:

∂t̂ρ(r̂, t̂) + ∇̂ · ĵ(r̂, t̂) = 0, (3.1)

where the local particle flux ĵ(r̂, t̂) is derived using a conventional kinetic theory (Menzel
2012; Desreumaux et al. 2013)

ĵ(r̂, t̂) = κ ρ(r̂, t̂)

[
v̂

∞+
∫∫

|r̂−r̂ ′|≥d
v̂

dip
(r̂, r̂ ′

) ρ(r̂ ′
, t̂) dr̂ ′

]
. (3.2)

The quadratic nonlinearity in (3.2) accounts for the pairwise interaction, and introducing
the cut-off length in the integration ensures that the number density remains bounded. A
similar continuum framework has been used previously to model the collective dynamics
in systems comprising multiple bodies, such as magnetic rotors, sedimenting particles and
droplet emulsions (Desreumaux et al. 2013; Delmotte et al. 2017; Sprinkle et al. 2021).

We move to a moving reference frame based on x̂ = X̂ − κ(v̂∞ + πSρi )t̂ , where x̂ is
the moving coordinate in the flow direction, while ŷ corresponds to the coordinate in
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Figure 2. (a) Space–time diagram illustrating the number density ρ0 measured and averaged over the channel
width from an experiment at φi = 25 % or ρi = 1.13 mm−2. The colour scale indicates the local number density.
The rarefaction region (bounded by dashed lines) is characterised by a gradual increase in ρ0. (b) We plot ρ0
measured from the experiments at φi = 5 %, 10 %, 15 %, 25 % as a function of X̂/t̂ , which reveals the self-
similarity of our data and two distinct regions. The rarefaction region, exhibiting a positive slope, is influenced
by the system’s confinement parameters (κ and S), while the uniform region is set by φi . The colour of each
symbol corresponds to different values of φi , with the darker shade indicating later dimensional times (see the
colourmaps in (b)). (c) The dimensionless number density profiles c from all experiments collapse onto a single
rarefaction solution curve, consistent with the predictions of the leading-order equation (dashed line).

the transverse direction. We define c ≡ ρ/ρi , and non-dimensionalise (3.1) based on the
scales: length d, velocity κπSρi , and time d/(κπSρi ). The dimensionless variables will be
denoted without hats to clearly distinguish them from the dimensional variables. Notably,
the average number density ρi sets the intrinsic speed of the system, and thereby the
characteristic timescale.

The resultant dimensionless equation for c is

∂c

∂t
+

(
1
π

ud − 1
)

∂c

∂x
+ 1

π
vd

∂c

∂y
− 1

π
c
∫ 2π

0
c(r − n, t) cos θ dθ = 0, (3.3)

where n = (cos θ, sin θ), and ud and vd are the summed dimensionless disturbance
velocities in x and y, respectively:

ud(x, y) =
∫∫

x̃2+ỹ2≥1

ỹ2 − x̃2

(x̃2 + ỹ2)2 c(x + x̃, y + ỹ, t) dx̃dỹ,

vd(x, y) =
∫∫

x̃2+ỹ2≥1

2x̃ ỹ

(x̃2 + ỹ2)2 c(x + x̃, y + ỹ, t) dx̃dỹ.

(3.4)

We include the detailed derivation of (3.3) and (3.4) in Appendix C.
Finally, to simulate the invasion of the clear oil into the uniform suspension, we

subject (3.3) to the initial condition c(x, y, t = 0) = (1)x>0. The dimensionless governing
equation and initial condition for c are completely independent of the initial particle
number density ρi , which suggests the universal nature of the 2-D suspension in the
current configuration. In other words, instead of solving the governing equation for varying
parameters, such as ρi and channel confinement, one only needs to obtain the solution to
the dimensionless equation once and re-normalise the result to describe the invasion of
clear oil into the 2-D suspension for different physical parameters.
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4. Results

4.1. Rarefaction wave
To examine the stability of the system, we decompose c into c=c0(x, t) + δ c(x, y, t),
where |c0|
|δc|. Here, c0 is the normalised particle number density at leading order
that is uniform in y. Based on this decomposition and the further assumption that
c0(x + x̃, t) ≈ c0(x, t) + ∂x c0(x, t) x̃ for x̃ ∈ [−1, 1] (see Appendix D for details), we
obtain the following equation for c0 from (3.3):

∂c0(x, t)

∂t
+ [2c0(x, t) − 1]

∂c0(x, t)

∂x
= 0. (4.1)

Equation (4.1) can be solved analytically via the method of characteristics, with the
similarity variable ξ ≡ x/t :

c0(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

0, ξ < −1,

ξ

2
+ 1

2
, −1 < ξ < 1,

1, ξ > 1.

(4.2)

This solution demonstrates the existence of an expanding rarefaction region that linearly
connects the regions of clear oil (i.e. c0 = 0) and uniform suspension (i.e. c0 = 1).

To validate (4.2) experimentally, we quantify the particle number density averaged in the
transverse direction, ρ0(X̂ , t̂), from our systematic experiments with clear oil. The high-
resolution experiments allow us to track the positions of the individual particles inside the
cell over the duration of the experiment. We convert the particle positions into ρ0(X̂ , t̂)
by averaging the number of particles inside a rectangular domain that is a few particle
diameters wide. For φi = 25 % or ρi = 1.13 mm−2, the plot of ρ0(X̂ , t̂) in figure 2(a)
clearly shows the emergence and expansion of the rarefaction region over which ρ0(X̂ , t̂)
gradually increases from 0 to ρi (bounded by dashed lines). We acknowledge that ρ0 shows
some non-uniformities even in the uniform region, while its mean value matches ρi . Such
non-uniformities are caused by the fluctuations that occur in the flow of a 2-D uniform
suspension (Desreumaux et al. 2013).

We plot ρ0 as a function of X̂/t̂ for different values of ρi in figure 2(b). Note that
X̂/t̂ = κπSρi (ξ + 1) + κv̂∞ based on our non-dimensionalisation. As predicted by our
solution in (4.2), ρ0(X̂ , t̂) for given ρi is shown to collapse across all time, experimentally
validating the self-similar nature of the rarefaction region. Furthermore, the slope of the
linear part of ρ0(X̂/t̂) corresponds to 1/(2κπS), independent of ρi . Once the dipolar
strength S is determined experimentally (i.e. S ≈ 0.178 mm3 s−1) from this slope, we
set the dimensionless moving coordinate x for each ρi . The resultant plot of ρ0/ρi as
a function of ξ = x/t shows a reasonable collapse for all experimental parameters in
figure 2(c).

4.2. Universal fingering growth
To probe the stability of the model system, we set δ c(x, y, t) ≡ 2

∑∞
k=0 c̃k(x, t) cos (ky)

with wavenumber k, and combine it with (3.3). Then with the subscript k omitted for
brevity, we arrive at the following governing equation for c̃:
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Figure 3. (a) The plot of the growth rate σ versus the wavenumber k. The growth rate varies non-monotonically
with k, and is positive across a range of wavenumbers. Over time, the critical wavenumber associated with the
peak growth rate exhibits a decay. (b) The plot of the critical wavelength λc over dimensionless time t from the
simulations and the experiments; λc from the simulations increases over t . Given the universality of the derived
equation, the critical wavelengths from different experiments are expected to converge into a single curve upon
non-dimensionalisation. The error bars associated with the experimental data reflect the spatial variability of
finger widths in the rarefaction region for each experiment. (c) We include the experimental images from three
experiments (φi = 5 %, 15 %, 25 %) at t = 12 (or three separate dimensional times). The three images exhibit
similar fingering patterns.

0 = ∂ c̃

∂t
− 1

π
c0

∫ 2π

0
c̃(x − cos θ) cos (−k sin θ) cos θ dθ

+ ∂ c̃

∂x

[
2
π

∫ +1

−1
c0(x + x̃)

√
1 − x̃2 dx̃ − 1

]
− 1

π
c̃
∫ 2π

0
c0(x − cos θ) cos θ dθ

+ 1
π

∂c0

∂x

[∫ +∞

1

[
c̃(x + x̃) + c̃(x − x̃)

]
I1 dx̃ +

∫ 1

−1
c̃(x + x̃)I2 dx̃

]
,

(4.3)
where

I1(x̃; k) =
∫ +∞

−∞
ỹ2 − x̃2

(x̃2 + ỹ2)2 cos (k ỹ) dỹ = −k exp(−kx̃),

I2(x̃; k) = 2
∫ −

√
1−x̃2

−∞
ỹ2 − x̃2

(x̃2 + ỹ2)2 cos (k ỹ) dỹ.

(4.4)

Here, I1 and I2 constitute ud in the Fourier space, while vd=0 owing to the symmetry of
the disturbance flow (i.e. vdip) and the uniformity of c0 in the y-direction. The detailed
derivation of (4.3) and (4.4) has been included in Appendix E.

Using the upwind numerical scheme, we compute c̃(x, t) from (4.3), by assuming a
Gaussian function with a particle-scale width as the initial condition. Once c̃(x, t) is
known, we define the growth rate σ based on the changes in the root mean square of
c̃(x, t) over the whole domain (Tan & Homsy 1986), or σ ≡ ln[M(t + δt) − M(t)]/δt ,

where M(t) ≡
[ ∫ L

−L [c̃(x, t)]2 dx/(2L)
]1/2

, with the time step δt and the domain size
L . As shown in figure 3(a), σ varies non-monotonically with k and is positive for the
intermediate values of k, while its overall magnitude decreases with time. In addition,
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the critical wavenumber kc at which ∂σ/∂k = 0 gradually decreases over time, which
corresponds to an increase in the critical wavelength λc with time. Hence our minimal
model with inter-particle dipolar interactions correctly predicts widening of the emergent
fingers with time at all particle concentrations. Note that our choice of initial data
guarantees that a sufficiently wide range of Fourier modes is covered, and our specific
definition of σ does not influence the wavenumber selection, which has been confirmed
through numerical tests.

Furthermore, the behaviours of σ(k; t) and kc mirror those found in viscous fingering
between two miscible fluids for low Pe. Tan & Homsy (1986) performed the stability
analysis of the displacement of pure miscible liquids, and showed that thermal diffusion
gradually increases the mixing region between the two fluids, which causes the finger
width to widen over time. This striking similarity between our simulation results and
the analysis by Tan & Homsy (1986) suggests that dipolar interactions between highly
confined particles display the stabilising effects that are comparable to thermal diffusion
even at Pe → ∞.

However, distinct from Tan & Homsy (1986), our current model is not explicitly
governed by the external parameters (e.g. Pe, viscosity ratios) that control the relative
strength of stabilising and destabilising effects. Because the inter-particle dipolar
interactions alone control the instability, the initial particle concentration drops out of the
dimensionless equation, except to set the timescale of fingering. As the dimensionless
time t has been normalised by ρi , our results indicate that the dimensional time
t̂ = td/(κπSρi ) that it takes for the finger width to reach the comparable size must
decrease with increasing ρi . Equivalently, at given dimensional time t̂ that corresponds
to longer t for larger ρi , the emergent fingers are predicted to be wider as ρi is increased,
which is consistent with our experimental observations in figure 1(c).

For more quantitative comparison, we obtain the critical wavelengths λc from the
experiments via image processing, which we describe in detail in Appendix B. We plot
λc from the experiments as a function of t together with the numerical simulations in
figure 3(b). Despite the scatter caused by the broad distribution of finger widths inside
the rarefaction region, experimental λc increases with t and shows a reasonable collapse
across all particle concentrations. Furthermore, the images in figure 3(c) from three
separate experiments (i.e. φi = 5 %, 15 %, 25 %) exhibit similar fingering patterns at given
dimensionless time t = 12, which again qualitatively matches our model predictions.

4.3. Mechanism of wavelength selection
In our system, both experimental observations and linear stability analysis demonstrate
the simultaneous development of rarefaction and fingering regions. To further elucidate
the mechanism of wavelength selection via dipolar interactions, we focus on the ∂c0/∂x
term in (4.3), which directly addresses the viscosity contrast between the invading (clear
oil) and defending (2-D suspension) phases. This term separates the current model from
the work of Desreumaux et al. (2013), who performed a stability analysis on the 2-D
uniform suspension flow. Their analysis yielded hydrodynamic fluctuations but no growing
instabilities, which confirms that the ∂c0/∂x term is indeed the key to viscous fingering.
This choice is also confirmed by the ablation test included in Appendix F.

By systematically analysing the effects of the ∂c0/∂x term on critical wavelength
selection in (4.3), we reduce the governing equation for c̃ to

∂ c̃

∂t
+ 1

π

∂c0

∂x

∫ +∞

1

[
c̃(x + x̃) + c̃(x − x̃)

]
I1 dx̃ = 0. (4.5)
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Figure 4. (a) Comparative simulation results between the comprehensive model (4.3) and the simplified
physical model (4.5). The simplified model initially fails to capture the system’s instability but converges
to a similar constant maximum growth rate over long times. It also accurately predicts the broadening of the
wavelength, or equivalently the decrease in kc, as observed in the full model. (b) To represent the physical
meaning of I1, we include the schematic of the perturbed line of particles (green curve) affecting a test particle
(red circle) placed at a distance x̃ away from it. (c) For given x̃ , I1 is negative for all k, and its magnitude reaches
a maximum at k = 1/x̃ . The wavenumber selection is influenced by the cumulative impact of all perturbed lines
within the expanding rarefaction region.

We plot the maximum σ (i.e. σmax ) and kc from (4.5), and compare them to the results of
the full governing equation in figure 4(a), which shows a qualitative match with the full
solutions as t → ∞.

As illustrated in figure 4(b), I1(x̃; k) captures the effects of a column of perturbed
particles (green line) on a ‘test’ particle (red circle) separated by a distance x̃ . As shown
in figure 4(c), for given x̃ , I1 is negative across all k, indicating that perturbing the
green line will destabilise the test particle across all wavenumbers as long as ∂c0/∂x > 0.
Additionally, for given x̃ , the magnitude of I1 peaks at k = 1/x̃ , which implies that the
perturbed green line selectively fosters the fastest-growing mode based on the separation
distance.

As the product of I1 and c̃ is integrated over x̃ in (4.5), the largest growing mode
must be influenced by the size of the integration domain. The integration domain can
be approximated as the rarefaction region, as our numerical solutions reveal that c̃ is
mostly zero outside it. Finally, by assuming constant c̃ for simplicity, we integrate I1 over
the rarefaction region to obtain kc ∝ log(t)/(t − 1). As shown in figure 4(a), this scaling
decays more steeply with time compared to the full simulation results, which underscores
the significance of accounting for the non-uniformity of c̃ within the rarefaction region.
Despite the deviation between the scaling and the numerical results, our simple analysis
illustrates that the expanding rarefaction region is the key to qualitatively capturing
the decay of kc, or the widening fingers, over time. The expanding rarefaction region
parallels the growing mixing region between two miscible fluids, which explains the
similarity between the x-component of the dipolar interactions and thermal diffusion that
is responsible for generating the mixing region.

5. Conclusion
In this study, we experimentally demonstrate viscous fingering when pure oil displaces the
mixture of the same oil and highly confined non-colloidal particles in the limit of zero
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interfacial tension and diffusion. In contrast to other studies of miscible displacements at
Pe → ∞ (Videbæk & Nagel 2019; Luo et al. 2020; Videbæk 2020), our experiments show
that fingers form at all particle concentrations, as the channel confinement eliminates the
3-D structure inside the channel gap that suppresses viscous fingering of all wavelengths.
Furthermore, despite having no thermal diffusion, we find that fingering behaviours in
2-D suspensions are strongly reminiscent of classic 2-D viscous fingering between two
miscible fluids at lowPe.

To rationalise this fingering regime, we develop a minimal mathematical model that
captures the hydrodynamic interactions between the highly confined particles. Overall,
our model successfully demonstrates that the dominant source of instability lies in the
x-component of the dipolar interactions, initiating both the rarefaction wave and the subse-
quent instability along the y-direction. In addition, the expanding rarefaction region qual-
itatively takes on the role of ‘diffusion’, as it causes the critical finger width to widen over
time. Because we do not have separate sources for fingering and stabilisation, our model
is described by a universal equation that is independent of the particle concentration.

Our work combines viscous fingering with particle ensembles, which offers a
new insight into harnessing instabilities to control the particle motion. For instance,
strategically injecting the 2-D suspension to generate gradients in the particle
concentration can lead to the shock or rarefaction waves and instabilities (Beatus, Tlusty
& Bar-Ziv 2009), which will alter the emergent behaviours of particles. In addition to
the control of particles, we will extend our current analysis by including more relevant
physics into the model, such as the effects of the side walls, and investigating the coupling
between fingering patterns and hydrodynamic fluctuations, as observed by Desreumaux
et al. (2013). Finally, another future direction of research includes investigating the effects
of channel confinement on the miscible displacement of a suspension with pure oil. The
previous experiments by Luo et al. (2020) demonstrated that the miscible displacement of
a suspension in the continuum limit completely deviates from the present monolayer limit.
Hence it would be of great interest to characterise the onset of viscous fingering as the
channel confinement is systematically varied from continuum to the monolayer limit.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.402.
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Appendix A. Experimental procedure
To study the interfacial instability between the suspension and the clear oil, it is essential
to establish an undisturbed, flat interface prior to the invasion of the clear oil into the
suspension. This is achieved through the use of two 3-D-printed flow-guiding structures
attached to either end of the Hele-Shaw cell. A suspension is prepared and injected through
the structure designated as the suspension inlet into the Hele-Shaw cell. The injection
continues until the suspension reaches the periphery of the cell, adjacent to the second
structure. Once the suspension has filled the cell to the desired location, the suspension
inlet is sealed to prevent any further inflow of suspension.

Clear oil is then injected into the reservoir of the second structure, ensuring that it makes
contact with the suspension without causing any disturbances to the established interface.
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Figure 5. (a) The plot of the width-averaged intensity G y(X̂) as a function of X̂ highlights the rarefaction
region inside the cell. (b) We focus on the small region around the rarefaction region to highlight the variations
of G in ŷ, corresponding to the emergent fingers. (c) We turn the original image into a binary image via
thresholding (dyed oil in black), from which we extract λc.

The second structure comes with a circular opening on top, which allows air to vent out
during initial oil injection. After the clear oil has been introduced, the circular opening (for
releasing air) is sealed to maintain the integrity of the interface. With the circular opening
sealed, the suspension inlet is reopened. Clear oil is injected again, this time invading
the suspension and generating fingers. The displaced suspension is expelled through the
suspension inlet, allowing for the observation of the interfacial instability as the clear oil
advances.

Appendix B. Finger width measurements
We employ a fluorescent dye to visualise the flow patterns as silicone oil is injected into the
mixture of the same oil and polystyrene particles. The captured images are processed using
the red channel filter, denoted as G(X̂ , ŷ), to analyse the finger patterns (see figure 5a).
The analysis proceeds as follows.

The rarefaction region is identified by calculating the ŷ-averaged intensity (grey scale)
of the red channel, G y(X̂). The image is then cropped to focus on this region. As illustrated
in figure 5(b), the intensity profile G(ŷ) along the centreline of the rarefaction region (red
dashed line) reveals a distinct intensity variation, clearly demarcating the finger region.
A fixed threshold is applied to the cropped image to extract the dyed oil region, resulting
in a binary representation of the finger pattern (figure 5c). This binary image highlights
the spatial distribution of the dyed oil within the rarefaction region. The finger pattern
exhibits non-uniformity in both the X̂ - and ŷ-directions. In the X̂ -direction, the fingers are
thinner near the front of the rarefaction region, and gradually widen towards the end. In the
ŷ-direction, the width of the fingers varies due to the dynamic behaviour of the particles
during injection. This non-uniformity is quantified by calculating the standard deviation
of the finger width in the ŷ-direction, providing a measure of the spatial variability in the
pattern.

Appendix C. Derivation of (3.3) and (3.4)
The key to deriving (3.3) from (3.2) is the simplification ∇ · j , where j is the
dimensionless particle flux. Let us first introduce the relative position vector r̃ = r ′ − r ,
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where r̃ denotes the displacement vector along the direction of the normal vector n, such
that r̃ = (x̃, ỹ) · n. This definition is instrumental in simplifying the convection term and
facilitating the physical interpretation of each term, as shown below:

∇ · j(r, t) = ∇ ·
[∫∫

|r−r ′|≥1
c(r, t) vdip(r, r ′) c(r ′, t) dr ′

]

= ∇c(r, t) ·
∫∫

|r−r ′|≥1
vdip(r, r ′) c(r ′, t) dr ′ + c(r, t) ∇·

[∫∫
|r−r ′|≥1

vdip(r, r ′) c(r ′, t) dr ′
]

= ∂c(r, t)

∂x

∫∫
x̃2+ỹ2≥1

ỹ2 − x̃2

(x̃2 + ỹ2)2 c(x + x̃, y + ỹ, t) dx̃dỹ

+ ∂c(r, t)

∂y

∫∫
x̃2+ỹ2≥1

2x̃ ỹ

(x̃2 + ỹ2)2 c(x + x̃, y + ỹ, t) dx̃dỹ − c(r, t)

×
∫ 2π

0
c(r − n, t) cos θ dθ. (C1)

Note that we have used the divergence theorem to simplify the following:

∇ ·
[∫∫

|r−r ′|≥1
vdip(r, r ′) c(r ′, t) dr ′

]
=

∫∫
|r̃|≥1

∇ r̃ · [vdip(r, r + r̃) c(r + r̃, t)] dr̃

= −
∫

|r̃|=1
vdip(r, r + r̃) c(r + r̃, t) · n dr̃

= −
∫ 2π

0
vdip(r, r + n) · n̂ c(r + n, t) dθ

= −
∫ 2π

0
c(r − n, t) cos θ dθ .

(C2)
Inserting (C1) into the original conservation law leads to (3.3)–(3.4), which govern the
evolution of particle concentration.

Another major step in deriving (3.3) is the coordinate transformation based on
x̂ = X̂ − κ(v̂∞ + πSρi )t̂ and non-dimensionalisation via x̂ = xd, t̂ = t (d/κπSρi ):

∂ρ(X̂ , ŷ, t̂)

∂ t̂
= ρi

∂c(X̂ , ŷ, t̂)

∂ t̂

= ρi
∂c(x̂, ŷ, t̂)

∂ x̂

∂ x̂

∂ t̂
+ ρi

∂c(x̂, ŷ, t̂)

∂ t̂

= ρi
∂c(x̂, ŷ, t̂)

∂ t̂
− κπSρ2

i
∂c(x̂, ŷ, t̂)

∂ x̂
− κv̂∞ ∂c(x̂, ŷ, t̂)

∂ x̂

= κπSρ2
i

d

∂c(x, y, t)

∂t
− κπSρ2

i

d

∂c(x, y, t)

∂x
− κv̂∞ ∂c(x, y, t)

∂x
.

(C3)
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Appendix D. Derivation of (4.1)
The leading order equation is obtained from (3.3) by introducing decomposition
c=c0(x, t) + δ c(x, y, t), where |c0|
|δc|, and keeping the terms with c0,

(D1)

where

u0
d(x) =

∫∫
x̃2+ỹ2≥1

ỹ2 − x̃2

(x̃2 + ỹ2)2 c0(x + x̃, t) dx̃dỹ,

v0
d(x) =

∫∫
x̃2+ỹ2≥1

2x̃ ỹ

(x̃2 + ỹ2)2 c0(x + x̃, t) dx̃dỹ.

(D2)

Here, u0
d(x) is further divided into four regions to compute the integral:

(D3)

Now we apply the Taylor expansion of c0(x + x̃, t) ≈ c0(x, t) + ∂x c0(x, t)x̃ to obtain

(D4)

and

(D5)

Appendix E. Derivation of (4.3) and (4.4)
The perturbation equation for δ c(x, y, t) is

(E1)

where v(0) = ∫∫
x̃2+ỹ2≥1(2x̃ ỹ/(x̃2 + ỹ2)2) c0(x + x̃, t) dx̃dỹ = 0, g(c0) = ∫ 2π

0 c0(x −
cos θ, t) cos θ dθ , g(δc) = ∫ 2π

0 δ c(r − n, t) cos θ dθ . Additionally,

u(1) =
∫∫

x̃2+ỹ2≥1

ỹ2 − x̃2

(x̃2 + ỹ2)2 δ c(x + x̃, y + ỹ, t) dỹdx̃ . (E2)
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Figure 6. The maximum growth rate (σmax (t)) and critical wavenumber (kc) over time based on versions
1, 2, 3 of (4.3).

By setting δ c(x, y, t) ≡ 2
∑

k c̃(x, t) cos (ky) with the wavenumber k and plugging it
into (E1), we rewrite the double integral in (E2) as

u(1)/ cos (ky) =
∫∫

x̃2+ỹ2≥1

ỹ2 − x̃2

(x̃2 + ỹ2)2 c̃(x + x̃, t) cos (k ỹ) dx̃dỹ

=
∫ −1

−∞
c̃(x + x̃, t)

∫ 1

−1

ỹ2 − x̃2

(x̃2 + ỹ2)2 cos (k ỹ) dỹdx̃

+
∫ +∞

1
c̃(x + x̃, t)

∫ 1

−1

ỹ2 − x̃2

(x̃2 + ỹ2)2 cos (k ỹ) dỹdx̃

+
∫ +1

−1
c̃(x + x̃, t)

∫ −
√

1−x̃2

−∞
ỹ2 − x̃2

(x̃2 + ỹ2)2 cos (k ỹ) dỹdx̃

+
∫ +1

−1
c̃(x + x̃, t)

∫ +∞
√

1−x̃2

ỹ2 − x̃2

(x̃2 + ỹ2)2 cos (k ỹ) dỹdx̃

=
∫ +∞

1

[
c̃(x + x̃, t) + c̃(x − x̃, t)

] ∫ ∞

−∞
ỹ2 − x̃2

(x̃2 + ỹ2)2 cos (k ỹ) dỹdx̃

+ 2
∫ +1

−1
c̃(x + x̃, t)

∫ −
√

1−x̃2

−∞
ỹ2 − x̃2

(x̃2 + ỹ2)2 cos (k ỹ) dỹdx̃ .

(E3)
This expression reveals the cumulative impact of particles within the rarefaction zone (i.e.
∂c0/∂x �= 0) and sets our current model apart from the one for the uniform suspension
described by Desreumaux et al. (2013).

Appendix F. Ablation test
We conduct an ablation test by systematically deleting selected terms from (4.3), and
numerically determining the maximum growth rate (σmax ) and critical wavenumber (kc).
We consider the following three versions of (4.3). Version 1 consists of all the terms of
(4.3), except for the last two integral terms, which contain (1/π) ∂c0/∂x . This version
of (4.3) is consistent with the model by Desreumaux et al. (2013) when c0 is constant.
Version 2 is only missing (1/π)(∂c0/∂x)

[ ∫ +∞
1 [c̃(x + x̃) + c̃(x − x̃)]I1 dx̃

]
from (4.3),

while version 3 does not contain (1/π)(∂c0/∂x)[∫ 1
−1 c̃(x + x̃)I2 dx̃] only. The plots in

figure 6 demonstrate the importance of the term (1/π)(∂c0/∂x)
[ ∫ +∞

1 [c̃(x + x̃) + c̃(x −
x̃)

]
I1 dx̃]. Namely, only version 3 of the governing equation that retains this term shows

the decay of kc over time, which qualitatively matches the full numerical results from
solving (4.3).
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