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Abstract

In this note we characterize PSL2O) by conditions on the order of the group and the orders of its
elements.

1980 Mathematics subject classification (Amer. Math. Soc): 20 D 06.

In [7] we have characterized PSL(5) by conditions only on the order of the group
and the orders of its elements. That is, the characteristic property of PSL2(5) is:

(1) the order of the group contains at least three different prime factors;
(2) the order of every non-identity element in the group is a prime.
S. Adnan has characterized PSL20) using the simplicity of the group and

properties of its maximal subgroups (see [1] and [2]). In this note we continue the
discussion of [7], and using the conclusions of [3] and [5] we present a characteri-
zation of PSL2(7) by conditions only on the order of the group and the orders of
its elements.

THEOREM. Let G be a finite group satisfying the following conditions:
(1) | G | contains at least three different prime factors, that is, \ ir(G) \> 3;
(2) the order of every non-identity element in G is either a power of 2 or a prime

different from 5. Then G is isomorphic to PSL2(1).

PROOF. By condition (2) we see that G is a group in which every element has
prime power order. From [3] Theorem 1 if G is solvable, then | tr{G) |< 2. Thus by
condition (1) we conclude that G is non-solvable. Furthermore, by a theorem of P.
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Hall ([3] Theorem 4) G has the normal series

G>N> Pis* 1,

where P is the largest solvable normal subgroup of G and is a p-group and N/P is
the unique minimal normal subgroup of G/P and is a simple group of composite
order. Since every element of N/P has prime power order, [5] Theorem 16 implies
that N/P is isomorphic to one of the following groups: PSL2(q), q = 5,7,8,9,17,
PSL3(4), Sz(S) or Sz(32). Because PSL2(q), q = 5,9, PSL3(4), 5z(8) and Sz(32)
all contain elements of order 5 and PSL2{q), q = 8,17 all contain elements of
order 9, N/P must be isomorphic to PSL2(7). Indeed PSL2(1) contains only
elements of order 22 and elements of prime order not equal to 5.

Suppose at first that P is not a 2-group. As G does not contain any elements of
order 2p (p ^ 2) a Sylow 2-subgroup S2 of N acts fixed-point-freely on P. From
[4] Theorem 7.24 we conclude that S2 is a cyclic group or a generalized quaternion
group. But PSL2(1) and hence N has Sylow 2-subgroups which are dihedral
groups of order 8. This contradiction shows that P is a 2-group. Let S7 be a Sylow
7-subgroup of N. Then CN(S-j) — 57 and hence NN(S-j) is a group of order 21.
Now P.NN(S7) is a solvable group in which every element has prime power order.
It follows from [3] Theorem 1 that P = 1. Thus N < G and as CG(N) = 1 we
conclude that G is a subgroup of Aut(TV). By [6] we see that |Aut(iV)|= 2 •
\PSL2(7)\= 24 • 3 • 7. Hence G can only be N or Aut(A^). If | G\= 24 • 3 • 7, then
|iV ?̂(S'7) |= 2 - 3 - 7 and hence G contains an element of order 6 contrary to
condition (2). It follows that G = PSL2(1).
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