ON STRONGLY RIGHT BOUNDED FINITE RINGS II

Weimin Xue

An associative ring R is called a $B T$-ring if R is strongly right bounded, but not right duo, and not strongly left bounded. We show that the order of the smallest $B T$-rings (without unity) is 16 , while we prove earlier that the order of the smallest unitary $B T$-rings is 32 .

From [3], an associative ring R is right (left) duo if every right (left) ideal is an ideal, and R is strongly right (left) bounded if every nonzero right (left) ideal contains a nonzero ideal. The interesting result [3, Proposition 6] states that a ring is right duo if and only if every factor ring is strongly right bounded. For convenience, we call R a $B T$-ring in case R is strongly right bounded, but not right duo, and not strongly left bounded.

Let p be a prime number and \mathbb{Z}_{p} the field with p elements. In view of Birkenmeier [1, Example 9] we note that the unitary ring $\left[\begin{array}{cc}\mathbb{Z}_{p} & \mathbb{Z}_{p} \\ 0 & \mathbb{Z}\end{array}\right]$ is a $B T$-ring. Birkenmeier and Tucci [3, Example 8] constructed a finite unitary $B T$-ring with 32 elements, and recently the author [5] proved that 32 is just the order of the smallest unitary $B T$ rings. In this paper, we shall consider finite $B T$-rings (not necessarily possessing a unity) and show that the smallest such rings have 16 elements. Related questions are also discussed.

If R is a ring and $r \in R$, we let $\langle r\rangle_{R}\left(R\langle r\rangle,_{R}\langle r\rangle_{R}\right)$ denote the right (left, twosided) ideal of R generated by r. For a finite ring R, let $|R|$ denote the order of R and $\operatorname{char}(R)$ denote the characteristic of R.

Using an idea of [3 , Example 8], we first give a $B T$-ring with 16 elements.
EXAMPLE 1: Let $\left\langle x^{3}\right\rangle$ be the ideal of the polynomial ring $\mathbb{Z}_{2}[x]$ generated by x^{3}. Let $S=\mathbb{Z}_{2}[x] /\left\langle x^{3}\right\rangle$ and $R=\left[\begin{array}{ll}0 & S \bar{x} \\ 0 & S \bar{x}\end{array}\right]$. Let $a=\left[\begin{array}{ll}0 & \bar{x} \\ 0 & 0\end{array}\right]$ and $b=\left[\begin{array}{cc}0 & 0 \\ 0 & \bar{x}\end{array}\right]$. The right ideal $\langle b\rangle_{R}$ is not an ideal since $a b \notin\langle b\rangle_{R}$. So R is not right duo. The minimal right ideals $\langle a b\rangle_{R},\left\langle b^{2}\right\rangle_{R}$ and $\left\langle a b+b^{2}\right\rangle_{R}$ are ideals, so R is strongly right bounded. Since

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00 +0.00 .
$(a+a b) b=a b \not \uplus_{R}\langle a+a b\rangle$, the minimal left ideal ${ }_{R}\langle a+a b\rangle$ is not an ideal. So R is not strongly left bounded. It follows that R is a $B T$-ring with 16 elements.

We need the following propositions to prove that the ring R in the above example is one of the smallest $B T$-rings.

Proposition 2. [4] A finite ring R is commutative if the order $|R|$ of R has square free factorisation.

Proposition 3. Let R be a ring with p^{2} elements. If R is strongly right bounded then it is right duo.

Proof: Each non-zero proper right ideal I of R has p elements. Hence I is a minimal right ideal that is two-sided.

Recall that there are exactly two (up to isomorphism) noncommutative rings with order \boldsymbol{p}^{2}; one is $S_{1}=\left[\begin{array}{cc}\mathbb{Z}_{p} & \mathbb{Z}_{p} \\ 0 & 0\end{array}\right]$ and the other one is $S_{2}=\left[\begin{array}{ll}\mathbb{Z}_{p} & 0 \\ \mathbb{Z}_{p} & 0\end{array}\right]$, where S_{1} is right duo but not strongly left bounded and S_{2} is left duo but not strongly right bounded. In [5] we proved that a unitary ring with \boldsymbol{p}^{4} elements is strongly right bounded if and only if it is strongly left bounded. For rings with p^{3} elements we have:

Proposition 4. Let R be a ring with p^{3} elements. If R is strongly right bounded but not right duo, then R is strongly left bounded, that is, any ring with order p^{3} is not a $B T$-ring.

Proof: Assume we have a $B T$-ring R with p^{3} elements.
Since R is strongly right bounded but not right duo, there is a principal right ideal B which is not an ideal and B contains a non-zero ideal I. Then $|B|=p^{2}$ and $|I|=p$. Now R is not strongly left bounded, so there is a minimal left ideal L that is not an ideal. We see that R / I is not strongly right bounded, so we may assume $R / I=\left[\begin{array}{ll}\mathbb{Z}_{p} & 0 \\ \mathbb{Z}_{p} & 0\end{array}\right]$, where $(L+I) / I=\left[\begin{array}{cc}0 & 0 \\ \mathbb{Z}_{p} & 0\end{array}\right]$ and $B / I=\left[\begin{array}{cc}\mathbb{Z}_{p} & 0 \\ 0 & 0\end{array}\right]$. Then

$$
p=|(L+I) / I|=|L /(L \cap I)|=|L|,
$$

where $L \cap I=0$ since L is a minimal left ideal but not an ideal. Therefore $L={ }_{R}\langle c\rangle=$ $\{j c \mid 0 \leqslant j<p\}$ where $c+I=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. And let $B=\langle b\rangle_{R}$ where $b+I=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. We have that $R=L+B$. Since R is not commutative, $\operatorname{char}(R)=p$ or \boldsymbol{p}^{2}.
(1) If char $(R)=p^{2}$ then $I={ }_{R}(p b)_{R}$. We have $c b=c+n p b$, where $n p b \neq 0$ since $L={ }_{R}\langle c\rangle$ is not a right ideal. Let $b^{2}=b+m p b$, where $0 \leqslant m<p$. Then $c b^{2}=c b+n p b^{2}$, that is, $c(b+m p b)=c b+n p(b+m p b)$. Since $c p=0$ and $p^{2} b=0$ we see that $0=n p b$, a contradiction.
(2) If $\operatorname{char}(R)=p, R$ is a \mathbb{Z}_{p}-algebra. The Dorroh extension of R via \mathbb{Z}_{p}, denoted by $\left(R ; \mathbb{Z}_{p}\right)$, is the standard one with the operations on $R \times \mathbb{Z}_{p}$ of
(i) $\left(r_{1}, a_{1}\right)+\left(r_{2}, a_{2}\right)=\left(r_{1}+r_{2}, a_{1}+a_{2}\right)$,
(ii) $\left(r_{1}, a_{1}\right)\left(r_{2}, a_{2}\right)=\left(r_{1} r_{2}+r_{1} a_{2}+a_{1} r_{2}, a_{2} a_{2}\right)$,
yielding ($R ; \mathbb{Z}_{p}$) is a unitary ring with p^{4} elements. Since R is not strongly left bounded, neither is $\left(R ; \mathbb{Z}_{p}\right)$. By [5 , Theorem], $\left(R ; \mathbb{Z}_{p}\right)$ is not strongly right bounded, either. Now R is strongly right bounded, so it follows from [2, Corollary 1.5] that there exists $(r, a) \in\left(R ; \mathbb{Z}_{p}\right)$ with $a \neq 0$ such that $r t+a t=0$ for all $t \in R$. Then $e t=t$ where $e=-a^{-1} r$, that is, e is a left identity of R. If $e \in B, c=e c \in B$, a contradiction since $L \cap B=0$. So $e=j c+b^{\prime}$ for some $b^{\prime} \in B$ and $0<j<p$, and then $b=e b=\left(j c+b^{\prime}\right) b=j c b+b^{\prime} b$. Then $j c b=b-b^{\prime} b \in B$ and so $c b \in B$. It follows that B is a left ideal of R, a contradiction.

Now we are ready to prove our main result.
Theorem 5. The order of the smallest $B T$-rings is 16 .
Proof: The $B T$-ring in Example 1 has 16 elements. Let R be a finite ring and $|R|<16$. We shall prove that R is not a $B T$-ring. Since $|R|<16$, we have the following two cases to be considered:

Case (1): $|R|=p^{n}$ for some prime number p; then we must have $n \in\{1,2,3\}$ since $|R|<16$. Then by Propositions 2, 3, and $4, R$ cannot be a $B T$-ring.

Case (2): $|R|=q^{m} p^{n}$ where q and p are two distinct primes. It follows that either $m=1$ or $n=1$, since $|R|<16$. Without loss of generality, we assume that $|R|=q p^{n}$ where $n \in\{1,2\}$. Since any finite ring R is a direct sum of rings of prime power order, we let $R=R_{1} \oplus R_{2}$ where $\left|R_{1}\right|=q$ and $\left|R_{2}\right|=p^{n}$. From Case (1) we see that R_{2} is not a $B T$-ring. Now R_{1} is commutative by Proposition 2 ; hence $R=R_{1} \oplus R_{2}$ is not a $B T$-ring.

If R is a finite unitary $B T$-ring, then, according to $[5],|R|$ must have a factor of the form p^{5}. One may ask, if R is a finite $B T$-ring without unity, does $|R|$ have a factor of the form p^{4} ? The following example gives a negative answer.

Example 6: Let $\mathbb{Z}_{2}[x] /\left\langle x^{2}\right\rangle=\{0,1, x, 1+x\}$. Let $X=\{0, x\}$ and $A=\{0,1\}$. Consider the ring $R_{1}=\left[\begin{array}{cc}0 & X \\ X & A\end{array}\right]$. The right ideal $\left[\begin{array}{cc}0 & 0 \\ X & A\end{array}\right]$ is not an ideal. So R_{1} is not right duo. The minimal right ideals $\left[\begin{array}{ll}0 & 0 \\ X & 0\end{array}\right]$ and $\left[\begin{array}{cc}0 & X \\ 0 & 0\end{array}\right]$ are ideals, so R_{1} is strongly right bounded. Similarly, R_{1} is also strongly left bounded but not left duo. One notes that $|R|=8$. Let $R_{2}=\left[\begin{array}{cc}\mathbb{Z}_{3} & \mathbb{Z}_{3} \\ 0 & 0\end{array}\right]$, which is right duo but not strongly left bounded. Now $R=R_{1} \oplus R_{2}$ is a $B T$-ring with $2^{3} \cdot 3^{2}$ elements.

In the above example, neither R_{1} nor R_{2} is a $B T$-ring but $R=R_{1} \oplus R_{2}$ is a $B T$-ring. However, if $R=R_{1} \oplus R_{2}$ is a finite unitary $B T$-ring, then at least one of R_{1} and R_{2} must be a $B T$-ring. This follows from [5, Proposition 3] which states that a finite unitary ring is right duo if and only if it is left duo.

We conclude this paper with the following questions: Does there exist a (unitary) $B T$-ring with 16 (32) elements that is not isomorphic to the $B T$-ring R of Example 1 [3, Example 8]?

References

[1] G.F. Birkenmeier, 'Split-null extensions of strongly right bounded rings', Publ. Mat. 33 (1989), 37-44.
[2] G.F. Birkenmeier and H.E. Heatherly, 'Embeddings of strongly right bounded rings and algebras', Comm. Algebra 17 (1989), 573-586.
[3] G.F. Birkenmeier and R.P. Tucci, 'Homomorphic images and the singular ideal of a strongly right bounded ring', Comm. Algebra 16 (1988), 1099-1112, 2661-2662.
[4] B.D. Erickson, 'Orders for finite noncommutative rings', Amer. Math. Monthly 73 (1966), 376-377.
[5] W. Xue, 'On strongly right bounded finite rings', Bull. Austral. Math. Soc. 44 (1991), 353-355.

Department of Mathematics
Fujian Normal University
Fuzhou
Fujian 350007
People's Republic of China

Current address:
Department of Mathematics
University of Iowa
Iowa City IA 52242
United States of America

[^0]: Received 12 November 1991
 This research is supported by the National Science Foundation of China

