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1. I n t r o d u c t i o n . This paper describes a systematic procedure which yields 
in a finite number of steps a solution to the following problem. Let G be a 
group generated by a finite set of generators gh g2, gs, . . . , gr and defined by 
a finite set of relations R\ = R2 = . . . = Rk = / , where / is the unit element 
of G and Ru R2, . . . y Rk are words in the gt and gr1. Let H be a subgroup of 
G, known to be of finite index, and generated by a finite set of words, W\y W2l 

. . . , Wf Let W be any word in G. Our problem is the following. Can we find 
a new set of generators Wi*j W2*, . . . , Ws* for H, together with a set of 
representatives hi = 1, h2l . . . , hu of the right cosets of H (i.e. G = HI + Hh2 

+ . . . + Hhu) such tha t W can be expressed in the form W = Uhpj where 
U is a word in W*, W*~l. In particular, a solution to this problem would 
yield an algorithm for deciding when a word in G lies in H and a method of 
writing this word as a word in W*, W*~l. The method will consist of an 
application of the Todd-Coxeter process of coset enumeration (1, 6) , together 
with the Schreier process as described by Marshall Hall in (2, 5) . I t is clear 
t ha t the Schreier process is algorithmic. With regard to the Todd-Coxeter 
process no proof has yet been given tha t the process stops after a finite number 
of steps. In (3) Leech gives an argument to make it appear plausible t ha t the 
process must close after finitely many steps bu t this a rgument falls short of 
a formal proof. (Such a formal proof is given in Section 3 of this paper.) A 
second paper by Leech (4) does solve the word problem described above in 
the special case where the Todd-Coxeter enumeration is carried out wi thout 
the introduction of redundant cosets, bu t fails when redundant cosets appear 
in the enumerat ion. When Leech's method does work, the word problem is 
solved in terms of the original generators Wi. In the method described here 
it is necessary first to express the W* as words in the Wt if one insists on 
solving the problem in terms of the original generators. In this case Leech's 
method is superior to ours. However, our method works in all cases, and in 
Section 5 we give an example where Leech's method fails. Also, to be noted 
is t ha t our algorithm is practical in the sense tha t it can be programmed 
readily on a computing machine and results can be obtained in reasonable 
t ime. 

2. T h e Schreier process . This process is clearly set forth in (2 and 5) by 
Marshall Hall. We merely summarize the method here to make the paper 
self-contained. 
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Suppose the decomposition of G into right cosets of H, G = HI + Hh2 

+ . . . + Hhui is such that the representatives 1, h2, . . . , hu are known. If 
the element g of G is in the coset Hhu put <j)(g) = ht. Then, by Schreier's 
theorem, the elements ars = hr gs{4>{hr gs) } ~ l are generators of H. Suppose now 
we have a procedure for computing </>(&) for any element K G . Let g G G and 
write g = ai a2. . . am where each a* = gj or a* = gf1 for some g;. Put 
k0 = 1 , &i = 0(ai), &2 = <̂ >(ai a2), . . . , *OT = <£(ai a2 . . . aw) = 0(g). Then 
g = {(&c CL\ krl){ki a2 &2

_1) . . . {km-iamkm~l))km. Now it is easily seen that 
each kidi+i ki+i~l is an ars or an ars~

1 and fem = hv for some z>. 

3. The Todd-Coxeter process. To complete the solution of our main 
problem, it suffices to have a method of computing the set 1, h2} . . . , hu 

together with a method of computing </>(g). A modification of the Todd-
Coxeter process can be mechanized completely to yield a solution to these 
parts. To be noted is the fact that although we prove that the process is finite 
whenever H is of finite index, we can give no estimate of any bound for the 
number of steps required for the process to stop. Thus we do not have a pro
cedure for deciding the finiteness of the index of H. The process is as follows. 

Let R = I be any relation. Then R = a\ a2 . . . af, where each at = g3 or 
gf"1 for some j . Now R = I is equivalent to S = I and to T = I, where 
S = at di+i . . . af ax a2 . . . a,i-i and T = at~

l az_i_1 . . . ar1 af1 af^rl. . . 
ai+i~l. We call S = I and T = I trivially equivalent to R = / . It is clear that 
if gi or gfl appears in R, then there exist 5 and T such that gt is both the 
first letter of 6* and the last letter of T. Also, if a generator gi is free, we can 
write down two relations gt gt~

l = / and gï~l gi — I. Hence, by adding to 
the set of defining relations for G a number of trivially equivalent relations 
together with a number of relations of the forms gt grl = / , gi~l gi = / , 
we can obtain a set of defining relations for G, possibly redundant, such that 
each generator of G appears as the first and as the last letter of some relation. 
We call such a set of relations, for want of a better term, an algorithmic set. 
Suppose now, we imagine that a positive integer is assigned to each right 
coset Hg of H, the integer being taken as the name of the coset. To the coset H 
is assigned the integer 1. Now if i, j , and k are cosets and g is a generator, the 
equations i.g = j and k.g =j imply i = k and j.g~l — i. The equations 
i-g ~ J a r e to be entered into a set of tables as follows. Let Ru = /(/ / = 1, 2, 
. . . , k) be an algorithmic set of relations for G, and let Wv (v = 1, 2, . . . , £) 
be a set of words in G which generate H. Suppose that Ru = axa2 . . . aq, 
where each at or its inverse is a generating element of G. With Ru we build 
a table with q + 1 columns and infinitely many rows. At the top of the table 
will appear the letters a\a2 . . . aq in succession but these will straddle the 
columns, i.e. a{ will have the first column on its left and the second on its right, 
a2 will have the second column on its left and the third column on its right, etc. 
Also in the it\\ row of the table, the first and last entries are to be the integer i. 
(See Table I.) 
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TABLE I 

di #2 #3 #4 • • • dq 

1 1 
2 2 
3 3 
4 4 

t 

With each of the words Wv a similar table is built with the exception that 
such a table is to consist of exactly one row, its beginning and end entries 
being 1. Suppose that the Ru and Wv are ordered and the tables are placed 
side by side, the W-tables coming after the R-tables. The unfilled places in 
the sets of tables are then ordered from left to right and each place in the ith 
row of any table precedes each place in the j th row of any other table if i < j . 
The object is to enter integers into the tables in such a way that if r and s 
fill consecutive places in a row of one of the tables and the letter g straddles 
the columns in which r and s appear, then r.g = s. The construction proceeds 
as follows. 

If any of the words Wv are of length 1, say Wv = gu then the table for Wv 

will be !giv Now in any of the tables if 1 is to the left or right of gt or gr1, 
a 1 is to be placed on the other side of this letter in the same row, in accordance 
with the equations l.gt = 1 and l.gf1 = 1. When all possible l's are entered, 
the integer 2 is placed in the first empty space. This will yield an equation 
of the type I.a = 2, where a = gj or gf1. Fill all possible places with the 
digit 2 consistent with the equations l.a = 2 and 2.arl = 1. Now suppose 
this has been continued with the integers 1, 2 , . . . , i — 1. The integer i is then 
placed in the first available place. This induces an equation i.b =j and 
j . b~l = i. In placing the integer i in the tables consistent with these equations, 
other relations of the type i.c = k and k.c~l = i may be induced. One then 
adds at all possible places the integers i and k and if other equations are 
induced by these entries, the appropriate integers are added at all appropriate 
places until no further equations are induced. One then normally proceeds to 
the integer i + 1- There are two possible situations in which one does not 
proceed to the integer i + 1. The first is closure. Closure occurs if after all 
possible additions of the integer i and smaller integers the first i rows of 
every table are completely filled. In this case we stop the process entirely and 
consider the tables for each Ru to have exactly i rows, all of whose entries 
are from the integers 1, 2, 3, . . . , i. The second case in which one does not 
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proceed to i + 1 is redundancy. Redundancy occurs as follows: In entering 
the integer i into the table and then entering smaller integers because of 
induced equations, the entries at different points in the table may imply 
equations of the type k.a = n, m.a = n with k ^ m. This means, of course, 
that the integers m and k represent the same coset. Suppose that m > k. 
We then replace every appearance of m by k. Then we delete from each table 
the row whose first entry is m. Next, every integer n which is greater than m 
is replaced by n — 1 at all of its appearances. If no new equations are induced 
by the altered entries, one fills in further entries in accordance with the new 
equations. If a new redundancy appears, we alter the tables accordingly, and 
if closure results, we stop. If closure does not result and there are no further 
redundancies or entries possible because of induced equations, we continue 
as follows. Go to the first available place in the tables and enter into it the 
smallest integer which does not appear in any previous place and continue 
as before. 

We now prove that if H is of finite index, closure must be reached after a 
finite number of steps. We first prove a lemma. 

LEMMA 1. After a finite number of steps the first r rows of all the tables are 
stabilized, i.e. none of the entries are further altered because of redundancy. 

Proof. Suppose that at a given stage 5 is the sum of the distinct integers 
which appear in the first r rows of the tables. If a redundancy alters the first 
r rows, its effect is to replace all occurrences of a certain integer by a smaller 
integer. Hence 5 is decreased. But 5 > \r(r + 1). Then, after a finite number 
of redundancies, either 5 is reduced to \r{r + 1) in which case closure occurs, 
or else redundancies no longer affect the first r rows. 

Now suppose that the process continues indefinitely without closure. We 
form a permutation representation of G on the set of all positive integers as 
follows. Let gz be a generator and j be any positive integer. Let Rr be one of 
the relations which start with g{ and Ru one of the relations which end with gt. 
After the jth row has become stable, let k be the second entry of the jth row 
in the table for Rv and let m be the second last entry in the j th row of the table 
for Ru. Then j.gt = k and m.gi = j . Now with gt associate the permutation 
Pgi1 where P gi\ j —> k and m —» j . Since j is an arbitrary positive integer and 
appears both as an image and a pre-image, Pgi is, as claimed above, a permuta
tion of all the positive integers. Let PG be the group generated by all the P()l. 
Then the mapping gt —> PiH is a homomorphism of G onto PG. We now show 
that PG is a transitive group. In fact, we show that every integer is in the 
orbit of. 1. If this were not so, let M be an orbit (set of transitivity) and let 
u be its smallest member. If u 9^ 1, then its first appearance in the tables is 
to the right of an integer v < u. This means that there is a gt (or grl) in G 
such that Pgi (or Pg~

l): v —> u. Hence v is in M, a contradiction. Now from 
the tables corresponding to Wv we see that for every generator of H the corres
ponding element of PG fixes 1. It is clear that no element outside H fixes 1. 
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We can thus interpret PG as the representation of G by the permutat ions 
induced in the cosets of H by right multiplication by elements of G. But since 
PG is t ransit ive on infinitely many elements, the order of PG is infinite, and 
hence the index of H is infinite, a contradiction. 

Now tha t we have proved tha t closure occurs after finitely many steps, the 
group PG is of finite order. Coset representatives for the different cosets are 
obtained as follows. Since PG is transit ive, then corresponding to any integer i 
there is an element x 6 PG such tha t x: 1 —> i. As PG is finite, such an x is 
easily determined. In the mapping G —> PG let xt be any element of G such 
t h a t Xf—^x. Take xf to be the coset representative of the coset i. Finally, 
let g be any element of G. Then g = bi b2 . . . bm, where each bt = gj or g~l. 
Let P 6 l Pb2 . . . Pbrn: 1 —> k; then </>(g) = x!c. We have now completed a solution 
to our original problem. 

4. R e m a r k s o n t h e s o l u t i o n . In this section we remark on the role played 
by the redundant relations and give a heuristic discussion of why one should 
not expect closure to occur always if one does not s tar t with an algorithmic 
set of relations. In sett ing up our tables, in wha t follows, we shall not adhere 
strictly to the prescription of entering each new integer a t the first available 
space. We shall follow the practice of Todd and Coxeter of introducing each 
new integer a t a convenient place to induce as many equations as possible 
and to avoid redundancy if it can be avoided. Where we get closure, anyway, 
wi thout the introduction of the redundant relations, we shall not introduce 
them. 

First , we show tha t the introduction of a redundant (non-trivial) relation 
can change the formation of the tables in an essential way. Consider the 
following example. G is generated by {A,X\ subject to the relations X 4 

= X2AXA~2 = / . Let H be the subgroup generated by X. The tables form 
as follows (we omit obviously unnecessary par t s ) : 

X 

1 1 

X X X X X X A 1 X A' -1 A - i 

1 1 1 1 1 1 1 1 2 3 2 1 
2 3 4 5 2 2 3 4 6 7 3 2 
6 7 8 9 6 3 4 5 7 3 

4 5 2 3 4 6 4 
5 2 3 7 8 5 
6 7 8 9 6 4 6 
7 8 9_ _5 2 1 7 
8 9 6 4 5 9 8 
9 6 7 1 1 7_ 9 

We get redundance from the underlined par ts of the tables. Adjusting for this 
redundance produces closure and we ult imately get the representation 
X —> (1)(2345) and A —> (1235) (4). I t can easily be proved tha t any way of 
filling the tables yields a t least three redundant cosets, so tha t redundancy is 

https://doi.org/10.4153/CJM-1964-052-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-052-3


514 N. S. MENDELSOHN 

essential. Now consider the following implication of X2AXA~2 = Xi = / . 
We have X2AX = A2 or AX = X2A\ from which 

AX AX = X2A2AX = X2A*X = X2AX2AX2 = A2XAX2. 

The relation .4X.4X = A2XAX2 implies JO. = ^ Z ^ Z or AXAXA~lX~l 

= / . If this is added to the set of relations used in the formation of the tables, 
redundancy is avoided. 

Our second example will illustrate the role played by the addition of trivially 
redundant relations. Let G be the group generated by A, By C, with a single 
definining relation ABC = I. If we do not add redundant relations, the table 
appears as follows: 

ABC 

1 2 3 1 
2 4 5 2 
3 6 7 3 
4 . . 4 

The table is, of course, infinite. Note that this table does not yield a permuta
tion representation of G. In fact, the mapping induced by A maps all the 
integers onto the even integers; the mapping induced by B maps the even 
integers onto the odd integers, while that induced by C maps the odd integers 
onto all the integers. Note, particularly, that no matter how one tries to fill 
in the tables, it is impossible for the same integer to appear in the columns both 
to the left and to the right of B. If, on the other hand, we use the algorithmic 
set ABC = BCA = CAB = I, the tables do yield a permutation representa
tion of G. 

It is to be noted here that the necessity for adding the redundant relations 
is due to our insistence that the first and last entries of a row be filled in first. 
Todd and Coxeter did not use this condition. We added it to make our proofs 
technically simpler. It also makes machine programming easier. 

5. Two examples. We close with two examples to illustrate the effective
ness of the techniques used. In this connection the technique has actually been 
used for subgroups of index as high as 600. 

Let G be the group generated by A and X with the sole definining relation 
X2AX = A2. Let H be the subgroup generated by 

Xt Y = AX*A~\ Z = A-WA. 

Since this example is essentially that given in Section 4, coset enumeration 
yields that H is of index 5 and also the following permutation representation : 
X - > (1)(2345),,4 -> (1235)(4). 
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From these we find as a possible set of coset representatives the following 
table: 

Coset Representative 

1 I 
2 A 
3 AX 
4 AX2 

5 A Xs 

It will actually be convenient to equate the integers to the coset repre
sentative and write 1 = 7, 2 = A, 3 = AX, etc. Corresponding to these 
representatives, we obtain in the table below the Schreier generators for H 
(omitting the occurrences of I) together with their expressions in terms of 
X, F, Z. 

SCHREIER TABLE 

Schreier representative X, Y, Z equivalent 

X X 
A2X~lA~l X2 

AX* A-1 Y 
AXAX-zA-1 ZXY'1 

AX3A zxz 
AX2AX~2A~^ X2ZXY~l 

We note, in passing, that the Schreier rep^êsen:tatives are redundant and 
that their expression in terms of X, Y, Z is certainly not unique, since AX7,A 
= ZXZ = YZX, etc. 

We now show how, in a purely mechanical way, to express any word in G 
in terms of X, Y, Z and a coset representative. A simple example will suffice. 
Consider the word AX AX. We first write a line of an enumeration table 
using our permutation representation: 

A X A X 
1 2 3 5 2 

We then use this to write an equation 

AX AX = (1A2-1)(2X3-1)(3A5~1)(5X2-1)2, 

where now the integers are interpreted as the coset representatives. Each 
bracketed term is a Schreier generator (or its inverse). Consulting the Schreier 
table, we obtain AX AX = (XZ)A. 

Since the expression of a word in H in terms of any set of generators is not 
uniquely determined, one might inquire whether a word in H reduces to the 
identity. In general, this is a futile problem since it is known that such a 
general word problem is unsolvable. There is, however, a heuristic technique 
for obtaining relations in H. One simply starts with any word W\ in G. In 
our example, one would then use the relation X2AX = A2 to obtain a word 
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Wi equivalent to W\. One then applies the above process to W\ and W2. In 
this way we have obtained, for example, the relation ZXZ = YZX. Incident
ally, this relation implies Y = ZXZX~1Z'1, so that F is a redundant generator. 

As a second example we shall show how to represent the free group on n 
generators as a permutation group on the set of all positive integers. Here, 
of course, it is mandatory to use redundant relations. Let gi, g2, . . . , gn be 
the generators. Apply the enumeration to gigf1 = I, gCl g% = I (i = 1, 2, 
. . . , n). In this case, the enumeration proceeds smoothly and no redundant 
cosets appear. In particular, for the cyclic free group (n = l, g the generator) 
one obtains the following representation: 

g: 2i + 1 -» 2i - 1 for i = 1, 2, 3, . . . 
g: 2i-^2i + 2 for i = 1, 2, 3, . . . 
g: l - > 2 . 

It is instructive to work out a similar representation for two generators. 
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