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Abstract

Let f and g be two quasiregular maps in R
d that are of transcendental type and also satisfy

f ◦ g = g ◦ f . We show that if the fast escaping sets of those functions are contained in their
respective Julia sets then those two functions must have the same Julia set. We also obtain the
same conclusion about commuting quasimeromorphic functions with infinite backward orbit
of infinity. Furthermore we show that permutable quasiregular functions of the form f and
g = φ ◦ f , where φ is a quasiconformal map, have the same Julia sets and that polynomial
type quasiregular maps cannot commute with transcendental type ones unless their degree
is less than or equal to their dilatation.

2020 Mathematics Subject Classification: 37F10 (Primary); 30C65, 30D05 (Secondary)

1. Introduction and Results

The general theory of iteration of holomorphic maps starts from the seminal work of Fatou
[16] and Julia [21]. Both of them defined a partition of the complex plane in two sets. Those
two sets today bear their names. They are the Fatou set, F , and the Julia set, J . In order
to define them let us consider a holomorphic function f :C→C and denote by { f n} the
family of iterates of f , namely the family

{ f ◦ f · · · ◦ f︸ ︷︷ ︸
n times

: n ∈N}.

Then the Fatou set, F , is defined as the set of points in a neighbourhood of which this family
is normal and the Julia set, J , is defined as its complement. Fatou and Julia initially devel-
oped their theory for rational functions and later on Fatou [18] also considered iteration of
transcendental entire functions. We refer to [14, 27] for an introduction to rational iteration
theory and to the survey [5] for the case of entire and meromorphic functions.
Two holomorphic functions f and g are called permutable or commuting if they satisfy the
equation

f ◦ g = g ◦ f.

A very old problem is to characterise all classes of functions that satisfy this equation. It
turns out that commuting functions have a very similar dynamic behaviour. Indeed, one can
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prove that if f and g are permutable rational functions then they have the same Julia set.
That was already shown by both Fatou [17] and Julia [22] who used this fact to find all
commuting rational functions that do not share an iterate (i.e. f m �= gn for all n, m) and do
not have as their common Julia set the entire complex plane. Much later Eremenko in [15]
developed their method further and managed to classify all commuting rational functions
that do not share an iterate. It is also worth mentioning here that Ritt in [37, 38] solved the
same problem by using completely different methods.

For transcendental entire functions the problem is much harder and is still open. It is not
even known if permutable transcendental entire functions have the same Julia set or not.
However Bergweiler and Hinkkanen [9] in 1999, by introducing the so called fast escaping
set A ( f ), managed to prove the following.

THEOREM 1·1 ([9, Theorem 2]). Let f and g be permutable, transcendental entire
functions such that A( f ) ⊂J ( f ) and A(g) ⊂J (g) then J ( f )=J (g).

Recently, Benini, Rippon and Stallard in [4] managed to improve the above theorem and
include some cases where A( f ) �⊂J ( f ) and A(g) �⊂J (g). In particular they managed to
show that two commuting functions will have the same Julia set if all their wandering Fatou
components are multiply connected (such components are in the fast escaping set but not
the Julia set). However the general case still remains open.

In recent years there has been an increasing interest in developing an analogous theory
to that of Fatou and Julia for quasiregular maps in R

d . Quasiregular maps are a higher
dimensional generalisation of the analytic maps in the complex plane. Intuitively quasiregu-
lar maps have locally a bounded amount of distortion. This means that while analytic maps
in the complex plane map infinitesimally small circles to circles, quasiregular maps send
infinitesimally small spheres to ellipsoids of bounded eccentricity (see Section 2 for a precise
definition). In [13] Bergweiler and Nicks defined a Julia set for quasiregular maps of tran-
scendental type (see Section 2 for definition) and proved that it has many of the properties
of the classical Julia set.

There are examples of permutable functions in the quasiregular setting. So the natural
thing to ask is: Do permutable quasiregular maps have a similar dynamic behavior? Can we
generalise Theorem 1·1 to quasiregular maps?

In this paper we will adopt the definition of the Julia set from [13] and by using its
properties we will prove the following generalisation of Theorem 1·1.

THEOREM 1·2. Let f :Rd →R
d and g :Rd →R

d be permutable, quasiregular maps of
transcendental type such that A( f ) ⊂J ( f ) and A(g) ⊂J (g), then J ( f ) =J (g).

The more general version of this theorem would be the analogous result to that of Benini–
Rippon–Stallard. Unfortunately their proof relies heavily on the properties of the hyperbolic
metric under holomorphic maps. Such an approach does not work in higher dimensions.

Another interesting question to ask is whether permutable quasiregular maps of polyno-
mial type must have the same Julia set. However, this problem seems harder and is still open.
On the other hand if f, g are permutable, uniformly quasiregular maps of polynomial type
(see Section 2 for the definition) then J ( f ) =J (g) and the proof is almost the same as the
one for rational functions in the complex plane which can be found in [3]. Moreover, we
can generalise a result of Baker [3, Lemma 4·5] which deals with a special case and can be
applied to quasiregular maps of polynomial or transcendental type.
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THEOREM 1·3. Let f :Rd →R
d and g :Rd →R

d be permutable quasiregular maps.
Assume that cap J ( f ) > 0, cap J (g) > 0 and g = φ ◦ f , where φ :Rd →R

d is a quasi-
conformal map. Then J ( f ) =J (g).

Note here that in the above theorem we assume that the capacity of the Julia sets of our
functions is positive. It is conjectured that this always holds when the Julia set is infinite and
thus we do not actually need this assumption. However, we can prove that this condition can
be dropped if g has a very specific form. Namely the following holds.

THEOREM 1·4. Let f :Rd →R
d and g :Rd →R

d be permutable quasiregular maps of
transcendental type. Assume that g = a f + c, where a is a positive real number and c is a
constant in R

d . Then J ( f ) =J (g).

We can also consider the case where f, g are quasimeromorphic (see Section 2 for the
definition). Recently in [40] Warren defined the Julia set for quasimeromorphic maps of
transcendental type. So it is interesting to ask whether something similar with Theorem 1·2
holds in this case. For quasimeromorphic maps we say that they are permutable if f ◦ g =
g ◦ f holds for points in R

d where both sides are defined. In order to state our theorem in this
setting let us introduce the concept of the backward orbit of a point. Let x ∈Rd =R

d ∪ {∞}
then we define the backward orbit as

O−
f (x) =

∞⋃
n=0

f −n(x).

When studying the dynamics of meromorphic functions we usually divide them in two
classes. The first one, and the most general one, is

M := { f : f is transcendental meromorphic and card(O−
f (∞)) = ∞},

while the other one is

P := { f : f is transcendental meromorphic and card(O−
f (∞)) < ∞}.

A typical example of a map in class P is ez/z. The iteration theory and the methods of proof
in those two classes are often quite different with class P being often closer to the class of
transcendental entire functions instead. The situation is similar for quasimeromorphic maps.
For functions in the analogous class M in higher dimensions we prove the following.

THEOREM 1·5. Let f :Rd →Rd and g :Rd →Rd be permutable, quasimeromorphic
maps of transcendental type with card(O−

f (∞)) = ∞ = card(O−
g (∞)), then J ( f ) =J (g).

However, as is often the case, the method used to prove this theorem cannot be used in
class P . Let us also note here that it is highly non trivial to construct such maps in higher
dimensions and until recently (see [41]) this had not been done.

It is also worth mentioning here that Baker in [2, theorem 1, p. 244] proved that given an
entire function f , which is either transcendental or polynomial of degree at least two, then
there are only countably many entire functions g that are permutable with f . We will give
examples which show that this theorem cannot hold in the quasiregular case. To be more
specific, by modifying an example given in [9], we are able to prove the following result.

https://doi.org/10.1017/S0305004121000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000438


108 ATHANASIOS TSANTARIS

THEOREM 1·6. There exists an entire transcendental map f that is permutable with
uncountably many quasiregular maps g :C→C.

A natural thing to ask here is the following question: Is it possible for a polyno-
mial to commute with an entire transcendental function? The answer to that was given
independently by Baker in [1] and Iyer in [20].

THEOREM 1·7 (Baker [1] and Iyer [20]). Let f, g :C→C be permutable functions.
Assume that g is a polynomial of degree n > 1. Then f is also a polynomial.

This means that there is no polynomial commuting with a transcendental entire function
unless the polynomial has degree one. This result has been generalized to meromorphic
functions by Osborne and Sixsmith in [30].

In the quasiregular setting we are able to prove the following theorem which can be seen
as the analogy to that of Baker and Iyer in higher dimensions.

THEOREM 1·8. Let f :Rd →R
d and g :Rd →R

d be permutable quasiregular maps. If
g is of polynomial type and deg g > K (g) then f is also of polynomial type.

Thus a polynomial type quasiregular map can commute with a transcendental type map
only if its degree is less than or equal to its dilatation.

Remark 1·9. The condition deg g > K (g) for g a polynomial type quasiregular map appears
naturally in quasiregular dynamics, see for example [7, 8, 19]. It plays the same role as the
condition deg g ≥ 2 in holomorphic dynamics, when g is a polynomial.

The structure of the rest of this paper is as follows. Section 2 contains background material
on quasiregular maps and capacity. In Section 3 we prove Theorems 1·2 and 1·3. Section 4
contains the proof of Theorem 1·4 while in Section 5 we prove Theorem 1·6. Lastly, in
Section 6 we prove Theorems 1·5, 1·8 and in Section 7 we provide some examples that help
illustrate our theorems.

2. Background on quasiregular maps and capacity

Here we will give a brief overview of the properties of quasiregular maps that we will
need. For a more detailed treatment of quasiregular maps we refer to [34, 39]. For a survey
in the iteration of such maps we refer to [7].

If d ≥ 2 and G ⊂R
d is a domain, then for 1 ≤ p < ∞ the Sobolev space W 1

p,loc(G)

consists of functions f = ( f1, f2, . . . , fd) : G →R
d for which the first order weak par-

tial derivatives ∂i f j exist and are locally in L p. A continuous map f ∈ W 1
d,loc(G) is called

quasiregular if there exists a constant KO ≥ 1 such that

|D f (x)|d ≤ KO J f (x) a.e., (2·1)

where D f (x) denotes the total derivative,

|D f (x)| = sup
|h|=1

|D f (x)(h)|
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denotes the operator norm of the derivative, and J f (x) denotes the Jacobian determinant.
Also let

�(D f (x)) = inf
|h|=1

|D f (x)(h)|.

The condition that (2·1) is satisfied for some KO ≥ 1 implies that

KI �(D f (x))d ≥ J f (x), a.e.,

for some KI ≥ 1. The smallest constants KO and KI for which those two conditions hold are
called outer dilatation and inner dilatation respectively. We call the maximum of those two
numbers the dilatation of f and we denote it by K ( f ). We say that f is K -quasiregular if
K ( f ) ≤ K , for some K ≥ 1. We also say that f is uniformly K -quasiregular if all the iterates
of f are K -quasiregular. Quasiregular maps have many of the properties that holomorphic
maps have. In particular, we will often use the fact that non-constant quasiregular maps are
open and discrete.

An important tool that we will need in order to define the Julia set of a quasiregular map
is the capacity of a condenser. A condenser in R

d is a pair E = (A, C), where A is an open
set in R

d and C is a compact subset of A. The conformal capacity or just capacity of the
condenser E is defined as

cap E = inf
u

∫
A
|∇u|ddm,

where the infimum is taken over all non-negative functions u ∈ C∞
0 (A) which satisfy u|C ≥ 1

and m is the d-dimensional Lebesgue measure.
If cap(A, C) = 0 for some bounded open set A containing C , then it is also true that

cap(A′, C) = 0 for every other bounded set A′ containing C ;[34, Lemma III·2·2]. In this
case we say that C has zero capacity and we write cap C = 0; otherwise we say that C
has positive capacity and we write cap C > 0. Also for an arbitrary set C ⊂R

d , we write
cap C = 0 when cap F = 0 for every compact subset F of C . If the capacity of a set is zero
then this set has Hausdorff dimension zero [34, Theorem VII·1·15]. Thus a zero capacity set
is small in this sense. It is also quite easy to see that for any two sets S, B with S ⊂ B if
cap B = 0 then cap S = 0.

A useful property of quasiregular maps is that they do not increase too much the capacity
of condensers, namely the following theorem holds, which is known as the KI inequality,
[34, Theorem II·10·10].

THEOREM 2·1. Let f : G →R
d be a nonconstant quasiregular map and E = (A, C) a

condenser in G, then

cap f (E) ≤ KI ( f ) cap E .

A quasiregular map f :Rd →R
d is said to be of transcendental type if limx→∞ f (x) does

not exist and it is said to be of polynomial type if this limit is ∞. Furthermore, if G ⊂Rd ,
a non constant and continuous map f : G →Rd is called quasimeromorphic if f −1(∞)

is discrete and f is quasiregular in G \ ( f −1(∞) ∪ {∞}). Rickman [32, 33] has extended
Picard’s great theorem to quasiregular maps and shown that there exists a constant q =
q(d, K ) such that if f :Rd →R

d is a K -quasiregular map of transcendental type then there
are at most q(d, K ) points that are taken finitely often by f . This means that if we define
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the exceptional set E( f ) for a K -quasiregular map as the points with finite backward orbit,
then |E( f )| ≤ q(d, K ).

In [8] Bergweiler developed a Fatou–Julia theory for quasiregular self-maps of Rd , which
include polynomial type quasiregular maps, and can be thought of as analogs of rational
maps, while in [13] Bergweiler and Nicks did the same but for transcendental type quasireg-
ular maps. Following those two papers we define the Julia set of f :Rd →R

d , denoted
J ( f ), to be the set of all those x ∈R

d such that

cap

(
R

d \
∞⋃

k=1

f k(U )

)
= 0

for every neighbourhood U of x . Following [29] we call the complement of J ( f ) the
quasi-Fatou set, and we denote it by QF( f ) . We also want to define the Julia set for a
quasimeromorphic map of transcendental type with at least one pole, f :Rd →Rd . This
was done by Warren in [40] where he defined

J ( f ) =
{

x ∈Rd \ O−
f (∞) : card

(
Rd \ O+

f (Ux)
)

< ∞
}

∪ O−
f (∞),

where Ux is any neighbourhood of x with Ux ⊂Rd \ O−
f (∞) and O+

f (Ux) =⋃∞
n=0 f n(Ux).

In particular if f has an infinite backward orbit of infinity then J ( f ) = O−
f (∞).

Note that our definition of the Julia set evokes the blow-up property that the Julia set has
in complex dynamics. Also note that we do not assume anything about the normality of the
family of iterates of f in the quasi-Fatou set. For the motivation behind those definitions we
refer to [7, 8]. Also let us mention that the definition of the Julia set using non-normality
generalises well for uniformly quasiregular maps and the two definitions are equivalent in
this case. This is also true in the case of holomorphic maps in the complex plane.

Finally, let us discuss the fast escaping set. The fast escaping set, as we have already men-
tioned, was first defined by Bergweiler and Hinkkanen in [9]. Intuitively the fast escaping
set is the set of points that escape to infinity as fast as possible. In [9] it is also proved that

J ( f ) = ∂A( f ).

Rippon and Stallard in their papers [35, 36] gave two other equivalent definitions for the
fast escaping set which are useful. They showed that

A( f ) = {z ∈C : there exists L ∈N such that f n+L(z) �∈ T ( f n(D)), for all n ∈N},
(2·2)

where D is any open disc meeting J ( f ) and T (X) is the topological hull of the set X ⊂C,
in other words the union of X with its bounded complementary components.
The fast escaping set of a quasiregular map, which was first described by Bergweiler, Drasin
and Fletcher in [10], is defined in a very similar way to the complex case, namely

A( f ) := {x ∈R
d : there exists L ∈N such that f n+L(x) �∈ T ( f n(B(0, R))), for all n ∈N},

(2·3)
where R > 0 is chosen so large that

T ( f n(B(0, R))) ⊃ B(0, rn)
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and rn > 0 is a sequence that tends to ∞. Such an R is guaranteed to exist by [11, Lemma
5·1].

Also Bergweiler, Drasin and Fletcher gave two other equivalent definitions, in the same
spirit as those for the complex case, which we omit here. Furthermore they proved that:

THEOREM 2·2. Let f :Rd →R
d be a quasiregular map of transcendental type. Then

A( f ) is non-empty and every connected component of A( f ) is unbounded.

For more details and the proof of this theorem we refer to [10]. Unfortunately, in the
quasiregular case it is still not known if J ( f ) = ∂A( f ). But let us mention that the above
equality is known to be true if f does not grow too slowly and we always know that J ( f ) ⊂
∂A( f ). We refer to [12] for more details on this.

3. Proof of Theorems 1·2 and 1·3
In order to prove Theorem 1·2 we will need several lemmas.

LEMMA 3·1. Let f :Rd →R
d and g :Rd →R

d be permutable quasiregular maps. Then

g(J ( f )) ⊂J ( f ) and f (J (g)) ⊂J (g).

Proof. Take a x0 ∈J ( f ) and take U be a neighbourhood of g(x0). Name V the component
of g−1(U ) which contains x0. We know, by the definition of the Julia set, that

cap

(
R

d \
∞⋃

n=1

f n(V )

)
= 0. (3·1)

But since f, g are permutable we have that f n(g(x)) = g( f n(x)), for all x ∈ V, which
implies that f n(x) ∈ g−1( f n(U )), for all x ∈ V . Hence,

R
d \

∞⋃
n=1

f n(V ) ⊃R
d \

∞⋃
n=1

g−1( f n(U )).

Thus, by (3·1) and the fact that subsets of zero capacity sets have zero capacity we have that

cap

(
R

d \
∞⋃

n=1

g−1( f n(U ))

)
= 0.

But since
⋃∞

n=1 g−1( f n(U )) = g−1
(⋃∞

n=1 f n(U )
)

and g−1(Rd) =R
d this implies that

cap
(
g−1

(
R

d \⋃∞
n=1 f n(U )

))= 0. Hence, by the KI -inequality (Theorem 2·1) we will have
that

cap

(
g

(
g−1

(
R

d \
∞⋃

n=1

f n(U )

)))
= 0.

Since g is a quasiregular self-map of Rd we know by Rickman’s generalisation of Picard’s
theorem that it omits at most a finite number of points. Thus

g

(
g−1

(
R

d \
∞⋃

n=1

f n(U )

))
=R

d \
( ∞⋃

n=1

f n(U ) ∪ {a1, a2, . . . , am}
)

,
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where a1, a2, . . . , am are the omitted values of g. Hence, by using the well-known
fact that the union of capacity zero sets is also of zero capacity we will have that
cap

(
R

d \⋃∞
n=1 f n(U )

)= 0. Since U was an arbitrary neighbourhood of g(x), this implies
that g(x) ∈J ( f ).

For the other half of the theorem, the proof is completely analogous to this one with f
and g changing roles.

LEMMA 3·2. Let f :Rd →R
d and g :Rd →R

d be permutable quasiregular maps of
transcendental type. Then

g−1 (A( f )) ⊂A( f ) and g−1
(
A( f )

)
⊂A( f ).

Also

f −1 (A(g)) ⊂A(g) and f −1
(
A(g)

)
⊂A(g).

Proof. Take R1 > 0 so big that

T ( f n(B(0, R1))) ⊃ B(0, rn)

for some sequence rn with rn → ∞. Also choose an R > 0 big enough so that g(B(0, R1)) ⊂
B(0, R) while at the same time R > R1, which implies that

T ( f n(B(0, R))) ⊃ B(0, rn).

Pick now a x0 ∈R
d such that g(x0) ∈A( f ). We will then show that x0 ∈A( f ). We know

from (2·3), in other words the definition of the fast escaping set, that there exists an L ∈N

such that

f n+L(g(x0)) �∈ T ( f n(B(0, R))), for all n ∈N.

Since f n+L(g(x0)) = g( f n+L(x0)) we will have that

g( f n+L(x0)) �∈ T ( f n(B(0, R))), for all n ∈N.

This together with the fact that g(B(0, R1)) ⊂ B(0, R) implies that

g( f n+L(x0)) �∈ T ( f n(g(B(0, R1)))

and thus by permutability

g( f n+L(x0)) �∈ T (g( f n(B(0, R1))). (3·2)

Assume now that there is a n ∈N such that f n+L(x0) ∈ T ( f n(B(0, R1))) then

g( f n+L(x0)) ∈ g(T ( f n(B(0, R1)))).

But its true that [10, Proposition 2·4] g(T ( f n(B(0, R1)))) ⊂ T (g( f n(B(0, R1)))). Thus we
would have that g( f n+L(x0)) ∈ T (g( f n(B(0, R1)))) which contradicts (3·2). Hence its true
that

f n+L(x0) �∈ T ( f n(B(0, R1))), for all n ∈N
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and thus x0 ∈A( f ). Hence g−1(A( f )) ⊂A( f ). Since g is an open map it easily follows
that

g−1(A( f )) ⊂ g−1(A( f )) ⊂A( f ).

Lastly, for the other half of the theorem we just change the roles of f and g.

The next lemma tells us that the Julia set of a quasiregular map is the smallest completely
invariant closed set under f , which is a well-known property of the Julia set in the complex
plane.

LEMMA 3·3. Let f :Rd →R
d be a quasiregular map. If K is a closed set with f (K ) ⊂ K

and f −1(K ) ⊂ K and cap K > 0 then J ( f ) ⊂ K .

Proof. Take any neighbourhood, U , of a point x ∈J ( f ), then by the definition of the Julia
set

cap

(
R

d \
∞⋃

n=1

f n(U )

)
= 0.

Hence, K ∩⋃∞
n=1 f n(U ) �= ∅. This means that there is a x0 ∈ U with f n(x0) ∈ K for some

n ∈N, and because K is completely invariant under f we will have that x0 ∈ K . Hence,
every neighbourhood, U of a point in J ( f ) contains a point of K and because K is a closed
set, this implies that J ( f ) ⊂ K .

Proof of Theorem 1·2. First of all, since A( f ) ⊂J ( f ) and since J ( f ) is closed we get that
A( f ) ⊂J ( f ). As we have already mentioned, in the end of Section 2, by [12] we always
know that

J ( f ) ⊂ ∂A( f ) ⊂A( f ).

Hence we will have that

J ( f ) =A( f ).

Hence by Lemma 3·1 we will have that g(J ( f )) ⊂J ( f ) while from Lemma 3·2 we
will have that g−1(J ( f )) ⊂J ( f ). This means that J ( f ) is completely invariant under
g. Also from Theorem 2·2 we know that A( f ) contains continua, since its components
are unbounded, and thus it cannot have zero capacity because zero capacity sets are totally
disconnected (see [34, Corollary III·2·5]) namely

cap A( f ) = cap J ( f ) > 0.

Hence, we can now apply Lemma 3·3 and conclude that J (g) ⊂J ( f ).
By a completely analogous argument we can also show that J ( f ) ⊂J (g) and thus

J (g) =J ( f ).

Proof of Theorem 1·3. We will prove that J ( f ) is completely invariant under g. We
already know from Lemma 3·1 that g(J ( f )) ⊂J ( f ). Hence, it is enough to prove that
g−1(J ( f )) ⊂J ( f ).
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Take a point x0 ∈R
d such that g(x0) = φ( f (x0)) ∈J ( f ). Take V be any neighbourhood of

x0, then U = φ( f (V )) = {φ( f (x)) : x ∈ V } is a neighbourhood of φ( f (x0)). Hence,

cap

(
R

d \
∞⋃

k=0

f k(U )

)
= 0. (3·3)

But, it is true that f
(
φ−1(U )

)= φ−1 ( f (U )). Indeed, using the fact that f commutes with
φ ◦ f ,

f
(
φ−1(U )

)= f
(
φ−1(φ( f (V )

)= f ( f (V ))

= φ−1(φ( f ( f (V ))) = φ−1( f (φ( f (V )))

= φ−1( f (U )).

This easily implies that

f n
(
φ−1(U )

)= φ−1( f n(U )), for all n ∈N. (3·4)

By using (3·3) and (3·4) now, we conclude that

cap

(
R

d \
∞⋃

k=0

φ
(

f k
(
φ−1(U )

)))= cap

(
R

d \
∞⋃

k=0

f k(U )

)
= 0.

But it is true that

R
d \

∞⋃
k=0

φ
(

f k
(
φ−1(U )

))= φ

(
R

d \
∞⋃

k=0

f k
(
φ−1(U )

))
.

Hence, by using the KI -inequality (Theorem 2·1), we conclude that

cap

(
R

d \
∞⋃

k=0

f k
(
φ−1(U )

))= 0.

In other words,

cap

(
R

d \
∞⋃

k=0

f k( f (V ))

)
= 0,

which implies that

cap

(
R

d \
∞⋃

k=0

f k(V )

)
= 0.

Thus x0 ∈J ( f ). By a similar argument we can also prove that J (g) is invariant under f .
Now, since we know that cap J ( f ) > 0 and cap J (g) > 0, we can apply Lemma 3·3 twice
and conclude that J ( f ) =J (g).

4. Proof of Theorem 1·4
In our proof of Theorem 1·4 we will need the notion of a function having the pits effect.

This concept was first introduced by Littlewood and Offord in [23] and a variant of it was
used by Bergweiler and Nicks in [13] in order to develop an iteration theory for quasiregular
maps of transcendental type. In what follows with | · | we denote the usual euclidean norm.
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Definition. A quasiregular map f :Rd →R
d of transcendental type is said to have the

pits effect if there exists N ∈N such that, for all α > 1, for all λ > 1 and all ε > 0 there exists
R0 such that if R > R0, then

{x ∈R
d : R ≤ |x | ≤ λR, | f (x)| ≤ Rα}

can be covered by N balls of radius εR.

We must also mention here that in [13] the authors first define the pits effect using the
condition | f (x)| ≤ 1 instead of | f (x)| ≤ Rα and later prove that those two are actually the
same [13, Theorem 8·1].

LEMMA 4·1. Let f :Rd →R
d and g :Rd →R

d be permutable quasiregular maps.
Assume that g = f + c, where c �= 0 is a constant in R

d . Then f does not have the pits
effect.

Proof. For any N ∈N, we will find a sequence Rm → ∞ and λ > 1, ε > 0, α > 1 such that

A = {x ∈R
d : Rm ≤ |x | ≤ λRm, | f (x)| ≤ Rα

m}

cannot be covered by N balls of radius εRm .
First pick a N ∈N. Choose also a point x0 ∈R

d that lies in the half-line connecting 0 with
∞ and passes through c. Hence the sequence |x0 + nc|, n ∈N is an increasing sequence.
Also since the number of omitted values of f is finite we can assume that this half line does
not contain any omitted values from the point x0 − c onwards. We now set Rm = |x0 + mc|
and we will show that a segment of the half line is contained in A and that it is not possible
to cover it with N balls. Choose ε = 1/10, then with N balls of radius Rm/10 we can cover
distance at most N Rm/5. Hence, if we take

(λ − 1)Rm >
N Rm

5
⇐⇒ λ >

N

5
+ 1,

then we cannot cover the part of the half line that lies between the circles with radius Rm

and λRm with those N balls. Now we only need to show that this part of the half line also
satisfies the other condition; Namely that | f (x)| ≤ Rα

m for some α > 1. Observe that all the
points on the half line, after x0, can be written as y + nc for some y on the line segment from
x0 − c to x0 and some n ∈N. Then since those points are not omitted by f we have that

f (y + nc) = f (y + (n − 1)c + c) = f ( f (wn) + c),

for some wn ∈R
d with f (wn) = y + (n − 1)c. Thus thanks to the fact that f is commuting

with f + c we get that

f (y + nc) = f ( f (wn)) + c = f (y + (n − 1)c) + c.

By repeating this argument n times we get that

f (y + nc) = f (y) + nc, for all n ∈N.
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Hence for any point, y + nc, on the half line that lies between the circles with radius Rm and
λRm we have that

| f (y + nc)| = | f (y) + nc| ≤ | f (y) − y| + |y + nc|
≤ | f (y) − y| + λRm .

If we now take α = 2 we will have | f (y) − y| + λRm ≤ Rα
m , for all big enough Rm and thus

the second condition will hold for all points on this line segment.

LEMMA 4·2. Let f :Rd →R
d be a quasiregular map of transcendental type and

L(x) = aU x a linear map where a ∈R \ {0} and U ∈ SO(d) (SO(d) is the special
orthogonal group). If g = L ◦ f + c, where c ∈R

d , commutes with f then |a| = 1.

Proof. Without loss of generality let us assume, towards a contradiction, that |a| > 1.
Otherwise we can just consider g and (1/a)U−1g − c which have the required form. Pick
a large positive number r ′ > 0. Then there is a yr ′ ∈R

d with |yr ′ | = r ′ such that M(r ′, f ) =
| f (yr ′)|, where M(r ′, f ) = max|z|=r ′ {| f (z)|}. Now by Rickman’s generalisation of Picard’s
theorem, the fact that f is a transcendental quasiregular map and the fact that L is injective
there is a point xr ′ ∈R

d such that yr ′ = (L ◦ f )(xr ′) + c and thus

M(r ′, f ) = | f (yr ′)| = | f ((L ◦ f )(xr ′) + c)|.
We set r = | f (xr ′)|. Note that

r = ∣∣L−1(yr ′ − c)
∣∣≥ |yr ′ |

∣∣∣∣L−1

(
yr ′

|yr ′ |
)∣∣∣∣− |L−1(c)| ≥ r ′

|a| − |L−1(c)|.

Thus r → ∞ as r ′ → ∞. Also note that

r ′ = |yr ′ | = |L( f (xr ′)) + c| ≥ |a|r − |c|.
Hence, if we take a 1 < λ < |a| then for all large enough r ′ we have that r ′ ≥ λr . From
the fact obey the maximum modulus principle we conclude that M(r, f ) is an increasing
function of r . Hence

M(λr, f )

M(r, f )
≤ M(r ′, f )

M(r, f )
= | f (L( f (xr ′)) + c)|

M(r, f )

= |L( f ( f (xr ′))) + c|
M(r, f )

≤ |a| | f ( f (xr ′))| + |c|
M(r, f )

≤ M(r, f )|a| + |c|
M(r, f )

.

Hence M(λr, f )/M(r, f ) stays bounded as r → ∞, which is a contradiction since this ratio
tends to infinity as r → ∞ (see [6, Lemma 3·3]). Hence |a| = 1 .

Proof of Theorem 1·4. First, from Lemma 4·2 we will have that a = 1. From Lemma 4·1 we
will have that f does not have the pits effect. Hence, from [13, Corollary 1·1] we have that
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cap J ( f ) > 0. Also note here that if f does not have the pits effect then, by the definition,
f + c also does not. This again implies that cap J (g) > 0. Now we can apply Theorem 1·3
and conclude that J ( f ) =J (g).

5. Proof of Theorem 1·5
We will prove first that O−

f (∞) ⊂ O−
g (∞). To that end, let x0 ∈R

d be a point in O−
f (∞).

This means that f n(x0) = ∞ for some n ∈N. This in turn implies that f n−1(x0) is a pole
of f . Now, note that f and g must have the same poles since if z0 is a pole of f but not g
then g ◦ f has an essential singularity in z0 while f ◦ g does not, thus f ◦ g �= g ◦ f on a
punctured neighbourhood of z0. Hence, we will also have that g( f n−1(x0)) = ∞. By using
the fact that f commutes with g we have that f (g( f n−2(x0))) = ∞ and thus g( f n−2(x0)) is
a pole of f which again implies it is also a pole of g. Using this argument n times yields that
gn(x0) = ∞ and thus x0 ∈ O−

g (∞).
The other inclusion follows similarly by switching the roles of f and g. Hence we have

that O−
f (∞) = O−

g (∞) and thus J ( f ) =J (g).

6. Proof of Theorems 1·6 and 1·8
Proof of Theorem 1·6. We want to construct uncountably many quasiregular maps that com-
mute with a specific entire function. In order to do that we will follow the example given
in [9, Section 2] where the authors construct uncountably many continuous functions g that
commute with the function f (z) = c(ez2 − 1), where c is a large positive number. Note that
f has a superattracting fixed point at 0 and there is a conformal function φ, from the imme-
diate basin of attraction A of f to the unit disk, that conjugates f with z2. That map φ

is in fact quasiconformal on an open set that contains A and that is due to the fact that f
is a polynomial-like mapping (see [9] and references therein for more details). In order to
construct the required map they first define a function G which commutes with z2.

We define G :C→C by G(z) = |z|m−1z for some positive real number m. As we can
easily see G commutes with z �→ z2. In fact G is well known to be M-quasiconformal with
M = max{m, 1/m}. Also, note that G(z) = z, for |z| = 1. Because we have uncountably
many choices for m we also have uncountably many such maps G.
Next, by defining g(z) = φ−1(G(φ(z))) for z ∈ A we see that

g( f (z)) = φ−1(G(φ( f (z)))) = φ−1(G(φ(z)2)) = f (φ−1(G(φ(z)))) = f (g(z)), z ∈ A.

In order to extend g to the whole plane we argue as follows. If B is a component of the basin
of attraction of the fixed point at 0 then there is a n with f n(B) = A. Choose n to be the min-
imal with that property and define g(z) = f −n(g( f n(z))), for all z ∈ B, with the appropriate
branch of f −n . Since G coincides with the identity map on the unit circle and φ extends
continuously and bijectively on ∂ A then we can extend g to ∂ A ∪ ∂ B by setting g(z) = z
there. We can now extend g to the rest of the plane, the complement of the basin of attrac-
tion, by setting g(z) = z there. The functions g :C→C we get through this method will be
quasiregular and because our choices for G are uncountably many, so are our functions g.

For the proof of Theorem 1·8 we will need a lemma first which is a generalisation of a
theorem of Polya in [31].
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LEMMA 6·1. Let f :Rd →R
d and g :Rd →R

d be quasiregular maps. Then

M(r, f ◦ g) ≥ M(cM(r/2, g), f ),

where c is a constant and r is a large enough positive real number.

Proof. From [11, Lemma 4·1] we know that if D(r) denotes the ball of radius r centred at 0
and S(r) the corresponding sphere, then for large enough r there exists an L ≥ cM(r/2, g)

such that S(L) ⊂ g(D(r)), where c is a constant that does not depend on L or r . By the
choice of L and the maximum modulus principle we have that

M(cM(r/2, g), f ) ≤ M(L , f ).

Now since S(L) is inside g(D(r)) we will have that M(L , f ) = | f (g(x0))|, for some x0 in
D(r). Thus by the maximum modulus principle again we will have that

M(cM(r/2, g), f ) ≤ M(r, f ◦ g).

Proof of Theorem 1·8. Suppose that f is of transcendental type. By assumption g is of
polynomial type and deg g > K (g). Due to the maximum modulus principle we have that

M(r, g ◦ f ) ≤ M(M(r, f ), g). (6·1)

We know from [34, Theorem III·4·7] that for all x with large enough |x | it is true that

A|x |n1 ≤ |g(x)| ≤ B|x |n2,

where A, B constants, n1 = (deg g/KI (g))
1

d−1 and n2 = (deg g · KO( f ))
1

d−1 . Note that by
our assumptions n1 > 1. This implies that for large enough r > 0 we have that

Arn1 ≤ M(r, g) ≤ Brn2, where n1, n2 > 1.

Hence by (6·1) we have that

M(r, g ◦ f ) ≤ B · M(r, f )n2 . (6·2)

By Lemma 6·1 we now know that

M(r, g ◦ f ) = M(r, f ◦ g) ≥ M(cM(r/2, g), f ).

Thus

M(r, g ◦ f ) ≥ M
(

cA
(r

2

)n1

, f
)

. (6·3)

By (6·2) and (6·3) we now get

M
(

cA
(r

2

)n1

, f
)

≤ B · M(r, f )n2 .

Taking logarithms and rearranging we get that

log M(cA( r
2 )

n1, f )

log M(r, f )
≤ log B · n2.
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But for large enough r it is true that cA(r/2)n1 ≥ Qr , where Q > 1 is some constant. Thus
the previous inequality implies that

lim sup
ρ→∞

log M(Qρ, f )

log M(ρ, f )
< ∞.

This contradicts [6, Lemma 3·3].

7. Examples

Let us now give some examples of permutable maps and confirm that they have the same
Julia set. First we give examples of holomorphic functions and then their counterparts in
higher dimensions. We note here that the first three classes of examples are essentially the
only ones possible in the case of rational functions that do not share a common iterate. The
problem is still open in the case where the functions share an iterate. See [15, 38] for more
details.

Holomorphic examples

(i) Consider the family of functions fn(z) = zn, n ≥ 2. Obviously fn ◦ fm = fnm =
fm ◦ fn. We can also easily see that J ( fn) = S1, for all n ≥ 2, where S1 denotes
the unit circle. Thus J ( fn) =J ( fm).

(ii) Consider the family of Tchebycheff polynomials that satisfy Tn(cos z) =
cos(nz), n ≥ 2. It is easy to see that Tn ◦ Tm = Tm ◦ Tn . Also each of the
Tchebycheff polynomials has as a Julia set the interval [−2, 2] (see [14] p. 30),
so clearly J (Tn) =J (Tm).

(iii) The family of Lattès maps provides another example of commuting functions. A
rational map, of degree at least two, of the form

f = 	 ◦ L ◦ 	−1

is called Lattès. Here L is an affine self map of the torus C/
, where 
 ⊂C is a
lattice of rank two, and 	 is a holomorphic map from the torus to Ĉ. One possible
option is to choose L(z) = az for any a ∈Z[i] = {x + yi : x, y ∈Z}, |a| ≥ 2 and
	 = ℘2(z), where ℘(z) is the Weierstrass elliptic function with periods 1 and i .
Then the Lattès maps that we take for the different values of a are commuting.
Also it is well known that the Julia set of Lattès maps is the entire Riemann sphere.
For more details on Lattès maps we refer to the survey [26].

(iv) Consider an entire periodic function P :C→C, with period c ∈C. Take f (z) =
P(z) + z and g(z) = P(z) + z + c. Then f, g are permutable. Using now a result of
Baker [3, Lemma 4.5], which we generalised in Theorems 1·3 and 1·4 we conclude
that J ( f ) =J (g).

Quasiregular examples

(i) In [24, 25] Mayer constructs uniformly quasiregular analogues of the power maps,
of Tchebycheff polynomials and of Lattès type maps which can be easily seen, just
like in the complex case, that are permutable. Also those families of maps have the
same Julia sets: the unit sphere, the unit disc and Rd respectively.

(ii) There is a quasiregular analog of the exponential map in the complex plane called
the Zorich map which was first defined by Zorich in [42]. For simplicity assume we
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work on R
3 and denote this map by Z :R3 →R

3. This map is periodic, with period
4, in its first two variables. In [28] Nicks and Sixsmith defined a quasiregular map
g :R3 →R

3 of transcendental type such that

g =
{

Z + I d x3 > L
I d x3 < 0

,

where I d the identity map and L > 0 is a constant. By its construction this map
satisfies g(x1 + 4, x2, x3) = g(x1, x2, x3) + (4, 0, 0) for 0 ≤ x3 ≤ L and hence for
all x3 (see [28, Section 6] for details). Now define the function f (x1, x2, x3) =
g(x1, x2, x3) + (4, 0, 0). It is quite easy to see that f commutes with g. Hence, by
applying Theorem 1·4 we conclude that J ( f ) =J (g).

(iii) Another example is provided by [28, Section 7] where the authors define the map

h(x1, x2, x3) = g(x1, x2, x3) − (0, 0, L ′),

where g is the function of the previous example and L ′ > 0 is a large constant.
They also prove that A(h) ⊂J (h) and is quite easy to see that h commutes with
h + (4, 0, 0). Hence, in this example we can apply Theorem 1·2 and conclude that
the two functions have the same Julia set.
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