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COVERING GAMES
AND THE BANACH-MAZUR GAME: K-TACTICS.

TOMEK BARTOSZYNSKI, WINFRIED JUST AND MARION SCHEEPERS

ABSTRACT  Given a free 1deal J of subsets of a set X, we consider games where
player ONE plays an increasing sequence of elements of the o-completion of J, and
player TWO tries to cover the union of this sequence by playing one set at a time from
J We describe various conditions under which player TWO has a winning strategy that
uses only information about the most recent k moves of ONE, and apply some of these
results to the Banach-Mazur game

1. Introduction. Let J be a free ideal of subsets of a given set. By (J) we denote
the o-ideal generated by J ({(J) could turn out to be the power set of UJ). Two concrete
examples of ideals motivated much of our work. The one is NW’DR, the ideal of nowhere
dense subsets of the real line R. In this case (NWDp) is the ideal of meager sets of
reals. The other is [£]<* where w = cof(\) < A < k are cardinal numbers.

We are interested in games of the following type: Player ONE plays a set O, € (J)
during inning n, to which TWO responds with a set 7,, € J. ONE is required to play an
increasing sequence of sets; TWO’s objective is to cover |J,c,, On With ¢, T,. As long
as TWO remembers the complete history of the game, this task is trivial. However, it
often happens that TWO needs to know only the last kK moves of the opponent in order
to win. A strategy that accomplishes this is called a winning k-tactic.

We consider four such games, MG(4, J), MG(J), the “monotonic game”, SMG(J),
the “strongly monotonic game”, and VSG(J), the “very strong game”. The study of
these games was initiated in [S1], and motivated by Telgarsky’s conjecture that for every
k > 0 there exists a topological space (X, 7) such that TWO has a winning k + 1-tactic
but no winning k-tactic in the Banach-Mazur game on (X, 7) (see Section 4.4 for more
information). However, we find the games considered here of interest independent of the
original motivation. The game MG(J) was introduced in [S1], as was the game SMG(J);
the games MG(4, J) and VSG(J) appear here for the first time.

In Sections 2 and 3, we introduce and discuss pseudo-Lusin sets, the irredundancy
property and the coherent decomposition property of ideals. These properties, together
with the w-path partition relation, are the main tools for constructing winning k-tactics
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n our games These combinatorial properties of 1deals are very likely of independent
interest—they have already appeared 1n the literature 1n various guises

In Section 4 we apply the results of Sections 2 and 3 to give various conditions
sufficient for the existence of winning k-tactics for TWO 1n the games mentioned above
Not surprisingly, as the game becomes more favorable for TWO, weaker conditions
suffice Among other things, our results show that in the Banach-Mazur game on the
space that inspired the invention of meager-nowhere dense games, TWO has a winning
2-tactic

The appendix 1s devoted to a proof of an unpublished consistency result of Stevo
Todorcevié, which we use 1n Section 4

Our notation 1s mostly standard One important exception may be that we use the
symbol C exclusively to mean “i1s a proper subset of” Where we otherwise deviate from
standard notation or terminology we explicitly alert the reader For convenience we also
assume the consistency of traditional (Zermelo-Fraenkel) set theory All statements we
make about the consistency of various mathematical assertions must be understood as
consistency which can be proven by means of that theory

We are grateful to Stevo Todorcevié for sharing with us his insights about the matters
we study here, and for his kind permission to present in this paper some of his answers
to our questions

2. The irredundancy property. For a partially ordered set (P. <) which has no
maximum element we let
add(P, <)

be the least cardinal number, A, for which there 1s a collection of cardinality A of
elements of P which do not have an upper bound 1n P This cardinal number 1s said to be
the additivity of (P, <) Note that add(P, <) 1s etther 2, or else 1t 1s infinite In the latter
case (P, <) 1s said to be directed We attend exclusively to directed partially ordered sets
1n this paper

A free 1deal J on a set S 1s partially ordered by C The partially ordered set (J. C)
1s directed The symbol (J) denotes the o-completion of J (1 ¢, the smallest collection
which contains each union of countably many sets from J) We say that J 1s a -complete
tdeal 1f J = (J) Note that J 1s o-complete exactly when add(/) 1s uncountable

The other important example for our study 1s the set “w of sequences of nonnegative
integers, we use ¢ to denote the cardinality of this set We say g eventually dominates f
and write f < g 1f llm,,,ﬂo(g(n) —f(n)) =00 It 1s customary to denote add(*w. <) by
b

A well known theorem of Miller ([M], p 94, Theorem 1 2) states that

add((NWDR). C) < add(*w, <) (= 1)
Again, for an arbitrary partially ordered set (P. <) the symbol

cof(P, <)
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denotes the least cardinal number, &, for which there is a collection X of cardinality x of

elements of P such that: for each p € P there is an x € X such that p < x. This cardinal

number is said to be the cofinality of (P. <). It is customary to denote cof(*w, <) by d.
Another well-known theorem (see e.g. [F], Proposition 13(b)) states that

(d =) cof(Pw. K¥) < COf(<9\[:W’DR>, Q).

This theorem, as well as Miller’s theorem cited above, are consequences of the construc-
tion below for Example 2.

Let (P, <) be a directed partially ordered set. The bursting number of (P, <) ({1],
p. 401) is the smallest cardinal number which exceeds the cardinality of each of the
bounded subsets of (P, <). This cardinal number is denoted by burst(P, <). More impor-
tant is the principal bursting number of (P, <), denoted bu(P. <) and define as

bu(P, <) = min{burst(Q, <) : Q is a cofinal subset of P}
(following [1], p. 409). It is always the case that add(P, <) < bu(P. <).

DEFINITION 1. A directed partially ordered set (P. <) has the irredundancy property
if:
bu(P. <) = add(P, <).

The cofinal subfamily 4 of (P, <) is said to be irredundant if burst(2, <) < add(P, <).

Not all o-complete ideals have the irredundancy property. Here is an ad hoc example.
Let S| and S; be disjoint sets such that S, has cardinality X, for each i. Define an ideal J
on the union of these sets by admitting a set Y into J if: ¥ M S| is countable and Y N S,
has cardinality less than X;. Then add(J, C) = R} and cof(J. C) = N,. No cofinal family
of J is irredundant.

A refined version of the classical notion of a Lusin set is instrumental in verifying
the presence of the irredundancy property in many directed partially ordered sets. Since
what we’ll define is not exactly the same as the classical notion, we call our “Lusin sets”
pseudo-Lusin sets. Let K < \ be infinite cardinal numbers. Let (P, <) be a directed set.

DEFINITION 2. A subset L of P is a (k, A) pseudo-Lusin set if:
(1) A is the cardinality of L and
(2) for each x € P the cardinality of the set {y € L: y < x} is less than &.

If a directed set (P, <) has a (k, A) pseudo-Lusin set, then add(P. <) < x and A <
cof(P, <). Moreover, every partially ordered set has an (add(P, <), add(P, <)) pseudo-
Lusin set. Thus, if add(P, <) = cof(P, <), then these are the only types of pseudo-Lusin
sets in (P, <).

Let J be a free ideal on a set S. The uniformity number of J, written unif(J), is the
minimal cardinal x such that there is a subset of S of cardinality x, which is not an
element of J.

If L C Ris a Lusin set in the classical sense (i.e., L is uncountable and every meager
set meets L in only countably many points), then {{A} (X € L} is an (wy. |L]) pseudo-
Lusin set. There will be pseudo-Lusin sets even when there are no (classical) Lusin sets:
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If unif (AWDR)) > add((N WD), C) (see e.g. [M], §6 for a consistency proof of this
inequality), then every set of real numbers of cardinality X, is meager, whence there is
no Lusin set in the classical sense.

The reader might compare our notion of a (k. A)-pseudo-Lusin set with Cichon’s
notion of a (k, A)-Lusin set (see [Ci]).

For (P, <) a directed set, the connection between the irredundancy property and the
existence of certain pseudo-Lusin sets is as follows: There is an (add(P. <). cof(P. <))
pseudo-Lusin set for (P, <) if, and only if, (P, <) has the irredundancy property, if, and
only if, (P, <) has a cofinal (add(P, <). cof (P, <))—pseudo-Lusin set. These equivalences
could be proven by an argument as in the proof of 4.4 on p. 409 of [I].

COROLLARY 1. Let k > X\ > Ny be cardinals, ) regular. If cof ([k]~*. C) = &, then
([k]<*, C) has the irredundancy property.

PROOF. Let {S, : o < k} be a pairwise disjoint subcollection from [x]=*. Then this
family is a (A, k) pseudo-Lusin set for this ideal. Applying the cofinality hypothesis we
conclude that this ideal has the irredundancy property. [

The ideal of finite subsets of an infinite set has the irredundancy property; the set of
one-element subsets of such an infinite set forms an appropriate pseudo-Lusin set for
this ideal.

LEMMA 2. Let k > X\ be an uncountable cardinal numbers, \ regular. Then the
following statements are equivalent:
(1) The ideal ([k]<*, C) has cofinality k.
(2) There is a free ideal J such that:
(a) add(J, C) = ),
(b) cof(J,C) =k and
(¢) (J, Q) has the irredundancy property.

PROOF. The proof of 1 = 2 is trivial. We show that 2 implies 1. Let J be a free ideal
on the set S such that cof(J, C) = x and add(J, C) = A, and (J, C) has the irredundancy
property. Let L C J be an (A, k) pseudo-Lusin set for J. Also let ¢ C J be a cofinal family
of cardinality k. For each X € ¢ define: Sx = {Y € L : Y C X}. Then the collection
B={Sx: X € C}iscofinal in ([L]**, C). .

The following examples play an important role in our game-theoretic applications.

EXAMPLE 1. The ideal of countable subsets of an infinite set.

Let k be an uncountable cardinal number. Then add([x]=™.C) = 8, and
bu([r]=N, C) > ;. For uncountable cardinal numbers « it is always the case that
k < cof([k]=N, C). A set of the form {{ag} : &€ < k} (where this enumeration is
bijective and w; < k) is an (wj, k) pseudo-Lusin set for [k]=%0. The only difficult
cases to decide whether or not the irredundancy property is present are those where
k < cof([k]=N0, ©); this occurs for example when s has countable cofinality. It turns out
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that for these the irredundancy property is not decidable by the axioms of traditional set
theory:

A family 4 of countable subsets of « is locally countable if for each A € 2 the
set {B € 4 : B C A} is countable. A family X C (k] which satisfies the stronger
property that |[{ANX : X € K}| < Ny for any countable subset A of x, is said to
be a Kurepa family. Note that the existence of a cofinal Kurepa family witnesses that
bu([x]%, C) = Ry = add([x ], C).

(1) Todorcevi¢ has shown (p. 843 of [To4] or [To2]) that ([H]N“, C) has the irredun-
dancy property if, and only if, there is a Kurepa family in [x]™ of cardinality x*. In
§2 of [To5] he showed that if  has countable cofinality then O, implies that there is a
Kurepa family of cardinality x* in [k, Thus, if O, and moreover cof([x]}, C) = k*
is true for each uncountable cardinal x of countable cofinality, then there is for each
uncountable cardinal \ a cofinal Kurepa family in [A\]™. These hypotheses hold in L, the
constructible universe.

One might ask if any hypotheses beyond ZFC are necessary to obtain the conclusion
that ([k]=™, C) has a cofinal Kurepa family. Todorcevi¢ also noted (p. 843 of [To4]) that
the version

My, V) — (Wi, w)

of Chang’s Conjecture implies that X; < bu([R.]=, C) (and thus this ideal does not
have the irredundancy property). Now [L-M-S] established the consistency of the above
version of Chang’s Conjecture modulo the consistency of the existence of a fairly large
cardinal.

(2) This takes care of uncountable cardinals of countable cofinality. What is the situa-
tion for those of uncountable cofinality? It is clear that ()=, ©) has the irredundancy
property if x is X, for some finite n (a result of Isbell, (I]) or if, for some m < w, K is
the m-th successor of a singular strong limit cardinal of uncountable cofinality. In fact,
the axiomatic system of traditional set theory has to be strengthened fairly dramatically
before one could create circumstances where there is a cardinal number of uncountable
cofinality which is strictly less than the cofinality of its ideal of countable sets; it follows
from Lemma 4.10 of [J-M-P-S] that if there is a cardinal number of uncountable cofi-
nality which is smaller than the cofinality of its ideal of countable sets, then there is an
inner model with many measurable cardinal numbers.

Information about the ideal of countable subsets of some infinite set can be used to
gain information about some other ideals, using the notion of a locally small family.

DEFINITION 3. A family ¥ of subsets of a set S is locally small if:
|{Y€ F YQXH <N

for each X in 7.

If the ideal of countable subsets of an infinite set has an irredundant cofinal family then
that cofinal family is ipso facto locally small. If there is an (wl .cof(J, C)) pseudo-Lusin
set for the o-complete free ideal J on the set S, then J contains a locally small cofinal
family.
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EXAMPLE 2 The 1deal of meager subsets of the real line

Assume that add((m(W@R). Q) = cof((Q\[‘WfDR). C) (This equation 1s for example
implied by Martin’s Axiom) Then (AlWDp ) has the irredundancy property In this case
one may 1nsure that the cofinal family which witnesses the irredundancy 1s a well-ordered
chain of meager sets

Irredundancy does not require having a well ordered cofinal chain of meager sets
For let an mitial ordinal be given According to a theorem of Kunen ([K], p 906,
Theorem 3 18) it 1s consistent that the cardinality of the real line 1s regular and larger
than that initial ordinal, and at the same time there 1s an (w;. ¢) pseudo-Lusin set It
follows that (N‘W’DR) has a locally small cofinal family of cardinality ¢ In particular,
<J|R{> has the irredundancy property If the continuum s larger than X, it also follows that
this 1deal has no cofinal well-ordered chain

Stevo Todorcevi¢ has informed us that 1t 1s also consistent, modulo the consistency
of a form of Chang’s Conjecture that (Jg) does not have the irredundancy property
Actually, something apparently weaker than that form of Chang’s Conjecture 1s used we
present this result of Todorc¢evié’s in Theorem 3, which he kindly permitted us to include
1n this paper

THEOREM 3 (TODORCEVIC) If “ZFC +MAy, + there 1s no Kurepa family n [R_[™

of cardinality larger than R,” s a consistent theory, then so s the theory “ZFC +

bu((NWDR), C) > add(NWDR), C) =R, ”

PROOF Let P be the set of finite functions with domain a subset of X, and range a
subset of w and let P be partially ordered by reverse inclusion (in other words, P 15 the
standard set for adding X, Cohen reals) For D a countable subset of X, we write P(D)
for the set of elements of P whose domains are subsets of D

Suppose we have a sequence {N; & < 8} (8 > X_) of P-names for meager sets of
reals Let D¢ € [R,]™ be the support of N¢ 1 e, Ne € VPP By the hypothesis of the
theorem and by [To4], p 843, there 1s an uncountable set A C 0 such that D = [J¢cq D
1s countable Thus, N € VP for each £ € A Since P(D) 1s essentially the poset
for adding 1 Cohen real and since MAy, holds, VP? |= “{ ., N¢ 1s meager” (because
VPO & “MA(o-centered)”) n

The hypothesis of Theorem 3 1s consistent modulo the consistency of the relevant
form of Chang’s Conjecture, because that form of the conjecture 1s preserved by c ¢ ¢
generic extensions

3. The coherent decomposition property. Let J be a free 1deal on a set S and let
(J) be 1ts o-completion Let 4 be a subcollection of (J)

DEFINITION 4 (1) 4 has a coherent decomposition if there 1s for each A € 7 a
sequence (A" n < w) such that

(a) A" € J for each n,

(b) A" C A™ whenever n < m < w, and
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(c) For all A and B in 4 such that A C B, there is an m such that A" C B" whenever
n>m.

The collection {(A" : n < w) : A € 4} is said to be a coherent decomposition for 2.

(2) The ideal J has the coherent decomposition property if some cofinal subset of (J)
has a coherent decomposition.

It is worth mentioning that if J has the coherent decomposition property and if (J) has
a cofinal chain, than the family (J) itself has a coherent decomposition. We now explore
the coherent decomposition property for our examples.

EXAMPLE 1 (CONTINUED).

THEOREM 4. Let A be a locally small family of countable sets such that (4, C) is a
well-founded partially ordered set. Then 4 has a coherent decomposition.

PROOF. Let ®: 4 — « be the rank function for the well-founded set (4, C). Since 4
is locally small we may assume that « is w;.

For A in 4 with ®(A) = 0, choose a sequence (A" : n < w) of finite subsets of A such
that A = (J,.,A" and A" C A™! for all n.

Let 0 < 8 < w; be given and assume that we have already assigned to each A in 4
for which ®(A) < (3, a sequence (A" : n < w) in compliance with 1 and 2. Now Let B be
an element of 4 such that ®(B) = 3. Write F(B)={A € 4: A C B}.

To begin, arbitrarily choose a sequence (S, : n < w) of finite sets such that B =
Un<w S For each A € F(B), define g4: w — w such that for each n < w,

ga(n)y=min{k <w:A" CSoU---US}.

Then {g4 : A € F(B)} is countable since 4 is locally small. Let f € “w be a strictly
increasing function such that g4 < f for each A in F(B). Define:

B"=SyU---USs

for each n. Then (B" : n < w) is as required. .

COROLLARY 5. Let J be a free ideal on a set S and let A be a locally small family of
sets in (J) such that (4. C) is a well-founded partially ordered set. Then 4 has a coherent
decomposition.

PROOF. For each B in A4, let (S,,(B) n < w) be a sequence from J such that
B = Upe,Sn(B). Also write I'(B) = {A € 2: A C B}. Then B={I'(A): A € 4} isa
well-founded, locally small collection of countable subsets of 4. Choose, by Theorem 4,
for each A € 4 a sequence (F(A)" n< w) of finite subsets of I'(A) such that:

(1) T(A) = U,<.. [(A)" where T'(A4)" C I(A)"*! for each n, and

(2) forall A and B in 4 with A C B there exists an m such that:

Ay C T(By"

for alln > m.
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For each A in 4 and each n < w define:
A" = {S,(B): j <nand B € T(A)"}.

Then the sequences (A" : n < w) are as required. .

COROLLARY 6. If([k]=N0, C) has the irredundancy property, then it has the coherent
decomposition property.

PROOF. An irredundant cofinal family is necessarily locally small. We may thin out
any cofinal family to a well-founded cofinal family. Now apply Theorem 4. L]

Here is a result whose proof is quite analogous to that of Theorem 4. We state it in
the present form because we’ll use it in this form.

THEOREM 7. Let X be an uncountable cardinal number which has countable cofinality.
Let Ay < A\| < - - be a sequence of infinite regular cardinal numbers which converges
to M. Let (4, C) be a well-founded family of sets, each of cardinality A\, such that

{rea:ycxi <i

foreach X in A. Then A has the coherent decomposition property. In particular:
There exists for each A € 4 a sequence (A" : n < w) such that:
(1) |A"| < A, foralln,
(2) A" C A™! foralln,
(3) A=,20A" and
(4) if A C B, then there is an m < w such that A" C B" forall n > m.

COROLLARY 8. Let \ be a cardinal number of countable cofinality. If ([k])=*. C) has
the irredundancy property then it has the coherent decomposition property.

EXAMPLE 2 (CONTINUED). We show that the ideal of meager sets of the real line has
the coherent decomposition property, and also that it has a second combinatorial property
which plays an important role in our game-theoretic applications. It is convenient, for this
section, to work with the set 2, with the usual Tychonoff product topology (2 = {0. 1}
is taken to have the discrete topology) in place of R. For a subset S of the domain of a
function g, the symbol g[s denotes the restriction of g to the set S. For s an element of
<2, the symbol [s] denotes the set of all those x in “2 for which x[leng[hmz s. Subsets
of #2 of the form [s] where s ranges over <2, form a base for the topology of *2. Let
f € “wbe a strictly increasing sequence and let x be an element of “2. Define:

By ={z € “2: V2 piy st X pompinsin) }-

Now also fix an n € w and define

= 12€ 920 (Vk = m)(@ i o # X o) -

Then Bﬁ'f C B;’_f whenever m < n < w; also, B,y = U, ijf.
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PROPOSITION 9. For x,y € “2 and strict!v increasing f, g € “w, the following asser-
tions are equivalent:
(]) B_x,f - Bv.g-
(2) (1) By #B,,and
(2) (V) Fk)(g(n) < flk) < flk+1) < gn+ 1) and x[ iy et = Y o sikety)

PROOF. Only the implication 1 = 2(b) requires a proof. If 1 holds, then (a) of 2
holds. Assume the negation of 2(b). It reads:

G 0 (g <f0 < flk+ 1) < gln+ 1) or Ty gwein=ywswenn) )

Put S = {n < w : (VO(fK).fk+ D] C [g(n),gn+ D)) or ~(x[x) ske1))=
y(l/(k>.f(k+l)))}. Our hypothesis is that S is an infinite set.
Consider an n in S. For each k, there are the following possibilities:
(1) =([f k). f(k+1)] C [g(n). g(n+ 1)])
(2) [fk),fk+ 1)] C [g(n), g(n+ D], but x[ ) ske 17 ¥ sk
Put S, = {k : 2 holds for k}. We consider two cases.

CASE 1. There are infinitely many » for which S, is nonempty.
Choose an infinite sequence (n, ny, ns, . ..) from S such that:
(1) Sy, #0,
(2) nmyr > g(ny + 1), and
3) (Ek)(g(nm +1) <flk) < g(n,,,H)), for each m, and
(4) f(1) < g(ny).
This is possible because f and g are increasing, and S is infinite. Put T =
U2 [8(n), g(n; + 1)). Define z, an element of “2, so that z[7=y[r and z(n) = 1 — x(n) for
eachn € w\ 7. Then z € B, while z ¢ B, . Thus I fails in this case.

CASE 2. There are only finitely many n € S for which S, is nonempty.
We may assume that S, = () for each n € S. Consider n € S. We then have that
[fk).fk+1)) £ [g(n), g(n+1))foreach k € w. We distinguish between two possibilities:
(1) (3k)(g(n) <f(k) < g(n+1)) or
) (VK)(f (k) £ [g(n). g(n+ 1))

CASE 2(A). Possibility 1 occurs for infinitely many n € S:

Choose n; < np < n3 < ---from S such that

e 2.n; < nyy foreach j,

e for each j there is a k such that g(n, + 1) < f(k) < g(n4+1),

e for each j there is a k such that f(k) € [g(n)). g(n;+1)), and

e f(1) <glny).
Put T = |, [g(n), g(n, + 1)) and define z so that z[7= y[7, and z(n) = 1 — x(n) for each
n € w\ T. From the hypothesis of Case 2(A) it follows that z € B, s, but z ¢ B, ,. Thus,
1 fails also in this case.
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CASE 2(B) Possibility 1 occurs for only finitely many n € §

We may assume that possibility 2 occurs for each n € § Choose ky < ky < k3 <
such that for each j there 1s an n € S with [g(n), g(n + 1)) C [f(k),f(k, + 1)) For
each j choose n, € § such that [g(n)), g(n, + 1)) C [f(k).f(k, + 1)) As before define
T = Uffl [g(n)), g(n, + 1)) Finally, define z so that z['r: y|r and z(n) = 1 — x(n) for each
n€ w\T Thenz € Byy and z ¢ By ,, showing that 1 fails also 1n this case

This completes the proof n

LEMMA 10 Let f and g be strictly increasing elements of ~w for which there ts some
k < w such that g(n+ k) = f(n) for all but finitely manyn If By C B, ,, then B,y = B,

PROOF Assume that B,; # By, and suppose that B,, Z B,, We show that B,
By, Letzbe anelement of By, \ B,; Fix N such that

(1) z[1gneny gnske 1) Y] (g(nsk) ginsas1yy and

(2) f(n)=g(n+k)
foreachn > N

Since z1s not an element of B, ¢, there are infimtely many n > N for which z[ () f(n+1)=
x[ ¢ fine1yy Consequently the set S = {n > N x| fe1)Z Y] ronsins1y} 15 nfinite
Now define ¢ such that [ () fous1)= Y[ () fns1) fOr each n € S, and 1(m) = 1 — x(m) for
each m € w\ U,cslf(n). f(n+1)) Thenr1s1n B, but notn By, u

Under the hypothesis of Lemma 10, x(n) = y(n) for all but finitely many n

PROPOSITION 11 Let x, y be elements of “2 and let f, g be increasing elements of *w
Of the following two assertions, 1 implies 2
(1) B,y C By,
(2) fLg

PROOF Assume that B, C By, Fix, by Proposition 9, an N such that

(Vn > N) (3k) ([f(k)~f(k+ D] C [gn). gn+ D] and x| ) rxe1)= Y[V(k)f(k+l)))

For each n > N choose k, such that [f(k,),f(k,+ 1)] C [g(n). g(n+1)] It follows that
k, + 1 < k4 for each n > N (since f and g are increasing)

CLAIM  [f(kn),f(k,+ 1)] C [g(n), g(n+ 1)] for infinitely many n

PROOF OF THE CLAIM For otherwise, fix M > N such that [f(k,).f(kpr] =
[g(n),g(n + 1)] for each n > M Then we have k,,; = k, + 1 foreach n > M It
follows that g(n) = f(n + (ky — M)) for all n > M Then Lemma 10 implies that
B.s = By, contrary to the fact that B, 1s a proper subset of B,, This completes the
proof of the claim

Thus, there are infinitely many n for which k,,1 > k, +1 Let m > 1 be given, and fix
L > M suchthat [{n <L ky >k, +1} >k +m Thenk, > (n+m)foreachn > L,
we have

fn+1) <f(n+m) <f(ky) <gln+1)
for each n > L In particular, m < g(n+ 1) —f(n+ 1) for each n > L This completes the
proof that f < g n
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PROPOSITION 12. Let x and y be elements of 2 and let f and g be increasing elements
of “w. If Byy C B, 4, then there is an m < w such that B_Zf - B("g whenever n > m.

PROOF. From our hypotheses and Proposition 9 there is an m such that foreach n > m
there is a k such that U(k)f(k‘l’ 1)) g [g(n), g(n + 1)) and th(k)_f(kﬂ)): yl—lf(k).f(/ﬁl))' By
Proposition 11 there is an M > m such that f(j) < g(j) for each j > M. We show that
BY, C Bj, foreachn > M.

Let z be an element of B} . Then 2t o107 X[ o) py+1) for each j > n. But consider
any j > n. Then there is a k such that [f(k), f(k+ 1)) C [g(j), g(j+ 1)); k > j for any such
k, by the choice of M. It follows that z[[g().c+1)% Y[ 1e0).¢+1)- Thus, z is also an element
of By ,. n

PROPOSITION 13. For each X € (NWDp) there are an x in “2 and an increasing f
in “w such that X C B,y.

PROOE. Let X be a meager set. We may assume that X = (2, X,, where X, C X,
and X, is closed, nowhere dense for each n. Fix a well-ordering of <+2, and define
(sp, : n < w)and f in “w as follows:

Take sy = () and £(0) = 0. Assume that s, s,,...,s, and f(1),...,f(n) have been
defined so that:

(1) sy is the first element of <*2 such that [s;] N X| = () and f(1) = length(s)),
(2) 5,41 is the first element of <“2 such that [t~ 5,11 N X, = () for each 7 in V2, and
fG+1)= Zj,:(l) length(s,) for each j < n.

Then let s,.,; be the first element of <2 such that [t~ s,.]NX, = { for each zin <2;
putf(n+ 1) = f(n) + length(s,).

Finally, set x = 5775, 53 - -

CLAIM. X C B,;.

For suppose that z is not an element of B, ;. Then there are infinitely many n for
which z[ ) fe1)= X[ (f).f(n+1); in other words, there are infinitely many n for which
Z[(fny fin+1= Sn+1. Now fix an m. Choose an n > m such that z[ s (n+1)= Sn+1. From the
choice of s, it follows that [sz(,m)] N X,, = §; in particular, z ¢ X,,. Consequently, z is
not an element of X. "

PROPOSITION 14. Each B, g isin NW@R.

PROOF. Consider an s from “2 for which [s] N B} y # (). Choose m such that f(m) >
length(s) and m > n. Then choose ¢ from <“2 such that length(s"f) > f(m + 1) and
S (fomy fome1)= xf[f(,,,)ﬂ,,,,rl)). Then [s7t] N B)’('_f = (. It follows that Bﬁ’f is nowhere
dense. -

Consequently, B, s is a meager set for each x in “2 and for each increasing f from “w.

THEOREM 15. (NWDg) has a cofinal family which embeds in a cofinal subset of
(Yw, K) and which has the coherent decomposition property.
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PROOF. By Propositions 14 and 13 the family of sets of the form B, where f is an
increasing element of “w and x is an element of *2, is a cofinal family of meager sets. By
Proposition 12, this family has the coherent decomposition property. Also, the mapping
which assigns f to B, is, according to Proposition 11, an order preserving mapping. =

4. Applications. The w-path partition relation is the one other combinatorial ingre-
dient in our technique for constructing winning k-tactics, or for defeating a given k-tactic
for TWO. For a positive integer n, infinite cardinal number A and a partially ordered set
(P. <), the symbol

(P. <) — (w- path)’;/@,

means that for every function F: [P]" — A there is an increasing w-sequence
Pr<pr < <pp<---

such that the set {F({pj+| ..... Pisn}) 1 J < w} is finite. The negation of this assertion is
denoted by the symbol

(P,<) /> (w-path)} .

This partition relation has been studied in [S2], where various facts used below are proved.
In particular, we often use the fact that (P, <) /> (w- path)i/@ for every partially ordered
set (P, <) for which there is a strict order-preserving map into (Yw. <).

4.1. The game MG(4,J). Let J be a free ideal on an infinite set S and let 4 C (J) be
a family with the property that for each X € 4 thereisa Y € 4 such that X C Y. The
game MG(4, J) is defined so that an w-sequence (O, Tj. ..., Op, T,. ... isaplay if for
each n,

(1) O, € Ais player ONE’s move in inning n,

(2) T, € Jis player TWO’s move in inning n, and

(3) 0, C Op41.-
Player TWO wins this play if [ J;2, 0, C U2 T,

n=1 4n-

THEOREM 16. Let J be a free ideal on a set S. If A is a family of sets in (J) such that:
(1) foreach X € AthereisaY € A such that X C Y,
(2) (a,0) A (w—path)’i‘/a,for some k > 2, and
(3) A has a coherent decomposition
then TWO has a winning k-tactic in MG(4, J).

PROOF. Choose a function F: [ 4]* — w which witnesses hypothesis 2. Also associate
with each A in 4 a sequence (A" : n < w) such that hypothesis 3 is satisfied.
Define a k-tactic, Y for TWO as follows. Let (X, ..., X;) be given such that j < k,
Xy C---CXjand X; € Afori <j.
(1) Ifj < k: Then put Y(Xy. ..., Xj) = X; U---UX].
(2) Ifj = k: Let m be such that
e m>F({X,,...,X;}) and
o X C..-CXjforalln>m.
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Put Y(X).....Xp) =X{"U---UX].

Then Y is a winning k-tactic for TWO. For let (O}, T}, . ... 0, T,....) be a play of
MG(4, J) where:

e T, =Y(0,...,0;) foreachj <k

® T =Y(Opsty..., O, foreach n < w.
For each t+ > 1 let m, be the number associated with (O, ..., O, ) in part 2 of the
definition of Y. By the properties of F, the set {m, : t = 1,2,3,...} is infinite. Thus
choose t; <t < ---such that m; < m, forallj < t.. It follows from the criteria used in
the choices of the numbers m;, that

Or]ﬂ:, g . g 0"1,,

m,

for all r. But 0" C T, for all r, according to the definition of Y. It follows that

Unzi On € U2 T .

COROLLARY 17. There is a cofinal family A C (Jg) such that TWO has a winning
2-tactic in MG(4. IJR)-

PROOF. Let 4 be the family of meager sets provided by Theorem 15. Thus, 4 has a
coherent decomposition and there is an order preserving function from (4, C) to (“w, K).
But then (4, C) / (w-path)i/w holds, since (“w, <) /= (w-path)i/Q holds. .

COROLLARY 18. Let J be a free ideal on an infinite set. If 4 is a family of sets in (J)
such that:

(1) Aislocally small,

(2) foreach X € A thereisaY € A such that X C Y, and

(3) (A4, Q) is well-founded,
then TWO has a winning 2-tactic in MG(4, J).

PROOF. The proof is analogous to that of Corollary 17; now we refer to the proof of
Theorem 4, we observe that w; < b, and invoke Theorem 16. m

COROLLARY 19. Let A\ < k be infinite cardinal numbers such that:

(1) X has countable cofinality,

(2) Xt A (w-path)i,/@,, and

(3) [k]=" has the irredundancy property.
Then there is a cofinal family 4 C [k]" such that TWO has a winning 2-tactic in
MG(A. [k]™).

PROOF. Let 4 be a well-founded cofinal family in [£]* which is irredundant. Since
there is a rank-function from 4 to A* it follows from hypothesis 2 that (4, C) /4
(w—path)i Jeu By Corollary 8, 4 has a coherent decomposition. By Theorem 16, TWO

<\
).

has a winning 2-tactic in the game MG(A4, (k] =

The next theorem shows that under certain circumstances there is for each n a free
ideal J, and a cofinal family 4, C (J,) such that TWO does not have a winning n-tactic,
but does have a winning n + 1-tactic in MG(4,, J,). We think that Theorem 20 indicates
some relevance of the games as considered here for Telgarsky’s Conjecture (see 3.4).
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THEOREM 20. Let X\ be an infinite cardinal number and let 2 < n < w. If there is a
linearly ordered set (L,. <,) such that:

(1) cof(L,,<,) > w,

(2) (Lp, <) — (w—path)K/Q,, but

(3) (Ly <) 7+ (w-path)iL
then there is a free ideal J, and a cofinal family 4, C (J,) such that TWO does not have
a winning n-tactic, but does have a winning n + 1-tactic in MG(4,. J,).

REMARK. It follows from Propositions 3 and 4 of [S2] that if there is a linearly
ordered set which stisfies these hypotheses for n = 2, then there there is for each integer
n > 1 a linearly ordered set which satisfies these hypotheses.

PROOE. Let A, n and (L,, <,) be as in the hypotheses, fixed for the rest of the proof.
We may assume that the underlying set, L, is disjoint from ?(T(A)) U PA\) U A.
Define a free ideal J, as follows: The underlying set on which J, lives, say S,, is
[NM U L,. For each o € X let X, be the set {Z € [A]™™ : o & Z}. Let 7T be
{X4 : @ € \}. Put a subset X of S,, in J,, if:
XN [)\]<N" is a subset of a union of finitely many elements of 7, and XML,
is bounded above.
Then the cofinality of (J,,) is cof(L,. <,). Define 4, so that X € 4, if:

XNL,={r€L,:t<z}forsomezE€E L,.

Then A4, is cofinal in (J,).
CLAIM 1. TWO does not have a winning n-tactic in MG(4,, J,).

For let ® be an n-tactic of TWO. Forx € L, put V, = \[NU{y € L, : y <, x}.
Define a partition W: [L,]" — [A]<% so that

(V) UBV, Vi) U - UD(Vy, .., Vi) NI

is a subset of U{X(, o€ Y({x, ... x,,})}.

By (1) we obtain an w-path x; <, x; <, - -+ <, x;y <, - - - and a finite set F C A such
that W(xjy, . ... X4,) C F for all j. For each m we define: O,, = [\]" UV, . Letting
(01, Ty,...,04 Ty, ...) be the corresponding ®-play, we find that TWO has lost this
play since [MN <N NV (U To) € Uger Xoo # [N

It follows that TWO does not have a winning n-tactic.

CLAIM 2. TWO has a winning n + 1-tactic in MG(4,, J,,).

First observe that Uyecr Xo = [ A1<*% whenever F is an infinite subset of \.

Here is a definition of an n + 1-tactic for TWO in this game: Let {t, : o < )}
enumerate [\]<No bijectively. Let ®: [L,]"! — X be a coloring which witnesses that
(Lny <p) /> (w-path)'A’“;Lw. For each X in 4, let ¢x be that element of L, for which
XNL,={t€L,:t<dx}.
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For Uy C - -+ C U, elements of 4,, observe that ¢y, <--- < ¢y,,,. For X C Y sets
in 4, such that X N AN # YN [A]N0 we set W(X, ¥) = min{ar: 1, € Y\ X}.

Let Uy C--- C U,y € 4, be given. We define:

(1) G(U,,...,U)=0whenj<n+l,

(2) Gy, ....Up) = Xo U(Ly M Upyr) When ¢y, < -+ < ¢y,,,, and
O{oy,... .. 0u,, P =,

(3) G(Uy, ..., Upp1) = Xo U(Ly N Upyy) where « is minimal such that ¢, € U,y \ U,
for some i < n, otherwise.

We show that G is a winning n + 1-tactic for TWO. Thus, let

(OlﬂTh---,Om,Tm....)

be a G-play of the game. For typographical convenience we define:
(1) x, = ¢¢, for each i, and
2) o, =¥(0,, O,,) for each i for which this is defined.

There are two cases to consider.

CASE 1. {i:x, = x4} is finite.
Choose m such that x, < x,4; for all i > m. Then the set

{q)({xm+k+le ooy Xmtn+1 }) ck=1,2,.. }

is an infinite subset of A and it follows from 2. in the definition of G that this play is won

by TWO.
CASE2. {i:x, =x41}1is infinite. Then the set {i : W(O,, O,4) is defined} is infinite.
But then it follows from 3. in the definition of G that TWO wins this play. [

The hypotheses of Theorem 20 are consistent with ZFC (see Corollary 27 and Propo-
sition 29 of [S2]). At this point it is an open problem whether the hypotheses (and for
that matter the conclusion) of Theorem 20 are satisfied simply in the theory ZFC (see
Problem 9 of [S2]).

For the case when A = w, the example constructed in the proof of Theorem 20 shows
that hypothesis 2 of Theorem 16 is to some extent necessary. This is because:

(1) 4, has the coherent decomposition property: For choose o) < ap < - < o <
-+ - from w, and set T,, = X, U+ - -UX,,, foreach m. Then [w]< = UL, Xa,,» and
Xe, C X,, forj <i.ForA € 4, weputA, =(ANT,)UANL,).

2) (4,,C)— (w-path)'u'}/@, but

(3) (An. O /> (w-path)7L .

4.2. The game MG(J). MG(J) denotes the version of MG(A4,J) where (J) = 4. In
Problem 1 of [S1] it was asked whether there is for each k a free ideal J;, such that TWO
does not have a winning k-tactic in MG(J;), but does have a winning k + 1-tactic in
MG(J,). This problem is still open. In [S1], Corollary 10, it was proven that TWO does
not have a winning 2-tactic in the game MG(A WD), but that TWO has a winning
3-tactic in MG(AWDp) if for example the Continuum Hypothesis is assumed. We now
extend these results in two directions:
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(1) We solve Problem 3 of that paper affirmatively.

(2) We identify circumstances under which TWO does not have a winning k-tactic in
MG(N‘WDp) for any k; combining this with a consistency result of TodorCevi¢
(given in the appendix), it follows that it is also consistent that there is no & for
which TWO has a winning k-tactic in MG(NWDp).

It follows that the existence of a winning k-tactic for TWO in MG(?\[‘W'DR) is not
decided by the axioms of traditional set theory. One might now wonder if it is consistent
that for example TWO does not have a winning 3-tactic in MG(AWDp), but does have
a winning 4-tactic? This is not possible since a theorem of [S3] implies that either TWO
has a winning 3-tactic, or else there is no k such that TWO has a winning k-tactic in
MG(NWDR).

PROPOSITION 21. Thetheory “ZFC +—- CH +TWO has awinning 3-tacticin MG(Jg) "
is consistent.

PROOF. Start with a model in which (A/WDp) has a cofinal chain and in which
('P(C), C) Y (wpath)i,/@. Let C denote this cofinal chain. By Theorem 15 we may
assume that C has a coherent decomposition and that it satisfies the partition relation
(C,C) #> (w-path)? /<~ It follows that:

(1) (AXWDR),C) # (w-path)i,/@, and
(2) The family (/%D has a coherent decomposition.

Theorem 16 implies that TWO has a winning 3-tactic in MG((?\[‘W@R>. NWDR).

This completes the proof of the proposition. =

The hypotheses used in the proof of this theorem hold for example in a model
constructed by Woodin ([W], pp. 31-47). Also, see see [S2], top of p. 60.

Our proof of Proposition 21 shows more generally that if J is a free ideal on a set
of cardinality at most ¢, and if (J) has a cofinal chain and the coherent decomposition
property, and if the negative partition relation (T(c). C) £ (w path)i/ -, holds, TWO
has a winning 3-tactic in MG(J) . This generalizes Theorem 8(a) of [S1].

Next we give hypotheses under which there is no k for which TWO has a winning
k-tactic in MG(JR). In the appendix we give a proof that these hypotheses are consistent
with ZFC. This consistency result is due to Todorcevic.

THEOREM 22. Assume that cof(Jg.O) = A and that the partition relation
(’.P(C), C) — (w-path)i/q holds. Then there is no k for which TWO has a winning
k-tactic in MG(NWDR).

PROOF. Let k as well as a k-tactic F for TWO be given. Let X be a nowhere dense
subset of cardinality ¢ of R \ Q. Let 4 = {A4 : @ < A} be a bijectively enumerated
cofinal subfamily of A\ WDp.

Define a partition P: [P(X)]F — X so that

DXy, ... X =1
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where (3 is minimal such that
FQUX)U---UFQUX|,...,QUX;) CA;s.

Since (#(c), C) — (w-path)}, . it follows that (2(¢), €) — (w-path)} ,_, (see [S2],
Proposition 36). Accordingly, choose a finite set G C A and an increasing w-sequence
X, C X, C ---of subsets of X such that ®({X,.1, ..., X4 }) € Gforallj. Put O, = X,UQ
for all n. Let B be the nowhere dense set | J{A, : @ € G}. Alsodefine T, = F(Oy, ..., 0))
forj <k, and T),x = F(Oy1,. .., O,y ) for all j. Then

(01, 11,02, Tp,...)

is an F-play of MG(A/'WDp) for which Q C U2 On and U2, T, € B. Since B is
nowhere dense, Q \ B # (). It follows that TWO has lost this play. n

We now consider games of the form MG([k]<Y). In Proposition 15 of [S1] it was
shown that if TWO has a winning k-tactic in this game for some k, then TWO in fact has
a winning 3-tactic. It is not known if “3” is optimal (this is Problem 7 of [S1]). It also
follows from [S1], Proposition 5, that if A — (w—path)i J<w then TWO does not have a
winning k-tactic in this game for any k. We now present slightly sharper results.

THEOREM 23. Let A be an uncountable cardinal number of countable cofinality. Let
k > 1 be an integer. The following statements are equivalent:

(1) Player TWO has a winning k-tactic in the game MG([A*]<).
2) (M1, 0 A (w-Path)'j,/@-

(3) A" 75 (w-path)? _ and (P(V), C) 7> (w-path)f,_

PROOF. By Theorem 1 and Proposition 15 of [S1] we may assume that k € {2,3}.
Let A\ <--- <\, <---beasequence of cardinal numbers converging to \.
1. = 2. Let F be a winning k-tactic for TWO in MG([\*]<}). Put § = \* \ \. Define

a coloring ®: [[S]=*]¥ — w so that

DXy, .... X)) =min{n: [FOUX],...,AUX)| < A}

Since F is a winning k-tactic for TWO, @ is a coloring which witnesses the partition
relation in 2.

2. = 1. The cofinal chain {a : o < A*} of [A*]=* has a coherent decomposition
whence this entire family of sets has a coherent decomposition. The partition property in
2 implies that [A\*]=" satisfies the hypotheses of Theorem 16; thus TWO has a winning
k-tactic in MG([\*<M).

The equivalence of 2. and 3. is also easy to establish. [

COROLLARY 24. Let )\ be an uncountable cardinal number of countable cofinality.
Assume that there is a strict order preserving map from ([\*1}, C) into (“w, <K). Then
TWO has a winning 2-tactic in MG([IA*]<).
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PROOF. The hypothesis implies that both A* and (LP()\). C) embed in (Yw, K) for
any A < ¢. It then follows from Corollary 13 of [S2] that the partition relations in 3. of
Theorem 23 hold for k = 2 for each A < c. [

4.3. The game SMG(J). For a free ideal J on an infinite set S, the game SMG(J)
(read “‘strongly monotonic game on J) is defined so that an w-sequence (O,.Tj.....
Oy, Ty, ...)is aplay if for each n,

(1) 0, € {J) is player ONE’s move in inning n,

(2) T, € J is player TWO’s move in inning n, and

(3) 0, UT, C Opyy.
Player TWO wins this play if Use, O, = U2 Th

Throughout this section we assume that (J) is a proper ideal on S.

THEOREM 25. Let J C P(S) be a free ideal and let 4 be a cofinal subfamily of {J)
such that:
(1) TWO has a winning k-tactic in MG(A4, J),
(2) there are functions ®y: (J) — J and ®3: (J) — A such that:
(a) A C D,(A) for each A € (J), and
(b) ®3(A) C ®y(B) whenever AU®D(A) C B € (J).
Then TWO has a winning 2-tactic in SMG(J).

PROOF. Let 4, ®, and @, be as in the hypotheses. For each A in (J) define (A;. . . .. Ap)
so that A} = @»(A) and Aj;; = D(A,) for each j < k. Also define: W(A) = ®(A) U
DA U UD(A).

Let F be a winning k-tactic for TWO in MG(4. J). Define a k-tactic, G, for TWO as
follows. Let A C B be given.

CASEl. GA)=FA)U---UF(A,.....Ap) UY(A).
CASE 2. If Ay C By, we let G(A, B) be the set

F(As,....,AwB)UF(As.....A.By.By)U---UF(B,..... B UY(B).

CASE 3. Otherwise we put G(A. B) = G(B).
Then G is a winning 2-tactic for TWO in SMG(/J). For let

be a play of SMG(J) during which TWO followed the 2-tactic G. For each j we put
M} = ®y(0)), ..., M} = ®(M; ). An inductive computation shows that
o (M|, M%, ces M’l‘. Mé. M%, .. .M’z‘, ...) is a sequence of legal moves for ONE in
the game MG(4, J), and that
o () EMHhU---UFM!,....MY) C T, and
(2 FM},....MHUFM;,....Mf M} ) U UFRME ML, MBS C Ty
for each j.
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Since F is a winning k-tactic for TWO in the game MG(4.J), and since | )2, O, C

n=1

U, M), TWO won the given play of SMG(J). .

The next corollary solves Problems 10 and 11 of [S1]. The notation N - X used in its
proof denotes the set {n - x : n € N and x € X}.

COROLLARY 26. Player TWO has a winning 2-tactic in the game SMG(JR).

PROOF. Fix, by Corollary 17, a cofinal family 4 C (N WDp) such that TWO has a
winning 2-tactic in MG(A, A\ WDp).
We define @: (NWDR) — NWDg and @y: (N WD) — A as follows:
Fix X € (Al'WDp), and choose a sequence (Xo. X). .. .. X, . ..) such that:
() Xo =X,
2) X,pp € 2and N - X, C X,y
for each n. Put @,(X) = U2, X,.
Fix X € (AWDp) and let @;(X) be a nowhere dense set for which ®(X) C N-®;(X).
Then 2, ®, and P, are as required by Theorem 25. (]

COROLLARY 27. For each of the ideals J, constructed in the proof of Theorem 20,
TWO has a winning 2-tactic in SMG(J,).

PROOF. Let 4, be as in the proof of Theorem 20. For each X € (J,,) we let ®,(X) be
an element of 4, which contains it, and we let ®;(X) = {ax} where ax € L, \ ®2(X).
Then 4,, @, and P, are as required by Theorem 25. n

Before turning to another application of Theorem 25 we give examples of free ideals
J which show that TWO does not always have a winning k-tactic in the game SMG(J)
for some k. These examples are also relevant to the material of the next section. The
symbol M(w,?2) denotes the smallest ordinal « for which the partition relation o« —
(w-path)ikw holds. M(w, 2) is a regular uncountable cardinal less than or equal to ¢*. It
in fact satisfies the partition relation M(w, 2) — (w-path)’w"/g for all n. Let x be an initial
ordinal number. It is consistent that M(w, 2) is equal to X, while ¢ is larger than & (this

is yet another result of Todorcevic).

THEOREM 28. Let \ be a cardinal number of countable cofinality and let k be a
cardinal number larger than \. If M(w, 2) < \*, then there is no k such that player TWO

has a winning k-tactic in SMG([k]).

PROOF. Let F be a k-tactic for TWO.

Player ONE’s counter-strategy will be to play judiciously chosen subsets from . We
first single out those sets from which ONE will make moves.

Choose sets Sg C S; C --- C S, C -+ - € [k]" for @ < A* such that:

(1) A C So,

@) U{FSi o 8i) i j <k iy <+ <@y < a} C S, foreach 0 < a < A*.
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Now let Ry < A; < Ay < --- < A be an increasing sequence of regular cardinal
numbers converging to A. Define a function I": [M*1* — w so that

T,y &) =min{m: |[F(Se,, ... Se)| < An}-

Then, on account of the relation M(w,2) < A*, choose an m < w and a sequence
A <+ < Qg < -+ - from AT such that T'(ayy, .. ., @j) < mforall j.
Consider the sequence

(Seys FSar)s - - -+ S FSaxys o3 Seq)s - -+ Sogyons FSatppe o+ S ) - - ).

It is a play of the game SMG([x]<") during which TWO used the k-tactic F. But
(U T < A =12, Oyl, so that TWO lost the play. .

COROLLARY 29. For w = cof(\) < \ < k cardinal numbers with cof ([k]=*, C) = K,
the following statements are equivalent:
(1) TWO has a winning 2-tactic in SMG([k]<").
(2) X* £+ (w-path)? .

PROOF. It follows from Theorem 28 that 1. implies 2.

That 2. implies 1. By the cofinality hypothesis and by 2. we find, according to
Corollary 19, a well-founded cofinal family 4 such that TWO has a winning 2-tactic
in MG(4, [£]<"). We may assume that there is an enumeration {A, : « < k} of 4 for
which o € A, for each a. Define @, and @, as follows:

For X € [k]=* define a sequence (Xo, . . ., X, . . .) such that:

(l) Xo = X, and
(2) Xns1 = U(xéX,, Aq
for each n.

Choose @,(X) € 4 such that |, , Xn € 2(X).

Pick zx € (n \ <I)2(X)) and pick py minimal such that py ¢ ®>(X), and (X)) C A,,.
Put ®(X) = {zx, px}.

Then 4, ®| and ®, are as required by Theorem 25. n

Results related to Corollary 29 will be discussed after Theorem 33.

We finally mention that it is still unknown whether there is for each m a free ideal J,,
such that TWO does not have a winning m-tactic, but does have a winning m + [-tactic in
SMG(J,,). This is Problem 9 of [S1]. In this connection it is worth noting the following
relationship between winning k-tactics in MG(J) and winning m-tactics in SMG(J). The
proof uses ideas as in the proof of Theorem 25.

THEOREM 30. If TWO has a winning k-tactic in MG(J), then TWO has a winning
2-tactic in SMG(J).
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4.4. The game VSG(J). For a free ideal J on an infinite set S, the game VSG(/J)
(read “very strong game on J”) is defined so that an w-sequence (01.(T|.Sl). o
0, (Tp. Sy, .. ) is a play if for each n,

(1) O, € (J) is player ONE’s move in inning n,

(2) (T, Sy) € J x (J) is player TWO’s move in inning n, and

3) o,uT,JUS, C 0O,,.
Player TWO wins this play if J;2, O, = U2 T

We assume for this section that (J) is also a proper ideal on S. Given a cofinal family
A C (J), we may assume whenever convenient that ONE is playing from 4 in the game
VSG(J). It is clear that if TWO has a winning k-tactic in SMG(J), then TWO has a
winning k-tactic is VSG(J).

PROBLEM 1. Let J be an ideal on a set S and let £ be a positive integer. Is it true that
if TWO has a winning k-tactic in VSG(J), then TWO has a winning k-tactic in SMG(J)?
In the next theorem we find a partial answer.

THEOREM 31. Let J be a free ideal on a set S and let k be a positive integer. If
add((J). C) = cof({(J), Q), then the following statements are equivalent:
(1) TWO has a winning 2-tactic in SMG(J).
(2) TWO has a winning k-tactic in SMG(J).
(3) TWO has a winning k-tactic in VSG(J).

PROOF. That 1. and 2. are equivalent: This is Theorem 19 of [S1]. That 2. implies 3.:
Let F be a winning k-tactic for TWO in SMG(J). Define G so that

for j < k. Then G is a winning k-tactic for TWO in VSG(J). That 3. implies 2.: Let G be
a winning k-tactic for TWO in VSG(J). Then choose a sequence (ME 2 € < cof ({(J), C))
such that:

(1) M C M, for £ <v <cof({(J), C) and

(2) {M¢: & <cof((J), C)} is cofinal in (J).

Now cof((J). C) is a regular uncountable cardinal number. We may thus further
assume that the sequence (ME & < cof ((J). C)) has been chosen such that if (U, T) =
G(M,. . ... M), then UUT C M, forall §; < n < cof((J). O).

For each X € (J) define c(X) = min{{ : X C M,}. For each £ choose z¢ € S\ M.
We now define a k-tactic, F, for TWO in SMG(J).

LetX, C---CX; € (J)foraj < kbe given.

CasE 1. a(X)) < -+ < a(X). Let (U,T) = G(Mux,).----Mux)) and define
F(X] g *ij) = UU{Z(I(X/HI}'

CASE 2. Otherwise, set F(X;...., X)) = {Za()(/m}. Then F is a winning k-tactic for
TWO in SMG(J). [

There is the following analogue of Theorem 25 for the very strong game:
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PROPOSITION 32. Let J be a free ideal on a set S. If there is a cofinal family 4 C (J)
such that TWO has a winning k-tactic in MG(4, J), then TWO has a winning 2-tactic in
VSG(J).

PROOE. Let 4 C (J) be a cofinal family such that TWO has a winning &-tactic in
MG(A4, J). We will define a winning 2-tactic for TWO for the game VSG(J). To this end,
choose a winning k-tactic, F, for TWO for the game MG(4, J). For each X € (J) choose
aset Aj(X) C -+ C A(X) from 4 such that X C A;(X), and choose W(X) from 4 such
that A,(X) C ¥(X).

Let X C Y be sets from (/).

CASE 1. G(X) = (F(AI(X)) U UF(AI(X), .. .,Ak(X)).\P(X)).

CASE 2. Define G(X, Y) so that:
(1) GX,Y) = (F(AX), ..., AX), Al(Y) U - U F(AI(), ..., Al(Y)). () if
Y(X) C Y, and

2) G(X,Y) = G(Y) otherwise.

Then G is awinning 2-tactic for TWO in VSG(J). For let (01 (11, 81). 02,(T1. S2). . . )
be a play of VSG(J) such that (T, S1) = G(Oy) and (Ty+1, Sns1) = G(Oy. Opyy) for all n.
Then S, = W(0,) and Ay(O,) C A{(On41) for each n. An inductive computation, using
this information, shows that TWO won this play of VSG(/J). u

Combining Theorem 31 and Theorem 28 we see that TWO does not always have
a winning k-tactic in games of the form VSG(J). Combining Theorem 31 and Corol-
lary 29 we obtain another game-theoretic characterization of the partition relation A* —
(w-path)i J<w when A is an uncountable cardinal of countable cofinality.

Analogous to the case of the ideal of countable subsets of an infinite set, there
is for each uncountable cardinal number A which is of countable cofinality, a proper
class of cardinals k for which the ideal [k]=* has the irredundancy property. It is also
a consequence of MA +¢ > )\ that the partition relation A\* /- (w-path)i <, holds.
Accordingly it is consistent that there is a proper class of cardinals x such that TWO
has a winning 2-tactic in the game VSG([x]="). The following problem (to be compared
with the upcoming Conjecture 1) is open.

PROBLEM 2. Let A be an uncountable cardinal of countable cofinality. Is it true that if
TWO has a winning 2-tactic in the game VSG([A*]<*), then TWO has a winning 2-tactic
in VSG([s]<) for all K > A\?

Our next theorem (Theorem 33) applies to abstract free ideals whose o-completions
have small principal bursting number. It is not clear to us whether “3” occurring in
Theorem 33 is optimal. One of its applications is that ZFC + GCH implies that TWO has
a winning 3-tactic in VSG([x]<*) for all k. It is very likely that the “3” appearing in this
application is not optimal, as will be discussed later.

THEOREM 33. Let J be a free ideal on a set S such that
(1) bu({J), C) =N, for some finite n,
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(2) there is an (wy, wy)-pseudo-Lusin set in ({J), C) foreach k € {1,...,n},
(3) cof({J),C) =\, and
(4) (IN<™, C) has the coherent decomposition property.

Then player TWO has a winning n + 1-tactic in VSG(J).

PROOF. We present a proof for the special (and more transparent) case where n = 2.
Thus, let J be a free ideal (on a set S) such that

(1) bu((J). ©) =R,

(2) add((J). C) =Ry,

(3) cof({J). C) = X and

(4) [A1=™ has the coherent decomposition property.

Let 4 be a well-founded cofinal family of cardinality A, suchthat[{B € 4 : B C A}| < ¥,
foreach A € 4.

For each A € 4 fix v4 < w) and a bijective enumeration {J¢(A) : £ < v4} of the set
{Xea:XCA}.

Choose a sequence (C¢ : £ < wy) from (J) such that:

(1) C: CC, for§ <wvand
(2) U£<.u1 Cf ¢ <J>
For A € 4 define {4 = min{{ <w; : C¢ £ A}.
For A C B elements from A4, define a set 7(A, B) such that (Sy, ..., S,) is in (A, B) if:
() 2<n<uw,
(2) S[ = B and Sz =A,
(3) Sjs1 € {Je(S) 1 <wg and Ce C Sy} for2 <j<n.

For (S)....,8,) and (T}, ..., T,) inT(A, B) define (S),...,8,) < (T1,....Tp)ifn <m
and (Sy,...,8,) =(Ty,...,T,). Then (T(A, B), <) is a tree. Each branch of this tree is
finite since (4, C) is well-founded. Indeed, 7(A, B) is a countable set.

Define F(A,B) to be the set of X € 4 such that X € {S|,...,S,} for some
(S1,....8») € 7(A,B). Then F(A, B) is a countable set. Notice that if C C A C B
are elements of 4 such that C € {J¢(A) : £ <v4 and C¢ C B}, then F(C,A) C F(A, B).

Let B C [ 4] be cofinal, well-founded and with the coherent decomposition property.
For each B € B choose a decomposition B = J;2, B" where each B" is finite, and these
decompositions satisfy the coherent decomposition requirement. Using Proposition 15
of [S2] we also fix a function

K:[BP —w

which witnesses that (B, C) /- (w—path)i/<w.
Define ®,: [4]*> — B such that

U{FX.Y): (3(S1,....S) €T(A.B))(X C Yand X, Y € {S..... Sah)}
is a subset of ®;(A, B). Also define ®,: [4]> — 4 such that

CeUCe, U (UDi(A, B)) C 024, B)
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where now A = J¢(B).

Note that if A, B and C are elements of 4 such that A C B C ®,(A.B) C C, then
(A, B) T @ (B, O).

Finally, choose for each A € 4 a ®3(A) € A such that AU C¢, € P3(A).

Choose for each A € 4 a sequence of sets A C ... A" C .- such that each A’ is in
Jand A = ;2 A"

We now define a 3-tactic for TWO: First note that for the very strong game we may
make the harmless assumption that player ONE’s moves are all from the cofinal family
4.1Let A C B C C be sets from 4. Here are player TWO’s responses F(A), F(A, B) and

F(A. B, C):
CASE 1. 7(A)=((0,¢3(A)).
CASE2. F(A.B) = (. ®2(A. B)).

CASE 3. F(A,B.C) = (D.®y(B.C)) if ®2(A,B) C C, where D = C}'U -+ U
Cr is given by: m > K({®(A. B), ®(B. C)}) is minimal such that (®(A.B))" C
(®1(B.C))" forall n > m, and (,(B.C))" = {C1.....C,}.

CASE 4. In all other cases define F(A, B, C) = F(B, O).
To see that ¥ is a winning 3-tactic for TWO, consider a play

(01.(T1.81). 02.(T2. 51). ..

of VSG(J) for which

(1) (T1.81) = F(0y),

(2) (T2, 82) = (04, 07) and

(3) (Tu+3+8n43) = F(Opsts Opsa, Ons3)
for all n.

Then T; = T2 = @, Sl = (I)3(0|), Sz = (I)z(O], 02) and Sn+| = (Dz(O,,.O,,H) for all
n > 2. From the fact that O,, O S,_; for all n > 2 it follows that

O C O, CD(01,02) T O3 CDP(07,03) T 04 C -+

whence @,(0;, 0;) C @ (0,2, 03) C ®1(03,04) C ---. For each k let m; denote the
minimal integer such that

(1) K({P1(Ok: Op1). @1(O1, Opi2)}) < my and

@) (P10 01)" C (DO O4i2)) forall n 2> my.
From the properties of X it follows that there are infinitely many k such that m; < my
for each j < k. Fix i, and fix the smallest j > i such that O; € ®{(0;. Oj,;). Then let t be
minimal such that O; € (®,(0;. 0,-+,))’. For each k such that m, < my forall ¢ < k, and

t < my, 0,'."* C Ty. It follows that O; C |2, T,. From this it follows that TWO won this
F-play of VSG(J). =

COROLLARY 34 (GCH). For every infinite cardinal number k, TWO has a winning
3-tactic in VSG([H]<N0)_
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The results of Corollaries 29 and 34 should be compared with those of Koszmider
[Ko] for the game MG([k]<™). In Corollary 29 we show that there is a proper class of
& such that TWO has a winning 2-tactic in SMG([x]<*), and thus in VSG([k]<™). This
class includes R, for all n < w. In [Ko] it is proven that TWO has a winning 2-tactic
in MG([R,,]<*) for all n € w ([Ko], Theorem 18). Under the additional set theoretic
assumption that both 0, holds and A = A* for all uncountable cardinal numbers A
which are of countable cofinality, Koszmider further proves that player TWO has a
winning 2-tactic in MG([£]<%) for all x ([Ko], Theorem 19). In light of these results it
is consistent that TWO has a winning 2-tactic in the game SMG([x]<%) and thus in the
game VSG([x]<*%) for all k. M. Foreman-[Fo] of Ohio State University has also proved
that even in the presence of supercompact cardinals TWO may have a winning 2-tactic
in MG([x]<) for all &.

All this evidence suggests:

CONJECTURE 1. One can prove in ZFC that player TWO has a winning 2-tactic in
the game SMG([1]<™) for each infinite cardinal number k.

We now give an example which shows, assuming the Continuum Hypothesis, that the
hypothesis that add({J). C) = X, of Theorem 33 is necessary (see Corollary 36).

THEOREM 35. Let wq be the initial ordinal corresponding to c. Then there is a free
ideal J C P(wqy1) such that cof((J). C) = Ry, and there is no positive integer k for
which TWO has a winning k-tactic in VSG(J).

PROOF. Define J C P(wq+1) such that X € J if, and only if, |X| < R, and X Nw is
finite. Then cof((J). C) = add({J), C) = wa+1- By Theorem 31 it suffices to show that
TWO doesn’t have a winning 2-tactic in SMG(J).

Let F be a 2-tactic for TWO in SMG(J). For w < 1 < wy41 put ¢(n) = sup(r)UF(n)).
Let C C weyr \ (w+ 1) be a closed unbounded set such that ¢(Y) < 3 whenever ¥ < 3
are in C.

For each n € C define ¢, C\ (n+1) — wey so that ¢, (B8) = sup(,@UF(n. B)) for all
3. Then choose a closed, unbounded set C,, C C \ (a+ 1) such that ¢,(B) <7 whenever
g <7vareinC,.

Let D be the diagonal intersectionof (C,, : n € C);ie., D={£ € C: €€ N{C,:n <
¢ and nj € C}. Then D is an unbounded subset of wq+1. Now observe thatif i <1, <13
are elements of D, then

) e,

(2) n3 € C,;,, N Cy,, and thus

(3) F(n1) € n2 and F(n1.1m2) € 1.
Define ®: [D]> — w so that

@1, B) = max (wv N (Fap U Fa, 3))) .

By the Erd6s-Rado theorem we obtain an n < w and an uncountable X C D such that
O, B)=nforalln <G e X. Pickng <m <--- <y <---fromXand put O, =17,
for each n. Put T} = F(O)) and T, = F(O,. O,,,) for each n.
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Then (O, T), .0,,T,, )isan F-play of SMG(J) which 1s lost by TWO [

COROLLARY 36 Assume the Continuum Hypothesis Then there ts a free ideal J C
P(wy) such that cof({(J), C) = Ry, and there 1s no positive integer k for which TWO has
a winnng k-tactic in VSG(J)

PROBLEM 3 Is there for each m a free 1deal J,, such that TWO does not have a
winning m-tactic, but does have a winning m + 1-tactic in VSG(J,,)?

45 The Banach-Mazur game and an example of Debs The Banach-Mazur game 1s
defined as follows for a topological space (X.7) Players ONE and TWO alternately
choose nonempty open subsets from X, in the n-th inning player ONE first chooses O,
and TWO responds with 7,, An 1nning 1s played for each positive integer The sets
chosen by the players must satisfy the rule

On+l g_ Tn g 011
for all n Player TWO wins the play
(OI~T1~ ~On~Tn~ )

if the intersection of these sets 1s nonempty, otherwise player ONE wins Following
Galvin and Telgarsky [G-T], we denote this game by BM(X, 7) In the early 1980’s Debs
[D] solved Problem 3 of [F-K] by giving examples of topological spaces (X. 7) for which
player TWO has a winning strategy in the game BM(X. 1), but no winning 1 tactic In
all but one of Debs’ examples 1t was known (1n ZFC) that TWO has a winning 2-tactic
We show here that also for the remaining example player TWO has a winning 2-tactic
(Corollary 41) This was previously known under the assumption of some additional
hypotheses

This result eliminates this example as a candidate for providing evidence (consistent,
modulo ZFC) towards the following conjecture of Telgarsky

CONJECTURE 2 (TELGARSKY, [T], P 236) For each positive integer k there is a
topological space (X, 1) such that TWO does not have a winning k tactic, but does have
a winming k + 1-tactic in the game BM(Xy., Ti)

The following unpublished result of Galvin 1s the only theorem known to us which
gives general conditions under which TWO has a winning 2-tactic if TWO has a winning
strategy 1n the Banach-Mazur game

THEOREM 37 (GALVIN, UNPUBLISHED) Let (X,T) be a topological space for which
TWO has a winning strategy in the Banach-Mazur game If this space has a © base P
with the property that

o [{VeeP BCV} <S(B)foreach Bin®,
then TWO has a winning 2-tactic
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Here the cardinal number S(B) is defined to be the minimal x such that B does not
contain a collection of x pairwise disjoint nonempty open subsets; it is said to be the
Souslin number of B.

This subsection is organised as follows. We first prove a theorem concerning k-tactics
in the Banach-Mazur game which is analogous to Theorem 5 of [G-T]. It provides an
equivalent formulation of Telgarsky’s conjecture which allows player TWO slightly
more information: TWO may also remember the inning number. After this we give our
result on Debs’ example.

4.5.1. Markov k-tactics. Whereas a k-tactic for player TWO remembers at most the
latest k moves of the opponent, a strategy for TWO which remembers in addition to this
information also the number of the inning in progress will be called a Markov k-tactic.

Note that if (X, 7) has a dense set of isolated points then player TWO has a winning
1-tactic in BM(X, 7). Thus we may assume that if at all possible, player ONE will avoid
playing an open set which contains an isolated point. We may therefore restrict our
attention to topological spaces without isolated points. By the following proposition we
may further restrict our attention to topological spaces in which each nonempty open set
contains infinitely many pairwise disjoint open subsets.

PROPOSITION 38. Let (X, T) be a topological space with no infinite set of pairwise
disjoint open subsets. Then there is a positive integer n such that:

T\ {0}=myu---UT,
where each 7, has the finite intersection property.
PROOE.

CLAIM 1. There is a positive integer n such that every collection of pairwise disjoint
nonempty open subsets is of cardinality < n. (This is a well known fact: see e.g. [C-N],
Lemma 2.10, p. 31.)

Now let n be the minimal positive integer satisfying Claim 1. Let U = {U), ..., U,}
be a collection of pairwise disjoint nonempty open subsets of the space. Then U is a
maximal pairwise disjoint family.

For 1 <i < n,let7, be a maximal family of nonempty open sets such that:

() U e,
(2) any two elements of 7, have nonempty intersection.

Ceam 2. 7\ {0}=mU- U,

PROOF OF CLAIM 2. Assume the contrary and let Y be a nonempty open set which
is in none of the 7,. Then we find for each i an X, in 7, which is disjoint from Y (by

maximality of each 7,). We may assume that X, C U, for each i. But then {X,, ..., X,, Y}
is a collection of n + 1 pairwise disjoint nonempty open subsets of (X, 7), contradicting
the choice of n.) n

Each 7, has the finite intersection property. n
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PROPOSITION 39 Let (X.T) be a topological space for which
(1) Player TWO has a winning strategy in the game BM(X, 1) and
(2) every collection of pairwise disjoint open subsets 1s finite
Then TWO has a winning 1-tactic in BM(X, 1)

PROOF  Write, by Proposition 38,
T\ {@} =7 U U,

where each 7, has the finite intersection property, and n 1s mimnimal Choose a pairwise
disjoint collection {U;, , U, } such that U, € 7, for each

CLAIM 3 For each j if S 2 S D 15 a denumerable chain from 1, then
M Sn # 0

PROOF OF CLAIM 3 Assume the contrary, and fix y and a chain §; © §; O in T,
such that N2, S, = () We may assume that S,.; C S, C U, forall n
Let £ be a winning perfect information strategy for TWO in BM(X.7) Consider the
play
(01.T. .0p.Ty. )

which 15 defined so that

(1) O =85,

2) T,,= F(O;, ,Op) forall m and

(3) Ops1 = T NS
Note that each response by player TWO using F'1s a member of 7,, whence each O, 15 a
legal move by ONE But TWO lost, contradicting the assumption that F was a winning
strategy This completes the proof of Claim 3 n

We now define a winning 1 tactic, G, for TWO Let U be a nonempty open subset of
X Choose the mimimal ; such that U, N U # () and put G(U) = U, N U Claim 3 imphes
that this 1s a winning [-tactic for TWO n

THEOREM 40 Let k be a positive integer If player TWO has a winning Markov k
tactic 1n the Banach Mazur game on some topological space, then TWO has a winning
k tactic in the Banach Mazur game on that space

PROOF For k = 1, see Theorem 5 of [G-T] So, assume k > 1, and let (X 7) be a
topological space such that TWO has a winning Markov k-tactic i the game BM(X. 7)
We may assume that every nonempty open subset of X contains infinitely many pairwise
disjomnt open subsets (player ONE may safely avoid playing open subsets not having this
property)

Let F be a winning Markov k-tactic for TWO For each nonempty open set U, let
{Jn(U) 0 < m < w} byectively enumerate a collection of infinitely many parrwise
disjoint nonempty open subsets of U

Define a k-tactic G for TWO as follows Let U; D 2 U, be nonempty open sets,
where 1 <) <k
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CASE 1. j=1:Put G(U)) = F(Jo(Uy), 1).

CASE2. j>1land Uy C Jy(U) for 1 < i <}, for some /. Put G(Uy,...,U) =
F(JIaUD) - T (U)). L+ ).

CASE 3. In all other cases define G(Uy, ..., U)) = G(U)).
To see that G is a winning k-tactic for TWO, consider a play

(Ola Tl ----- Olm Tm~ .. )

such that
e 7,=G(0y,...,0) forj < k and
® T, =G(Oyy1, ..., 0, for all n.
From the definition of G and the rules of the Banach-Mazur game it follows that T
is defined by Case 1 and T,, for m > 1 by Case 2. In particular, writing S,, for J,,,1(O,,)
we find that:
(1) T, = F(Sy,...,S,.)) forj <k and
(2) Tosk = F(Sns1+ - oy Span-n+ k)
for all n. Indeed,
01285271 20,28 2.

Since F is a winning Markov k-tactic, it follows that 02,0, # 0. ]

4.5.2. Debs’ example. Let o be the topology of the real line whose elements are of
the form U \ M where U is open and M is meager in the usual topology. The symbol
BM(R, o) denotes the Banach-Mazur game, played on the topological space (R, o). It
is known that TWO has a winning strategy but does not have a winning 1-tactic in
BM(R, 0).

COROLLARY 41. Player TWO has a winning 2-tactic in the game BM(R, o).
PROOF. Theorem 22 of [S1] and Corollary 26. [

5. Appendix: consistency of the hypotheses of Theorem 22. We start with a
ground model V and let P € V be a forcing notion of cardinality < ¢. For a cardinal &,
denote by P, the product of « copies of P taken side-by-side with countable supports.

LEMMA 42. Let \ be an uncountable cardinal. Suppose:
(1) Kk > K| > Ky 2> K3 > wy are cardinal numbers such that

k is a regular cardinal,

K= (K13,

K1 — (K2)F

Ky — (I‘i3)§\ and

K3 — (W)}
(2) Forcing with P adds a real to the ground model.
Then ¢ — (w- path)i J<w holds in the forcing extension VF».
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PROOE. Let A\, Kk, K|, K2, K3. P be as in the assumptions. Our argument closely follows
Section 2 of [Tol].

For sets A, B the symbol A /B denotes {{oz. B}:a€ABeEB a< d}.

Note that VP satisfies ¢ = k; we prove that Kk — (w- path)i/@‘ holds in V.

Let [1]*> = ;) Ki be a given partition in V. Let U be a P,-name for a member of
[k]~. Pick A € [k]" and for each & € A, a go € P, such that g, |~ @ € U and such
that the g,’s form a A-system. Define H: [A]> — () + 1) so that H({a. 3}) = i if i is the
minimal j such that p |- {a. 3} € K; for some p < gq. g if such j exists (i.e., if ¢, and
q; are compatible), and H({«, 3}) = X if g, is incompatible with ¢ ;.

By our choice of k, the partition relation K — (H;)i holds. Therefore, choose A, C
[A]" and i < X such that H"[A]?> = {i}. Since P, satisfies the ¢*-c.c., we have i < ).

Let (po.; : {a, B8} € [A;]?) be a fixed sequence of conditions such that p, ; < ga. g
and po.y |- {a, 8} € K;. For @ < 38 < 7 in A; we define Hy({a. 3.7}) to be a pair
(¢, d), where ¢ codes p,_; and p,.+ as structures as well as relations between the ordinals
of dom(p,. ;) and dom(p,~), and d does the same for p,~ and p;-. Since there are
only ¢ such pairs, and since k| — (r{z)g holds, choose A, € [A,]"* and (c. d) such that
H{/[A21> = {(c,d)}. For convenience, assume that A, has order type r». It follows that
for each o € A; the sequence (p,_; : 3 € Ay \ (a + 1)) forms a A-system with root p!,
(< ga), and that for each ¥ € A, the sequence (p;, : 3 € A, N") forms a A-system
with root p! (< g,). Moreover, the p?’s and p!’s jorm A-systems with roots p and p'
respectively. To see the latter, note that we may shrink A, to a cofinal subset Az so that
the relevant p2’s and p!’s do in fact form a A-system. Now consider a. 3,7 € A3, and
o, 3" € A;y. Comparing Ho({cx. 8.7}), Ho({ex. 3'.7}) and Hy({'. 3'.7}), one sees that
the sequence (p" : o € A,) forms a A-system. A similar argument works for the p!’s.

Also, p is compatible with p'. We call (p,_; : {@. 3} € B/B) adouble A-system with
root p* Up'.

There is no reason why for a given o the conditions p?, and p|, should be compatible:
if these were always compatible, our argument would yield a consistency proof of
¢ — (wy)3, which is false in ZFC.

We now save as much of the compatibility between p® and p! as is needed for the
consistency proof of ¢ — (w- path)i/@. Thin out A, to a cofinal subset A; such that
dom(p? Upl)yNdom(pUpl) = dom(p’Up') for all {a. 3} € A3/A;. Then in particular
pl, and p’} are compatible for {a, 3} € A3 /A;.

Now repeat the reasoning above with A, in place of A, k, in place of w, r3 in place
of 11, and w» in place of k,. Also, p!, will now play the role of gq, and p’} the role of ¢
for {a. B} € A3 /A3. We get a set Ay C Az of order type w> and some j < A (which may
be difterent from i), conditions p, ; for {«. 3} € As/A4 that form a double A-system
with root p° U p', and we get roots p% and p! as before. Now p, ; |- {a.3} € K, for
{0(. ﬁ} S A4/A4.

Our choice of p,_; at the beginning of the second run of the argument insures that
po < pland pl < pY and hence p° < p' and p' < p°.

Now let G be a generic subset of P,.. Define:
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X={aecA;:p’cG},
Y={ax€A,:p! €G},
W={aeAs:p’ €G},
Z={a €Ay :p! €G}.

Then Z C X and W C Y, and all four sets are cofinal in A4.

Now p® Up' forces the following facts:

(1) 3 € wVa € X\ 6 {{3 eW:{a.8} € K/} is cofinal in A4, and
(2) 3, € LWV € Y\ég{ﬁ €Z:{a. B} € K,} is cofinal in A4.

The combination of (1) and (2) suffices to construct in VP an w-path of the given
partition that uses only colors i and j:

Let & = max{6;.6,}. Inductively define an increasing sequence (x, : n € w) of
ordinals such that x,; € Z (and hence in X), xy,; € W, and {xy. xp41 } € K; (by (1));
{x2s1- X242} € K (by (2)).

It remains to prove (1) and (2). We shall prove (1) only; the proof of (2) is similar,
and is a special case of [To1], Section 2, property (1).

Assume that 5° Up' does not force (1). Then we can find a condition p* < p° Up' and
aP,-name D € [X]*> and foreach 3 € DaY; € Ay \ (B+ 1) such that p? |- {36} ¢ K;
whenever § € W\ ;.

Working in V, we pick B € [A4]* such that for each 3 € B we find r; < p% Up? such
that r; |~ 8 € D, and r; decides the value of 7;. We may assume that the r;’s form a
A-system with root < p* < p®Up', and that v, < 6 for all {3,6} € B/B. Since (p,.; :
B € B\ (a+1)) forms a A-system, we may also assume that dom(r;) Ndom(p ;5 \pf;) =0
forall 6 > 7v; in As.

Pick & € A, such that BN§ is uncountable and dom(py) N dom(p?) = dom(p°). Since
(pss : B € BN§) forms a A-system with root p! and since dom(p}) is countable, we have
dom(p;; \ p}) M dom(py) # O for only countably many 3 € BNé. So picka 3 € BN
such that dom(p ;5 \ p!) N dom(p?) = 0.

Define r € P, as follows:

dom(r) = dom(r;) U dom(pY) Udom(ps \ pi).
rl dom(ry UpY) = ry Upy.

and
r(€) = ps() for € € dom(ps \ dom(ry UpY)).

Then r is a well-defined condition with the property that r < r,,,f)f\’ and pys. So r
forces that {3.6} € X/W and that {3.8} € K, which is a contradiction. "

If P, is as in the assumptions of Lemma 42, then P, is a ¢*-c.c. poset. If GCH holds
in the ground model and A = w, then our proof works if £ > Ng. One can obtain the
consistency of ¢ — (w- path)il/@ with a smaller size of the continuum, but this is not
essential for our purposes. Todoréevi¢ has for example shown that, adjoining at least
w; Cohen reals to a model of the Continuum Hypothesis, produces a model in which

wy — (w- path)i/<3.
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We have actually proved something apparently stronger than ¢ — (w- path)i <. 0

VP, namely a relation denoted by ¢ — (w- path)i /<3
We do not know the answers to the following two problems concerning the w-path
partition relation

PROBLEM 4. Isitforeach integer k > 2 consistent, for some infinite cardinal numbers
k and A, that k /4 (w- path)i/<k, but kK — (w- path)§/<k+l°

PROBLEM 5. Isit consistent, for some 1nfinite cardinal numbers x and ), that for each
k<w, kA (w- path)i/<k, but K — (w- path)i/@?

THEOREM 43 (TODORCEVIC) If ZFC 1s a consistent theory, then so is the theory

ZFC + cof (N WDR), C) =R} + ¢ — (w- path)il/@

PROOF. Theorem 43 1s an immediate consequence of Lemma 42 It 1s well known
that 1f CH holds 1n the ground model, and P 1s e g Sacks or Prikry-Silver forcing, then
(b) and (c) of the lemma hold for every k. It 1s also known that adding any number of
Sacks or Prikry-Silver reals side-by-side with countable supports to a model of CH, one
obtains a model where the collection of meager sets whose Borel codes are from the
ground model, 1s a cofinal subfamily of (NWQ)R> (see [M]) Since |“wN V| =R, we
get cof((D\[‘WfDW., C) = N 1n the forcing extension u
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