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Abstract

In this note, we give an upper bound for the number of elements from the interval [1, p1/4
√

e+ε ] necessary
to generate the finite field F∗p with p an odd prime. The general result depends on the distribution of the
divisors of p − 1 and can be used to deduce results which hold for almost all primes.
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1. Introduction

In 1927, Artin conjectured that any positive integer n > 1, which is not a perfect
square, is a primitive root modulo p for infinitely many primes p. The conjecture
remains open, but was proved assuming the generalised Riemann hypothesis for some
specific Dedekind zeta functions by Hooley in [11]. Using the development of large
sieve theory leading to the Bombieri–Vinogradov theorem, one can show that Artin’s
primitive root conjecture is true for almost all primes. (See, for example, [10] or [13]
for an extended survey about this conjecture.) Another related classical problem is to
bound the size g(p) of the smallest primitive root modulo p. The best unconditional
result is g(p) = O(p1/4+ε) obtained by Burgess [3], as a consequence of his famous
character sum estimate. This is very far from what we expect. Assuming the
generalised Riemann hypothesis, g(p) = O((log p)6+ε) (see [15] following [1]). As
before, as a consequence of the large sieve, the upper bound g(p) = O((log p)2+ε) is
valid for almost all primes (see [4]). The problem of improving the unconditional
bound for the least primitive root seems presently out of reach. For instance, we cannot
directly perform the ‘Vinogradov trick’ to show that there exists a primitive root less
than p1/4

√
e+ε , but we can reach that range for the following question.
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Question 1.1. How large should N be (in terms of p) such that 〈1, . . . , N〉 is a
generating set of F∗p (in the sense that it generates F∗p multiplicatively)?

It is shown by Burthe [5] that N = p1/4
√

e+ε is sufficient and this seems to be the
lower limit of what is possible unless the Burgess character sum bound is improved.
Nonetheless, in view of this result, several interesting related questions can be
formulated. Harman and Shparlinski considered the problem of minimising the value
of k such that for a sufficiently large prime p and for any integer a < p, there is always
a solution to the congruence

n1 . . . nk ≡ a(mod p) with 1 ≤ n1, . . . , nk ≤ p1/4
√

e+ε ,

and showed in [9] that k = 14 is an admissible value. If we only ask that there is
a solution for almost all values of a, then k = 7 is admissible. From an algorithmic
point of view, another interesting question is to know precisely how many elements
of {1, . . . , N} are necessary to generate the full multiplicative group. In this note,
we consider the problem of bounding the size of a generating set consisting of small
elements less than N to answer the following question.
Question 1.2. How many elements of {1, . . . , p1/4

√
e+ε} do we need in order to generate

F∗p?
Let p be a prime and write # F∗p = p − 1 = qα1

1 · · · q
αr
r where qi, i = 1, . . . , r, are the

distinct prime factors of p − 1. As usual, we denote by ω(n) the number of distinct
prime factors of an integer n.

The first elementary result towards answering the question is the following lemma.

Lemma 1.3. For every ε > 0, we need only ω(p − 1) elements among {1, . . . , p1/4
√

e+ε}

to generate F∗p.

Proof. Using Burgess’ inequality for character sums (see [3]) and the ‘Vinogradov
trick’ (see [17, 18]), we can pick x1, . . . , xr < p1/4

√
e+ε such that xi is not a qith residue

modulo p. Fixing g a primitive root, we have xi = gβi with gcd(βi, qi) = 1. Thus,
gcd(β1, . . . , βr) is coprime to p − 1. By Bezout’s theorem, there exist integers l1, . . . lr
such that

∑r
i=1 liβi is coprime to p − 1. Hence, xl1

1 . . . xlr
r is a primitive root of F∗p and

the statement is proved. �

To improve on Lemma 1.3 and show that fewer small elements are needed to
generate the full group, we need information on the distribution of small prime divisors
of p − 1. To measure this distribution, we introduce the following definition.
Definition 1.4. Let l ≥ 1. Set ωl(n) = #{q prime, q|n, q ≤ (log(n + 1))ll}.

In the rest of the paper, logk x will denote the k times iterated logarithm when k is an
integer. We prove the following theorem in Section 3, using a combinatorial argument
and recent developments in sieve theory for nonregularly distributed sets.

Theorem 1.5. Let l := l(p) ≥ 1 be a parameter tending to infinity with p such that
l ≤ log p/(1000 log2 p). Then O(ωl(p − 1) + ω(p − 1)/log l) elements smaller than
p1/4

√
e+ε are needed to generate the multiplicative group F∗p, where the implied

constant is effective.
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We will also give a more precise result of this type and deduce stronger results for
almost all primes in Section 4. In the next section, we recall some sieve results that we
will use in our argument.

2. Sieve fundamental result

In this section, we will use the notations and recall the setting of [12]. Let P be the
set of all primes and let P ⊆ P be a subset of the primes ≤ x. The most basic sieving
problem is to estimate

Ψ(x;P) := #{n ≤ x : p | n =⇒ p ∈ P}.

In other words, we sieve the integers in [1, x] by the primes in Pc = (P ∩ [1, x]) \ P.
A simple inclusion–exclusion argument suggests that Ψ(x;P) should be approximated
by

x
∏
p∈Pc

(
1 −

1
p

)
.

This is always an upper bound, up to a constant, and also a lower bound, up to a
constant, if P contains all the primes larger than x1/2−o(1). On the other hand, there are
examples where Ψ(x;P) is much smaller than the expected lower bound. For instance
if one fixes u ≥ 1 and lets P consist of all the primes up to x1/u, then the prediction is
about x/u, whereas, by an estimate for the number of smooth numbers, we know that
Ψ(x;P) = ρ(u)x with ρ(u) = u−u(1+o(1)) as u→∞, which is much smaller for large u.

Granville et al. [6] were the first to study what happens if one also sieves out some
primes from [x1/2, x]. They conjectured that the critical issue is to understand what is
the largest y such that ∑

p∈P
y≤p≤x1/u

1
p
≥

1 + ε

u
.

More precisely, they conjectured that when this inequality holds, the sieve works as
expected. We will use the following result proved by Matomäki and Shao confirming
this conjecture.

Theorem 2.1 [12, Theorem 1.1]. Fix ε > 0. If x is large and P is a subset of the primes
≤ x for which there are some u, v with 1 ≤ u ≤ v ≤ log x/(1000 log2 x) and∑

p∈P
x1/v<p≤x1/u

1
p
≥

1 + ε

u
,

then
Ψ(x;P)

x
≥ Av

∏
p∈Pc

(
1 −

1
p

)
,

where Av is a constant with Av = v−v(1+oε(1)) as v→ ∞. If u is fixed, one can take
Av = v−e−1/uv(1+oε(1)) as v→∞.
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3. Idea of the method and main results

Definition 3.1. We define h(p) as the number of elements smaller than p1/4
√

e+ε which
are sufficient to generate the multiplicative group F∗p.

We aim to find improvements on the size of h(p). The main idea is as follows. For
large divisors q1 and q2 of p − 1, we want to exhibit a reasonably small prime which
is simultaneously a non q1th residue and a non q2th residue. The nonexistence of such
a prime implies by a sieve argument that the set of q1th (or q2th) residues is large.
On the other hand, due to the sparsity of powers, the set of q1th (respectively q2th)
residues is relatively small, leading to a contradiction. Hence, we do not need to pick
up a nonresidue for every power as in Lemma 1.3. We can play this game with more
divisors in order to decrease the number of steps needed in the argument. In order to
do that, we will use the sieve result from Section 2. The dependence on v in the lower
bound of Theorem 2.1 prevents us from grouping as many divisors as we want, so we
carefully split the set of prime divisors in blocks of size k with an ‘optimal’ value of k
for the application of Theorem 2.1.

Given a parameter l ≥ 1, we obtain a bound for h(p) depending on ωl(p − 1). If for
some relatively large l, ωl(p − 1) is small, this gives a significant improvement on the
trivial bound ω(p − 1) in Lemma 1.3.

The next result is the main tool in deriving these improvements. It shows that we
can handle several large prime divisors of p − 1 simultaneously.

Proposition 3.2 (Main proposition). Let l := l(p) ≥ 1 be a parameter tending to infinity
with p and k an integer with k ≤ 1

4 log l. Moreover, assume l ≤ log p/(1000 log2 p).
Suppose that q1, . . . , qk are prime divisors of p − 1 greater than (log p)ll. Then, if p is
sufficiently large, there exists an integer n ≤ N = p1/4

√
e+ε which is a non qith residue

for i = 1, . . . , k.

Proof. Define S = {1 ≤ n ≤ N : n is a non qith residue modulo p for i = 1, . . . , k} and
suppose that S = ∅ which means that every integer in this interval is a qith residue
modulo p for at least one i. Thus, in particular,

P = {q prime, 1 ≤ q ≤ N} =
k⋃

i=1

Pi (3.1)

where Pi = P ∩ {qith residues modulo p}. For x sufficiently large and u, v parameters
to be specified later, by Mertens’ theorem (see [8, Ch. 22, Theorem 427]),∑

q≤x

1
q

= log2 x + O(1)

and thus ∑
q∈P

x1/v<q≤x1/u

1
q
≥

1
2

log(v/u).
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Consequently, using (3.1), there exists i ∈ {1, . . . , k} such that∑
q∈Pi

x1/v<q≤x1/u

1
q
≥

1
2k

log(v/u). (3.2)

To apply Theorem 2.1, we need the right-hand side of (3.2) to be larger than (1 + ε)/u
under the conditions 1 ≤ u ≤ v ≤ log x/(1000 log2 x). Fix u such that

1
u

=
1

4
√

e
+ ε

and set x = p so that N = x1/u. The condition of Theorem 2.1 is satisfied provided
k ≤ 1

4 log v. Therefore,
Ψ(p;Pi)

p
≥ Av

∏
q∈Pc

i

(
1 −

1
q

)
.

From the third Mertens’ Theorem (see [8, Ch. 22, Theorem 429]), the product is
trivially bounded from below by∏

q≤p

(
1 −

1
q

)
≥

1
2 log p

for p large enough. Thus, we obtain Ψ(p;Pi)� Avx/log p� v−vx/log p. On the other
hand, we are counting integers less than p which are qith residues, of which there are
at most p/qi. This leads to a contradiction when v−v(log p)−1 ≥ 1/qi, or equivalently
qi ≥ (log p)vv. Under this condition, the set S is nonempty. This completes the proof
with the choice v = l for the parameter v. �

Proposition 3.2 helps us to group the divisors in ‘blocks’ of size k. Using this idea
in a simple way, we are able to deduce the result announced in the introduction.

Theorem 3.3. Let l := l(p) ≥ 1 be a parameter tending to infinity with p such that
l ≤ log p/(1000 log2 p). For a sufficiently large prime p,

h(p)� ωl(p − 1) +
ω(p − 1) − ωl(p − 1)

log l

where the implied constant is effective.

Proof. Consider the prime divisors of p − 1 which are greater than (log p)ll. We can
apply Proposition 3.2 with k = 1

4 log p and pick up an integer less than p1/4
√

e+ε which
is a non qth residue for k different large values of q. Regrouping the large divisors
of p − 1 in blocks of size k gives at most (ω(p − 1) − ωl(p − 1))/k blocks. The small
divisors can be treated individually using Burgess’ character sum inequality combined
with the ‘Vinogradov trick’ as in Lemma 1.3. This concludes the proof. �

Remark 3.4. The value of the optimal parameter l is not so clear for a general p, it will
depend heavily on the distribution of the prime divisors of p − 1.
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We can iterate the argument used to prove Theorem 3.3 and obtain the following
stronger result.

Theorem 3.5. Let ln(p), n = 0, . . . ,N, be a strictly decreasing sequence of parameters
tending to infinity with p such that (log p)ll00 > p and l1 ≤ log p/(1000 log2 p). Then,
for a sufficiently large prime p,

h(p)� ωlN (p − 1) +

N−1∑
n=0

ωln (p − 1) − ωln+1 (p − 1)
log(ln+1)

.

Proof. We argue as in Theorem 3.3, regrouping the divisors of p − 1 lying in the
interval ](log p)lln+1

n+1, (log p)llnn ] in blocks of size kn ≈ log(ln+1). The contribution of
the remaining small prime divisors is given by ωlN (p − 1). �

4. Results for almost all primes

We can use Theorem 3.5 to obtain a result on a set of primes of density 1. We may
note that stronger results about primitive roots are known for almost all primes.

The next result gives a bound on the number of small prime divisors of p − 1 for
almost all primes p.

Lemma 4.1. Let A > 1 and ε > 0. Suppose l is such that ll � x1/2−ε . Then, the set of
primes p ≤ x such that ωl(p − 1)� log l is asymptotically of density 1.

Proof. We evaluate the average number of primes satisfying the inequality of the
lemma. By the Bombieri–Vinogradov theorem (see for instance [2]),∑

p≤x
p prime

∑
q|p−1

q≤(log p)ll,q prime

1 =
∑

q≤(log x)ll

∑
p≡1 mod q

p≤x

1 =
∑

q≤(log x)ll

x
(q − 1) log x

+ O
( x
logA x

)
.

Thus, Mertens’ theorem gives∑
p≤x

p prime

∑
q|p−1

q≤(log p)ll,q prime

1 =
x

log x
(log l + log2 l + M) + O

( x
logB x

)

where M is the Meissel–Mertens constant and B = min{A, 2}. The conclusion follows
easily. �

Remark 4.2. We could obtain the normal order of ωl(p − 1) following the method of
Turán (see [16]) using the first two moments. It might even be possible to prove a
more precise statement like an Erdős-Kac version of this result using the method of
Granville and Soundararajan (see [7]), but we will not explore this here.

Using Theorem 3.5 to localise the divisors of p − 1 more precisely, we derive a
result for almost all primes.

Corollary 4.3. For almost all primes p, we have h(p)� (log3 p)2.
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Proof. Define the following special ‘dyadic’ parameters: ln = exp(log2 p/(2n log3 p))
for 1 ≤ n ≤ N = (log3 p − 2 log4 p)/log 2. It is easy to see that this sequence satisfies
the hypotheses of Theorem 3.5. Thus,

h(p)� ωlN (p − 1) +

N−1∑
n=1

ωln (p − 1) − ωln+1 (p − 1)
log(ln+1)

+
ω(p − 1) − ωl1 (p − 1)

log(l1)
.

By Lemma 4.1, the bound ωln (p) ≤ log(ln)(log3 p) holds for almost all primes p ≤ x
with an exceptional set of ‘bad’ primes of size at most x/(log x log3 x). By applying
Lemma 4.1 and this argument N times, we arrive at a set of primes of density 1
satisfying ωln (p − 1) ≤ log(ln)(log3 p) for 1 ≤ n ≤ N with a negligible exceptional set
of ‘bad’ primes. Finally, by the trivial inequality log(ln)/log (ln+1) ≤ 2,

h(p) ≤ log(lN) log3 p + 2N log3 p + log3 p� (log3 p)2

on a set of primes of density 1. �

Remark 4.4. As an application of the large sieve, Pappalardi obtained a result of a
similar flavour. More precisely, in [14], he showed that the first log2 p/log2 p primes
generate a primitive root modulo p for almost all primes p.

Acknowledgements

The author is grateful to Sary Drappeau and Igor E. Shparlinski for very helpful
discussions and comments.

References
[1] N. C. Ankeny, ‘The least quadratic non residue’, Ann. of Math. (2) 55 (1952), 65–72.
[2] E. Bombieri, ‘On the large sieve’, Mathematika 12 (1965), 201–225.
[3] D. A. Burgess, ‘On character sums and primitive roots’, Proc. Lond. Math. Soc. (3) 12 (1962),

179–192.
[4] D. A. Burgess and P. D. T. A. Elliott, ‘The average of the least primitive root’, Mathematika 15

(1968), 39–50.
[5] R. J. Burthe Jr, ‘Upper bounds for least witnesses and generating sets’, Acta Arith. 80(4) (1997),

311–326.
[6] A. Granville, D. Koukoulopoulos and K. Matomäki, ‘When the sieve works’, Duke Math. J.
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