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Let A' be a complex normed space, with dual space X', and T a bounded linear operator
on X. The numerical range V(T) of T is defined as {f(Tx) :xeX,fe X', || x \\ = \\f\\ = f(x) = 1}.
Let | V(T) | denote sup {| A |: Ae V(T)}. Our purpose is to prove the following theorem.

THEOREM. \\T"\\ ^ n\(^\ \V(T)\n ( w = l , 2 , . . . ) . (1)

From the proof of Stirling's formula, it is known that

n'e"
g * ( l 2 )

The estimate for || T" | given in the present theorem is therefore very much better than the
estimate || T" || g e" | V{T) \" given by the case n = 1.

When A' is a complex Hilbert space, V(T) = {(Tx, x): || x || = 1}. In this case, Berger [1]
proves that | V(T) \ g, 1 implies that | V(Jn) | g 1, and so || T" | ^ 2, for positive integers n. An
elementary proof of this is given by Pearcy [8]. For a general normed space, V(T) is the
union of all possible numerical ranges W(T) in the sense of Lumer [6]. For each such W(T),
| W(T) | = | V(T) \, and so we may replace V by W in (1). The theorem for the case n = 1 was
proved by Bohnenblust and Karlin [3]; a simplified proof was given by Glickfeld [5], and the
present result is based on his argument.

We shall require the following elementary result from Lumer [6].

LEMMA. Let T be a bounded linear operator on a Banach space, with | V{T) | < 1. Then
(I-T)~l exists, || (I-T)-1 \\ g ( 1 - | V(T)\)-\ and p(T) S \ V(T)\, where p{T) denotes the
spectral radius of T.

Proof of Theorem. By [6], we have

,upReK(r>= lim
a - 0

and therefore | V{T) | is unchanged if X is replaced by its completion. We assume therefore
that X is complete.

Let (ok(k = 1,2,..., m) be the /nth roots of unity. Let n and/; be positive integers. Assume
first that | V(T) \ = \x < 1, and that m > n. Then
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By the lemma,
1 . 2 . . . M

T" I

1.2...(«
•r+1"+.

1

Therefore

and

Letting m -» oo, we deduce that

](/-«»*-' T)"" | ^ (1—/*)"*,

£(1-/*)"'•

(2)

If/i = 0, (2) gives/*I TI ^ l(/> = 1,2,...), so that T = 0. So assume that n ? 0.
Now let T be any bounded linear operator on X, and apply (2) to nTI(p+l)(i for

/ » > « - ! . Then

Letting p -* oo, we have

Remark. We do not know of any operator T such that | V(J) | ^ 1 and {| V ||} is un-
bounded. It is quite easy to prove that, if T is an operator on a finite-dimensional space, or,
more generally, is a meromorphic operator (Taylor [9], Caradus [4]), then {| T" |} is bounded
whenever | V(T) \ ̂  1.

To prove this, let T be a bounded linear meromorphic operator with | V(T) | = 1. Let
sp(r) denote the spectrum of T. Suppose that Aesp(r) with \k\ = 1. Then there exists an
idempotent P such that TP = PT, (XI-T)P is nilpotent, and (XI-T)(I-P) is invertible in
(I-P)X. Since A is a boundary point of the convex hull of V(T), Theorem 4 of Nirschl and
Schneider [7], extended to the case of linear operators on general normed linear spaces, is
applicable. This shows that (M-T)2x = 0 implies that (A/ -7> = 0. It follows that
(XI-T)P = Q. Therefore

T= TP+T(I-P) = XP+T(I-P).

Since the non-zero points of sp(r) are isolated, T may therefore be written

T=
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where | A, | = 1, Pf = Pt, P, S = SPt = 0, P, P} = 0 (i ^y) , and p(S) < 1. Then

I=I

so that {|| 7" I: n = 1,2,...} is bounded.

Added in proof. The author has found an example of a non-zero operator T for which
equality holds in (1) for every integer n; details of this will be published elsewhere.
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