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ON THE VOLUME AND PROJECTION OF COMVEX

SETS CONTAINING NO LATTICE POINTS

P. R, ScotT

A convex body X in E" containing no lattice points, has

one-dimensional projections of lengths Xﬁ, X2, ves s Xﬁ on

the coordinate axes. We show that for »n =2 2 and

1< Xi < n/(n-1) (1 <1 <n),

n
V(K) < XJXZ “ee Xﬁ - (n /n!)(XI—I) . (Xh—l)

and this bound can not be improved.

1. Introducing the problem.

Let A be a lattice in 7n-dimensional Euclidean space, En R
having determinant d(A), and being generated by the 7 linearly
X. et Ix) =¢.(1 <4 <n).
n 7 7

independent vectors X X

id 90ttt 2
Let K be a closed, bounded, convex body of volume V(K) = V, which
contains no point of A in its interior. Let supporting hyperplanes to

K parallel to the hyperplane spanned by xj (1 <7 <n, g#1) cut the
xi-axis in a segment of length Xi(K) = X; . We call Xi the projection
of K on the Xi—axis.

In general terms, our problem is this:
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Given A and the projections ~X1’ X2, vee Xn of K , find a function

F such that
(1) V(K)/d(A) < F(X/E5, «.. , X/8).
Since the ratios V(K)/d(A) , Xi/gi (1 <1 <n) are invariant

under affine transformation, we may assume that A is the integral

lattice, generated by the unit vectors el, eZ’ cee s en' In this case,
dia) =1, & i = 1 (1<% <n), and (1) simplifies to
V(K) < F(XZ’ v s Xn)
To find a 'best' bound F(XZ’ X2, cee Xn) in n-space appears to

be a complex task; even for n = 3 there are many cases to consider,

X X

depending on the relative sizes of X PUNTEERPED S

1)

THEOREM 1.

V(K) 5X1X2 Xn .

Proof. This inequality is trivially true for any convex body X ;
equality is required when K is an Xl X X X ... X Xn rectangular
parallelotope. If for some %2 , I <7 <n, Xi < 1, then K can be
placed to lie within the infinite slab 0 < .’1:7: < 1, thus containing no

points of the integral lattice in its interior. It follows that in this
case the bound cannot be improved.

We shall establish the following partial solution to our problem.
THEOREM 2. If n 2 2, and 1 < Xi <sn/tn-1) (1 <1 <n),

then

V(K) < X1X2

and this bound cannot be improved.

n
Xn - (n /n.')(Xl—l) (Xn—l),

We note that since X is a bounded convex body, for each choice of
X1, X2, cee s

by the Blaschke selection theorem.

Xn the existence of a set of maximal volume is guaranteed
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2. Simplifying the problem.
We first show that for n 2 2,

n, ., _ -
F(Xps ven s Xn) = XXy oo X - (n /n.)(XZ 1) ... (Xn 1)

is an increasing function of each X. in the given range. Working for
9 7

example with X, ,

i
3F n
— - 4 - -
2K, =Xy o X - (0 /nl)(Kp=1) ... (X -1).
_ oF  _ _ -7) = 9 -
For n =2, SXJ = X2 2(X2 1) 2 XZZ 0.
F n=3 2L _x x,- (9/2)(Xo-1)(X~1)
or = 9 aX] = 4dpis 2 3
= (-7/2)()(2-1) (X3—1) + (X0-1)+(X3—1)+ 1
> 1= (7/2)(Xy=1) (X,~1)
7.1.1
2 1-%33573
>0
“or >4, 2 51 )oY
ax,
3 1 n-1
=1- (1+2" /1)
> 1-e/(n-2)!
> 0.

Hence for each »n 2 2, F is an increasing function of Xl ., and
similarly of each Xi (1 <1 <n).

We shall use Steiner symmetrization to transform K into a set KXK'
which contains no points of the integral lattice, and such that

Xi(K’) < Xi(K) (1 <1 <n)

LEMMA 1. If K' <s the convex body obtained by symmetrizing K
about the hyperplane Hj : a:j =%, then V(K') = V(K), K' contains no
lattice points, X,;(K') = Xi(K) for i #J, and XJ.(K’) sxj(x)

(1<1,5 <snl.
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Proof. Symmetrization preserves volume. Since KX contains no

points of the integral lattice, the lattice lines perpendicular to HJ.

intercept X in segments of length not exceeding 1. Such lines

intercept X' 1in segments of the same length; since the translated

..

segments are centred on H7. » K' oontains no lattice points.

By the definition of Steiner symmetrization, X and X' have a
common pair of supporting hyperplanes normal to the xi-axis for each
i#J .

Hence Xi(K’) = Xi(K) for all <1 # J . Also, since K' is

. 1
symmetric about the hyperplane Hj : xJ = R
length s of the longest segment normal to Hj' Since under

XJ.(K') is given by the

symmetrization this segment is translated along the line it determines,

the projection X7.(K) cannot be less than 8. Hence XJ.(K') < Xj(K)
From the lemma, we may assume that X is symmetric about each of

the hyperplanes H, ! x =% (1 £ 41 < mn). Changing our coordinate system

. 1 -
by translating (-é— N % 3 sce s E) to the origin, we henceforth assume

that X is symmetric about the coordinate planes, and contains none of

tofr

1 .
the vertices (+%, i‘é— > eee s 4:2-) of the unit hypercube.

3. Proof of Theorem 2.

we shall need two preliminary lemmas.

LEMMA 2. Let S be a simplex in E' which is bounded by the n
coordinate hyperplanes and a hyperplane through the point
P(pl, Pgs v pn) (pi> 0, 1 <icz<n)
Then
n ]
V(5) = (n /n.)p1p2 cee Py
Proof. Let the hyperplane through 2P have equation

n
izz oz, ~p;) =0.
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n
This cuts the axes in (positive) lengths ( z aipi)/qj(l <4 sn).
=1

Hence

n
_ "
n!v(s) = (izlaipi) /aja, ... a

By the inequality of the means,

(%ap)/n b3 (?I ap)l/”
i=1 UET T g PR
Hence
“ n
n!v(s) = ( ] ap)’/aa, ... a,
=1
> nn;nlpg e Py
that is v(s) = (nn‘/n.')pzpz e Py -

LEMMA 3. Let T be a bounded (n-1)-dimensional set in E having
centre of gravity t . Let F be an (n-2)-dimensional flat intersecting
T, and separating it into subsets U, W. Let T be rotated about F.
Then (1) U, W sweep out equal volumes if and only 2f t Ilies in F

(2) U sweeps out a larger volune than W <if and only if F

strictly separates t from W (in the hyperplane of T).

This lemma is proved in [Z2] when 7T is a simplex. However, the

proof carries through without change for more general T.

Proof of Theorem 2. we suppose that K is a body of maximal

volume for the given projections X1, X2, ey Xn . The theorem is
obviously true if X] =X, =... = Xn = 1. We may therefore suppose that
X.>1 for some Z, I £1 < n. We consider the portion of X in the

1

positive orthant. Since Xi > 1 for some 7, and K 1is convex, K will

1
..,2)

Suppose first that H strictly separates at least one of the points

be bounded by a hyperplane H through (% > %,

1 1 ..
E(Xl’ X2, e s Xn—l’ ’0), oo s 5(0, XZ’ .. .,Xn) from the origin; let us
take %(0, XZ" oo s Xn) for example. Let R denote the rectangular
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Xi (1 <17 <£n)}, and let

IA
to s

<
parallelotope {(xl, Tys ven s xn) | 0 sz,

T=PR n H. 1I1f Fo, Fl denote the (n-l)-dimensional faces of R

lying in the hyperplanes xl =0, respectively, then H n F ,

15 2% 0
H n F] are parallel, non-empty (n-2)-dimensional sets which form part
of the boundary of 7. Let F denote the (n-2)-dimensional flat which

is parallel to H n FO (Hn Fl)’ and which passes through the point

%, é—, v %} ; let F separate T into parts U and W containing
H nFo s H nF1 respectively.

Now it is well-known that the centre of gravity t = (t.l, 1:_2,...,tn)
of T can be no closer to F1 than (1/n)th of the distance between
FO and F] , and equality can occur here only when H n F{) is a single
point [ 7] . Since by assumption H n FO is not a single point,

1 1 .1
2% "t 7w G
or
1
t] < (2 XZ)
1
<=
2
1 .

Thus t1 < 3 and F strictly separates t from W. Hence by

Lemma 3, a small rotation of H about F which brings H n F, closer

a

. 1 .
to the point —2-(0, X2, cee s Xn—]’ Xn) actually increases the volume of
K . Thus K does not have maximal volume.

We therefore assume that the bounding hyperplane H of K does

not separate any of the points -:21-(1, vees X 0) ...,-1-(0,X ""Xn)

n-1°
from the origin. Notice that the existence of such a hyperplane is not

in doubt: for example

x,
=
n

Ti'MB
It
ok

1
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is a hyperplane which passes through Cé—, g}, ces s é), and
n Xx. n n
2—7’5.-;—71-”_—1 Zl=%(l£g$n).
i=1 " i=1
) T#7

Consider now the simplex S' which is bounded by hyperplane #

through (—12;, %, e é—) and hyperplanes zg =%X1, ,xn=—;~X

From Lemma 2,

v(s') = (nn/n.')(% -5 dx oD

_ J" '
V(K) < XJXé cee Xn 2°v(s'")

n 1
= X1X2 Xn - (n /n.)(XZ—l)...(Xn—l)

as required.
4. Further comment. The case where X, =z n(l <1 <n-1), X, > 1

is of some interest, for here the technique involving the position of the
centre of gravity of I can again be applied to the symmetrized set. We
can thus determine that the maximal volume of the symmetrized set occurs

1 1
when the bounding hyperplane H through (é, U E) passes

through (0, 0, ... , 0, Xn/2). Unfortunately however, the formula for
this maximal volume appears to be excessively complicated, even for n = §,
making it unclear whether even the symmetrization is an allowable step

in the proof.

For n = 2 there is no such problem, and we easily obtain:

THEOREM 3. If n=2 and X, 22, X, > 1, the area A(K) of K

1
satisfies

A(K) sX1X2 - -é—Xl (x, - 1)

and this bound carmot be improved.

We observe that this bound can also be written as
XX, - 20X -1)(X,-1) - 2 (x ~2)%(x ~1)
12 1 2 2 1 2 ?

thus incorporating the bounds of Theorems 1 and 2.
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