ON THE VOLUME AND PROJECTION OF CONVEX SETS CONTAINING NO LATTICE POINTS

P. R. SCOTT

A convex body K in E^{n} containing no lattice points, has one-dimensional projections of lengths $X_{1}, X_{2}, \ldots, X_{n}$ on the coordinate axes. We show that for $n \geq 2$ and $1 \leq X_{i} \leq n /(n-1) \quad(1 \leq i \leq n)$,

$$
V(K) \leq X_{1} X_{2} \cdots X_{n}-\left(n^{n} / n!\right)\left(X_{1}-1\right) \ldots\left(X_{n}-1\right)
$$

and this bound can not be improved.

1. Introducing the problem.

Let Λ be a lattice in n-dimensional Euclidean space, E^{n}, having determinant $d(\Lambda)$, and being generated by the n linearly independent vectors $x_{1}, x_{2}, \ldots, x_{n}$. Let $\left\|x_{i}\right\|=\xi_{i}(1 \leq i \leq n)$. Let K be a closed, bounded, convex body of volume $V(K)=V$, which contains no point of Λ in its interior. Let supporting hyperplanes to K parallel to the hyperplane spanned by $x_{j}(1 \leq j \leq n, j \neq i)$ cut the x_{i}-axis in a segment of length $X_{i}(K)=X_{i}$. We call X_{i} the projection of K on the X_{i}-axis.

In general terms, our problem is this:

Received 4 March 1985.

[^0]Given Λ and the projections $X_{1}, X_{2}, \cdots, X_{n}$ of K, find a function F such that

$$
\begin{equation*}
V(K) / d(\Lambda) \leq F\left(X_{1} / \xi_{1}, \cdots, X_{n} / \xi_{n}\right) \tag{1}
\end{equation*}
$$

Since the ratios $V(K) / d(\Lambda), X_{i} / \xi_{i}(1 \leq i \leq n)$ are invariant under affine transformation, we may assume that Λ is the integral lattice, generated by the unit vectors $e_{1}, e_{2}, \ldots, e_{n}$. In this case, $d(\Lambda)=1, \xi_{i}=1(1 \leq i \leq n)$, and (1) simplifies to

$$
V(K) \leq F\left(X_{1}, \cdots, X_{n}\right)
$$

To find a 'best' bound $F\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ in n-space appears to be a complex task; even for $n=3$ there are many cases to consider, depending on the relative sizes of $X_{1}, X_{2}, \ldots, X_{n}$.

THEOREM 1.

$$
V(K) \leq X_{1} X_{2} \cdots X_{n}
$$

Proof. This inequality is trivially true for any convex body K; equality is required when K is an $X_{1} \times X_{3} \times \ldots \times X_{n}$ rectangular parallelotope. If for some $i, 1 \leq i \leq n, X_{i} \leq 1$, then \underline{K} can be placed to lie within the infinite slab $0 \leq x_{i} \leq 1$, thus containing no points of the integral lattice in its interior. It follows that in this case the bound cannot be improved.

We shall establish the following partial solution to our problem.
THEOREM 2. If $n \geq 2$, and $1 \leq X_{i} \leq n /(n-1)(1 \leq i \leq n)$,
then

$$
V(K) \leq X_{1} X_{2} \cdots X_{n}-\left(n^{n} / n!\right)\left(X_{1}-1\right) \ldots\left(X_{n}-1\right)
$$

and this bound connot be improved.
We note that since K is a bounded convex body, for each choice of $X_{1}, X_{2}, \ldots, X_{n}$ the existence of a set of maximal volume is guaranteed by the Blaschke selection theorem.
2. Simplifying the problem.

We first show that for $n \geq 2$,

$$
F\left(X_{1}, \ldots, X_{n}\right)=X_{1} X_{2} \ldots X_{n}-\left(n^{n} / n!\right)\left(X_{1}-1\right) \ldots\left(X_{n}-1\right)
$$

is an increasing function of each X_{i} in the given range. Working for example with X_{1},

For

$$
{\frac{\partial F}{\partial X_{1}}}_{1}=x_{2} \ldots x_{n}-\left(n^{n} / n!\right)\left(x_{2}-1\right) \ldots\left(x_{n}-1\right)
$$

$$
n=2, \frac{\partial F}{\partial X_{1}}=X_{2}-2\left(X_{2}-1\right)=2-X_{2} \geqq 0 .
$$

for

$$
\begin{aligned}
n=3, \frac{\partial F}{\partial X_{1}} & =X_{2} X_{3}-(9 / 2)\left(x_{2}-1\right)\left(x_{3}-1\right) \\
& =(-7 / 2)\left(x_{2}-1\right)\left(X_{3}-1\right)+\left(x_{2}-1\right)+\left(x_{3}-1\right)+1 \\
& \geq 1-(7 / 2)\left(x_{2}-1\right)\left(x_{3}-1\right) \\
& \geq 1-\frac{7.1 .1}{2.2 .2} \\
& >0
\end{aligned}
$$

${ }^{-}{ }_{\text {r }}$

$$
\begin{aligned}
n \geq 4, \frac{\partial F}{\partial X_{1}} & \geq 1-\left(n^{n} / n!\right)(n-1)^{-(n-1)} \\
& =1-\left(1+\frac{1}{n-1}\right)^{n-1} /(n-1)! \\
& \geq 1-e /(n-1)! \\
& >0 .
\end{aligned}
$$

Hence for each $n \geq 2, F$ is an increasing function of X_{1}, and similarly of each $X_{i}(1 \leq i \leq n)$.

We shall use Steiner symmetrization to transform K into a set K^{\prime} which contains no points of the integral lattice, and such that $X_{i}\left(K^{\prime}\right) \leq X_{i}(K) \quad(1 \leq i \leq n)$.

LEMMA 1. If K^{\prime} is the convex body obtained by symmetrizing K about the hyperplone $H_{j}: x_{j}=\frac{3}{2}$, then $V\left(K^{\prime}\right)=V(K), K^{\prime}$ contains no Zattice points, $\quad X_{i}\left(K^{\prime}\right)=X_{i}\left(K^{\prime}\right.$ for $i \neq j$, and $X_{j}\left(K^{\prime}\right) \leq X_{j}(K)$ (1 $\leq i, j \leq n)$.

Proof. Symmetrization preserves volume. Since K contains no points of the integral lattice, the lattice lines perpendicular to H_{j} intercept K in segments of length not exceeding 1 . Such lines intercept K^{\prime} in segments of the same length; since the translated segments are centred on H_{j}, K^{\prime} contains no lattice points.

By the definition of Steiner symmetrization, K and K^{\prime} have a common pair of supporting hyperplanes normal to the x_{i}-axis for each $i \neq j$.

Hence $X_{i}\left(K^{\prime}\right)=X_{i}(K)$ for all $i \neq j$. Also, since K^{\prime} is symmetric about the hyperplane $H_{j}: x_{j}=\frac{1}{2}, X_{j}\left(K^{\prime}\right)$ is given by the length s of the longest segment normal to H_{j}. Since under symmetrization this segment is translated along the line it determines, the projection $X_{j}(K)$ cannot be less than s. Hence $X_{j}\left(K^{\prime}\right) \leq X_{j}(K)$.

From the lemma, we may assume that K is symmetric about each of the hyperplanes $H_{i}: x_{i}=\frac{1}{2}(1 \leq i \leq n)$. Changing our coordinate system by translating $\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)$ to the origin, we henceforth assume that K is symmetric about the coordinate planes, and contains none of the vertices $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \ldots, \pm \frac{1}{2}\right)$ of the unit hypercube.

3. Proof of Theorem 2.

we shall need two preliminary lemmas.
LEMMA 2. Let S be a simplex in E^{n} which is bounded by the n coordinate hyperplanes and a hyperplane through the point
$P\left(p_{1}, p_{2}, \cdots, p_{n}\right)\left(p_{i}>0,1 \leq i \leq n\right)$.
Then

$$
V(S) \geq\left(n^{n} / n!\right) p_{1} p_{2} \cdots p_{n}
$$

Proof. Let the hyperplane through P have equation

$$
\sum_{i=1}^{n} a_{i}\left(x_{i}-p_{i}\right)=0
$$

This cuts the axes in (positive) lengths $\left(\sum_{i=1}^{n} a_{i} p_{i}\right) / a_{j}(1 \leq j \leq n)$.
Hence

$$
n!V(S)=\left(\sum_{i=1}^{n} a_{i} p_{i}\right)^{n} / a_{1} a_{2} \ldots a_{n}
$$

By the inequality of the means,

$$
\left(\sum_{i=1}^{n} a_{i} p_{i}\right) / n \geq\left(\prod_{i=1}^{n} a_{i} p_{i}\right)^{1 / n}
$$

Hence

$$
\begin{aligned}
n!V(S) & =\left(\sum_{i=1}^{n} a_{i} p_{i}\right)^{n} / a_{1} a_{2} \cdots a_{n} \\
& \geq n^{n} p_{1} p_{2} \cdots p_{n} \\
V(S) & \geq\left(n^{n} / n!\right) p_{1} p_{2} \cdots p_{n} .
\end{aligned}
$$

that is
LEMMA 3. Let T be a bounded (n-1)-dimensional set in E^{n} having centre of gravity t. Let F be an ($n-2$)-dimensional flat intersecting T, and separating it into subsets U, W. Let T be rotated about F. Then (1) U, W sweep out equal volumes if and only if t lies in F
(2) U sweeps out a larger volrone than W if and only if F strictly separates t from W (in the hyperplane of T).
This lemma is proved in [2] when T is a simplex. However, the proof carries through without change for more general T.

Proof of Theorem 2. We suppose that K is a body of maximal volume for the given projections $X_{1}, X_{2}, \ldots, X_{n}$. The theorem is obviously true if $X_{1}=X_{2}=\ldots=X_{n}=1$. We may therefore suppose that $X_{i}>1$ for some $i, 1 \leq i \leq n$. We consider the portion of k in the positive orthant. Since $X_{i}>1$ for some i, and K is convex, K will be bounded by a hyperplane H through $\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)$.

Suppose first that H strictly separates at least one of the points $\frac{1}{2}\left(X_{1}, X_{2}, \ldots, X_{n-1}, 0\right), \ldots, \frac{1}{2}\left(0, X_{2}, \ldots, X_{n}\right)$ from the origin; let us take $\frac{1}{2}\left(0, X_{2}, \ldots, X_{n}\right)$ for example. Let R denote the rectangular
parallelotope $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \left\lvert\, 0 \leq x_{i} \leq \frac{1}{2} X_{i}(1 \leq i \leq n)\right.\right\}$, and let $T=R \quad \cap H$. If F_{0}, F_{1} denote the $(n-1)$-dimensional faces of R lying in the hyperplanes $x_{1}=0, x_{1}=\frac{1}{2} X_{1}$ respectively, then H $\cap F_{0}$, $H \cap F_{1}$ are parallel, non-empty ($n-2$)-dimensional sets which form part of the boundary of T. Let F denote the ($n-2$)-dimensional flat which is parallel to $H \cap F_{0}\left(H \cap F_{1}\right)$, and which passes through the point $\left(\frac{1}{2}, \frac{1}{2}, \ldots \frac{1}{2}\right)$; let F separate T into parts U and W containing $H \cap F_{0}, H \cap F_{1}$ respectively.

Now it is well-known that the centre of gravity $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ of T can be no closex to F_{1} than $(1 / n)$ th of the distance between F_{0} and F_{1}, and equality can occur here only when $H \cap F_{0}$ is a single point [1]. Since by assumption $H \cap F_{0}$ is not a single point,

$$
\frac{1}{2} x_{1}-t_{1}>\frac{1}{n}\left(\frac{1}{2} x_{1}\right)
$$

or

$$
\begin{aligned}
t_{1} & <\frac{n-1}{n}\left(\frac{1}{2} X_{1}\right) \\
& \leq \frac{1}{2}
\end{aligned}
$$

Thus $t_{1}<\frac{1}{2}$, and F strictly separates t from W. Hence by Lemma 3, a small rotation of H about F which brings $H \cap F_{0}$ closer to the point $\frac{1}{2}\left(0, X_{2}, \ldots, X_{n-1}, X_{n}\right)$ actually increases the volume of K. Thus K does not have maximal volume.

We therefore assume that the bounding hyperplane H of K does not separate any of the points $\frac{1}{2}\left(X_{1}, \ldots, X_{n-1}, 0\right) \ldots, \frac{1}{2}\left(0, X_{2}, \ldots, X_{n}\right)$ from the origin. Notice that the existence of such a hyperplane is not in doubt: for example

$$
\sum_{i=1}^{n} \frac{x}{n}=\frac{1}{2}
$$

is a hyperplane which passes through $\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)$, and

Consider now the simplex S^{\prime} which is bounded by hyperplane H through $\left(\frac{1}{2} \frac{1}{2}, \ldots, \frac{1}{2}\right)$ and hyperplanes $x_{1}=\frac{1}{2} X_{1}, \ldots, x_{n}=\frac{1}{2} X_{n}$. From Lemma 2 ,

$$
V\left(S^{\prime}\right) \geq\left(n^{n} / n!\right)\left(\frac{1}{2} x_{1}-\frac{1}{2}\right) \ldots\left(\frac{1}{2} x_{n}-\frac{1}{2}\right)
$$

and

$$
\begin{aligned}
V(K) & \leq X_{1} X_{2} \cdots X_{n}-2^{n} V\left(S^{\prime}\right) \\
& =X_{1} X_{2} \cdots X_{n}-\left(n^{n} / n!\right)\left(x_{1}-1\right) \ldots\left(X_{n}-1\right)
\end{aligned}
$$

as required.
4. Further comment. The case where $X_{i} \geq n(1 \leq i \leq n-1), X_{n}>1$ is of some interest, for here the technique involving the position of the centre of gravity of T can again be applied to the symmetrized set. We can thus determine that the maximal volume of the symmetrized set occurs when the bounding hyperplane H through $\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)$ passes through $\left(0,0, \ldots, 0, X_{n} / 2\right)$. Unfortunately however, the formula for this maximal volume appears to be excessively complicated, even for $n=3$, making it unclear whether even the symmetrization is an allowable step in the proof.

For $n=2$ there is no such problem, and we easily obtain:

THEOREM 3. If $n=2$ and $X_{1} \geq 2, X_{2}>1$, the area $A(K)$ of K satisfies

$$
A(K) \leq X_{1} X_{2}-\frac{1}{2} X_{1}^{2}\left(X_{2}-1\right)
$$

and this bound cannot be improved.
We observe that this bound can also be written as

$$
x_{1} X_{2}-2\left(x_{1}-1\right)\left(x_{2}-1\right)-\frac{1}{2}\left(x_{1}-2\right)^{2}\left(X_{2}-1\right)
$$

thus incorporating the bounds of Theorems 1 and 2.

References

[1] T. Bonnesen, W. Fenchel, Theorie der konvexen Korper (Springer Verlag OHG, Berlin 1934; reprint Chelsea Publishing Company, New York 1948).
[2] P.R. Scott, "On simplices and lattice points", J. Austral. Math. Soc. (Series A) 31 (1981), 15-19.

Department of Pure Mathematics, University of Adelaide,

Adelaide,
South Australia.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ \mathrm{~A} 2.00+0.00$.

