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Functional coefficient (FC) regressions allow for systematic flexibility in the respon-
siveness of a dependent variable to movements in the regressors, making them attrac-
tive in applications where marginal effects may depend on covariates. Such models
are commonly estimated by local kernel regression methods. This paper explores
situations where responsiveness to covariates is locally flat or fixed. The paper
develops new asymptotics that take account of shape characteristics of the function in
the locality of the point of estimation. Both stationary and integrated regressor cases
are examined. The limit theory of FC kernel regression is shown to depend intimately
on functional shape in ways that affect rates of convergence, optimal bandwidth
selection, estimation, and inference. In FC cointegrating regression, flat behavior
materially changes the limit distribution by introducing the shape characteristics of
the function into the limiting distribution through variance as well as centering. In the
boundary case where the number of zero derivatives tends to infinity, near parametric
rates of convergence apply in stationary and nonstationary cases. Implications for
inference are discussed and a feasible pre-test inference procedure is proposed that
takes unknown potential flatness into consideration and provides a practical approach
to inference.

1. INTRODUCTION

Kernel approaches to nonparametric regression use localized versions of standard
statistical methods to fit shape characteristics of nonlinear functions in statistical
models. These methods have been extensively used in applied research across
the social, business, and natural sciences. The methods are particularly useful
in assessing the role of nonlinearities and parameter instabilities and are used in
modeling cross section, time series, and panel data. An especially useful model
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for which these methods have been developed is functional coefficient (FC)
regression. Such regressions allow the responses of a dependent variable to depend
locally in a systematic way on movements in other variables.

This paper demonstrates that the limit theory in FC regression depends on
the functional shape1 of the regression coefficient in ways that involve rates of
convergence, asymptotic variance, bandwidth selection, and inference. Standard
limit theory for kernel regression shows clearly how functional shape affects bias,
which is well known to depend on the local first two derivatives of the regression
function and the first derivative of the density of the covariate. The limit theory
changes in material ways when these and possibly higher derivatives are zero
at the point of estimation. Recent work on FC cointegrating regression (Phillips
and Wang, 2021) pointed out dependence of the asymptotic variance on the first
derivative of the functional coefficient in estimating cointegrating equations. But
the effects of flat functional shape on the limit distribution, including the bias
function and limiting variance, have not been explored in earlier nonparametric
literature on FC regression in either stationary or nonstationary cases. There also
appears to be no former research on the implications of flat functional shape on
the limit theory for standard kernel density estimation or kernel regression.

The present paper provides results and methods that address these deficiencies.
Most nonparametric research concerns functional shape and seeks to explore and
comment upon shape characteristics that relate to underlying economic ideas.
Examples include (i) functions of interest like elasticities that may be flat, increas-
ing or decreasing in response to other variables; (ii) functions where extrema are
of interest in which zero derivatives play a key role; or (iii) climate responses to
policy changes on CO2 emissions, where the magnitudes of departures from null
effects are particularly relevant.

New asymptotics are developed in the paper that specifically involve shape
characteristics of the function in the locality of the point of estimation. In particular,
locally flat behavior in the coefficient function is shown to have a major effect on
the form of the asymptotic distribution as well as the rate of convergence, with
important differences between stationary and nonstationary regressions. Local
flatness in the coefficient function at some point in the covariate space may be
regarded as an intermediate case between the usual FC model and regression
with a fixed coefficient, allowing for responses of the dependent variable to be
unresponsive to movements in other variables at this point in their support. The
primary focus in this paper is to develop asymptotics for FC regression under
such flatness conditions. Related effects to those described here, as well as the
methods provided, may be expected to apply in other nonparametric regression
models where flatness occurs in nonlinear nonparametric regressions.

1The terminology “functional shape” here refers to the local shape of the function at a given point as captured by the
magnitude of its derivatives at that point. The terminology “flat functional shape” or “locally flat behavior,” which
is used extensively in the paper, refers to the fact that the first (L−1)-th derivatives of the function at the local point
are zeros while the L-th derivative is nonzero, for some integer L ≥ 1. A precise statement is given in Theorem 2.1.
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A further contribution of the paper is the development of a feasible pre-test
inference method. Local flatness in a functional coefficient is typically unknown
a priori, although it may be hypothesized on the basis of some underlying theory.
Direct estimation of the degree of flatness is shown to be challenging. The feasible
pre-test approach takes potential flatness into consideration and is shown to deliver
efficiency gains in the flat region over naive estimation and inference where
potential flatness is simply ignored. Pre-test inference is found to work well in
simulations and is competitive in performance with oracle inference where local
flatness information is assumed to be known.

The paper is organized as follows. The new limit theory is given in Section 2,
which covers both stationary and nonstationary FC regression. Section 3 discusses
the implications of the limit theory for inference and proposes a practically feasible
pre-test inference method. Section 4 provides simulation evidence corroborating
the asymptotics. Section 5 concludes. Proofs of the main results, several subsidiary
lemmas, and computation details are given in the Appendix. Additional technical
details are provided in the Supplementary Material to this paper. Throughout the
paper we use the notation ≡d to signify equivalence in distribution, ∼a to signify
asymptotic equivalence, � to denote weak convergence on the relevant probability
space, �·� and �·� to denote floor and ceiling functions, [·] to signify the rounded
part of a real number, and μj(K) = ∫

K u jK(u)du,νj(K) = ∫
K u jK2(u)du for kernel

moment functions, where K is the support of the kernel function K. According to
the context, we use := and =: to signify definitional equality. Unless otherwise
indicated

∫
denotes

∫ 1
0 .

2. ASYMPTOTIC THEORY FOR LOCALLY FLAT FC ESTIMATION

The standard FC regression model is a simple extension of linear regression, taking
the following form

yt = x′
tβ(zt)+ut, (2.1)

in which the covariate zt determines the strength or weakness of the response of yt

to the regressor xt. The regressor xt is a p×1 time series, which may be stationary
or nonstationary. The covariate zt is a q×1 time series and is commonly, although
not always, assumed to be stationary. The error term ut is a scalar stationary
process. In view of its flexibility as a convenient extension of fixed parameter
regression, the model has been extensively studied and applied in econometrics.
A popular textbook reference is by Li and Racine (2007, Chap. 9.3). Many papers
have studied estimation and inference in this model under various assumptions,
including early work by Cai, Fan, and Yao (2000) and Tu and Wang (2020) on
stationary regression and much subsequent work on nonstationary regressions
covering both cointegrated and noncointegrated models (Juhl, 2005; Xiao, 2009;
Cai, Li, and Park, 2009; Sun, Hsiao, and Li, 2011; Wang, Tu, and Chen, 2016; Tu
and Wang, 2019; Wang, Phillips, and Tu, 2019; Tu and Wang, 2022).
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Kernel weighted local least squares regression is a standard approach to estimate
the functional coefficient β(·) in (2.1). The local level least squares estimate of β(z)
is β̂(z) = (∑n

t=1 xtx′
tKtz

)−1 (∑n
t=1 xtytKtz

)
with kernel function Ktz = K((zt − z)/h)

and bandwidth h. The estimate β̂(z) may be decomposed in the usual manner into
“bias” and “variance” terms as(

n∑
t=1

xtx
′
tKtz

)(
β̂(z)−β(z)

)
=

n∑
t=1

xtx
′
t [β(zt)−β(z)]Ktz +

n∑
t=1

xtutKtz. (2.2)

Under suitable regularity conditions the limit theory for β̂(z) is normal or mixed
normal after standard corrections are employed for bias and suitable recentering
or undersmoothing is employed (Phillips and Wang, 2021). These asymptotics
lead to a theory of estimation and inference for both stationary, cointegrating, and
mixed regressor cases. Our treatment extends the existing limit theory to address
the impact of locally flat behavior in the regression coefficient function β(·). We
start with the stationary case.

2.1. The FC Stationary Model

It is convenient for exposition to use a prototypical version of the model (2.1) in
which the following conditions are assumed.

Assumption 1.

(i) The strictly stationary processes {xt,zt,ut} are α-mixing processes with mixing
numbers α( j) that satisfy

∑
j≥1 jc[α( j)]1−2/δ < ∞ for some δ > 2, c >

τ(1 − 2/δ) and τ > 1 with finite moments of order p > 2δ > 4. Further,
E(xtx′

t|zt = z) = �xx(z) > 0, E(ut|xt,zt) = 0, E(u2
t |xt = x,zt = z) = σ 2(x,z),

and E(xtx′
tσ

2(xt,zt)|zt = z) = �xu(z).
(ii) The density f (z) of the scalar process zt and the joint density f0,j(s0,sj) of(

zt,zt+j
)

are bounded above and away from zero over their supports with
uniformly bounded and continuous derivatives to the second order.

(iii)The kernel function K(·) is a bounded probability density function symmetric
about zero with μj(K) = ∫

K u jK(u)du, νj(K) = ∫
K u jK2(u)du, and support K

either [−1,1] or R = (−∞,∞).
(iv) β(z) is a smooth function with uniformly bounded continuous derivatives to

order L+1 for some integer L ≥ 1.
(v) n → ∞ and h → 0.

The stationarity conditions in Assumption (i) accord with earlier work on
nonparametric and FC kernel regression for which the mixing requirements are
commonly used to enable development of asymptotic theory in time series FC
regression (e.g., Fan and Yao, 2008; Cai et al., 2000). A stronger mixing decay
rate condition c > τ(1−2/δ) for some δ > 2 and τ > 1 in (i) is used in place of the
more usual condition c > 1 − 2/δ to assist in the nonparametric limit distribution
theory under dependence. The exogeneity condition in (i) is convenient for the
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limit theory. Relaxation of those conditions requires alternative methods such as
FC instrumental variable methods and additional technical complications that are
not within the goals of the present work to address. Heteroskedasticity is allowed
as in Cai et al. (2000). The kernel assumptions in (iii) are commonly employed but
when bandwidths are very small, as they are in some of the results herein, kernels
with support K on the entire real line R are better suited, or other methods used to
avoid finite sample failure in the kernel-weighted signal in the regression.

The smoothness conditions (iv) on β(zt) and its derivatives are needed for the
theory developed here because the limiting bias expressions rely on higher order
derivatives of β(zt). When the smoothness degree parameter L is unknown and
estimated a stronger condition may be required to allow for potential overestima-
tion of L in practice. Condition (v) is standard in nonparametric work and specific
rate conditions involving (n,h) are given as needed in the results below. However,
as shown in the analysis of limit behavior when L → ∞, the optimal bandwidth
may no longer satisfy the contraction condition h → 0 in (v).

Our first result details the limit theory for the FC regression estimator β̂(z) in
model (2.1) for the stationary case under locally flat conditions on the coefficient
function.

THEOREM 2.1. If Assumption 1 holds, if β(z) has derivatives β(	)(z) = 02 at z
for all 	 = 0,1,2, . . . ,L−1 and some integer L ≥ 1 for which β(L)(z) �= 0, then the
following limit theory holds when nh → ∞
√

nh
{
β̂(z)−β(z)−hL∗BL(z)−o(hL∗

)
}
�N (0,
S(z)), (2.3)

where L∗ = (L+1)1{L=odd} +L1{L=even}, 
S(z) = ν0(K)σ 2
u

f (z) �−1
xx ,

BL(z) = μL∗(K)

f (z)
CL(z) = GL(z)

f (z)
(2.4)

μL∗(K) = μL(K)×1{L=even} +μL+1(K)1{L=odd},GL(z) = μL∗(K)CL(z) and3

CL(z) = f (z)β(L)(z)

L!
1{L=even} +

[
β(L)(z)

L!
f (1) (z)+ β(L+1)(z)

(L+1) !
f (z)

]
1{L=odd}. (2.5)

Theorem 2.1 shows that flatness in the functional coefficient β(·) at z affects the
limit theory of β̂(z) in the stationary xt regressor case only through the bias function
hL∗BL(z) = hL∗ GL(z)

f (z) in (2.3). The bias order O(hL∗
) and the functional form GL(z)

are affected. The bias function GL(z) depends on the first two nonzero derivatives
{β(	)(z); 	 = L,L + 1} of β(z), as well as the density f (z) and its first derivative

2As a notational convention we define β(0)(z) ≡ 0 without imposing any restriction on the value of the function β(z),
thereby including without restriction the standard case where the first derivative is nonzero, with β(1)(z) �= 0 and
L = 1.
3In the specialized degenerate case where L is odd and f (1)(z) = 0, β(L+1)(z) = 0, it is immediately apparent that the
bias is of smaller order than hL∗

, as mentioned by the co-editor.
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f (1)(z), the latter appearing as is usual in nonparametric regression. When L is
even the dependence is confined to the derivative β(L)(z) and the density f (z). The

limiting variance formula 
S(z) = ν0(K)σ 2
u

f (z) �−1
xx is unchanged from the standard case

without flatness and the convergence rate remains
√

nh. So, the effect of local
flatness in β(z) affects the limit theory of FC regression only via the bias function.

As L rises with an increasing degree of flatness in the regression coefficient at
z, the bias function in (2.3), which is of order O(hL∗

), falls when h → 0 as n → ∞.
When estimation bias falls it is natural to select a wider bandwidth to reduce
variance. Correspondingly, the usual plug-in optimal bandwidth formula changes,
with resulting adjustment to the convergence rate. This can be conveniently shown
in the scalar coefficient function β(z) case, for which the optimal bandwidth
formula for minimizing asymptotic mean squared error can be deduced from (2.3)
in the usual way, giving (using the scalar xt case to illustrate)

hopt* =
(


S(z)

2L∗BL(z)2

) 1
2L∗+1 1

n1/(2L∗+1)
. (2.6)

In the conventional case where L = 1 and L∗ = 2, we have the usual optimal

bandwidth rate hopt* = O(n− 1
5 ). More generally, and taking L to be even for

convenience so that L∗ = L and BL(z) =
(

β(L)(z)
L!

)
f (z)μL (K), we have

hopt* =
(

L!(L−1)!
S(z)

2[μL(K)f (z)β(L)(z)]2

)1/(2L+1) 1

n1/(2L+1)
= cL(z)

n1/(2L+1)
(2.7)

where cL(z) = dL(z) [L!(L−1)! ]1/(2L+1) with dL(z) =
(


S(z)
2[μL(K)f (z)β(L)(z)]2

)1/(2L+1)

.

For instance, when the functional coefficient has the polynomial form β(z) =∑q
j=0 ajzL+j which is locally flat to order L − 1 at z = 0 when a0 �= 0, we

have β(L)(z) = L!
∑q

j=0
(L+j)!

L!j! ajzj and β(L)(0) = a0L!= O(L!). The same applies
when the locally flat coefficient function β(z) has the asymptotically regular
form β(z) ∼a a0zL as L → ∞. In such cases, it is evident that cL(z) =
O
(
[L!/β(L)(z)]1/L

) = O(1) as L → ∞ and the optimal bandwidth hopt* in
(2.7) approaches the nonshrinking rate O(1/n0) = O(1). Hence, for large L the
associated optimal convergence rate is

√
nhopt∗ which approaches

√
n, giving a

near-parametric convergence rate for extremely flat functions.
This behavior matches the heuristic that when a functional coefficient is nearly

flat and bias is small from neighboring observation points, averaging over those
observations by using a wider (or asymptotically nonshrinking) bandwidth is
useful in reducing variance and thereby mean squared error. Note, however,
that for this optimal choice of bandwidth as L → ∞, in such cases we have
BL(z) = O(β(L)(z)/L!) = O(1) as L → ∞ so that

√
nhhL∗BL(z) = O

(
n1/2hL+1/2

)=
O
(

n1/2n− L+1/2
2L+1

)
= O(1) following (2.7) for the case that L is even. So the bias term

is, as usual, not negligible for the optimal choice of bandwidth. What Theorem 2.1,
formula (2.7), and this asymptotic bias analysis show is that when the coefficient
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function is nearly flat in the neighborhood of the point of estimation, near
parametric convergence rates are possible with the same limit normal distribution
and variance as in other cases.

2.2. The FC Cointegrating Regression Model

For exposition we use a cointegrating regression equation with full rank I(1)

exogenous regressors and functional coefficients. The model is a prototype of
more complex systems and provides results that show the impact of flat behavioral
characteristics in the functional coefficients on rates of convergence, estimation,
inference, and bandwidth selection in a nonstationary framework. These simplify-
ing conditions enable the use of standard kernel-weighted least squares regression.
Similar analyses to those given here will be needed in more complex model-
ing environments under endogeneity and cointegrated equations with possibly
cointegrated or even functionally cointegrated regressors. Extensions to address
such complexities would involve procedures such as “fully modified” FCC kernel
regression. Some related FM methods have been designed for the time varying
parameter framework of cointegration (Phillips, Li, and Gao, 2017; Li, Phillips,
and Gao, 2016; Gao and Phillips, 2013) and may be developed for FC cointegrating
models. But they are not the subject of the present work and are left for future
research.

The following assumption modifies the conditions of Assumption 1 and pro-
vides for a simple cointegrating regression analogue of model (2.1).

Assumption 2.

(i) {xt} is a full rank unit root process satisfying the functional law 1√
n
x�n·� �

Bx(·), where Bx is vector Brownian motion with variance matrix �xx > 0.
{ut,zt} are strictly stationary α-mixing scalar processes with mixing numbers
α(j) that satisfy

∑
j≥1 jc[α(j)]1−2/δ < ∞ for some δ > 2 and c > τ(1−2/δ) and

τ > 1 with finite moments of order p > 2δ > 4. {xt} and {zt} are independent
processes. Further, E(ut|xs) = 0 for all t,s, and E(u2

t |xt,zt) = σ 2
u .

(ii) Assumptions 1(ii)–(v) hold.

The high level assumption (i) on the functional limit behavior of the regressor
xt is convenient, commonly used, and justified by standard primitive conditions
(e.g., Phillips and Solo, 1992). The independence assumption between xt and zt

is imposed to get useful mixed normal limit theory and a convenient inferential
framework.4 The exogeneity and homoskedasticity are also imposed as in Cai
et al. (2009). There are ways of dealing with these restrictions, such as developing
a fully modified version of the FC estimation procedure or some new version
of IVX estimation (Phillips and Magdalinos, 2009) and limit theory tailored to
nonstationary FC models. But these options deserve another paper. In further

4We conjecture that the independence and exogeneity conditions can be relaxed under additional summability
conditions on the component time series. This relaxation will be explored in future work.
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extensions of this type to FCC regression models, many of the findings of the
present work on the effects of local flatness of the functional coefficient will
be relevant and can be explored in future work. The remaining conditions are
as in Assumption 1. The condition on β(zt) and its derivatives are needed in
the nonstationary case because they figure in the development and appear in the
asymptotic variance formula.

THEOREM 2.2. If Assumption 2 holds, if β(z) has derivatives β(	)(z) = 0 at
z for all 	 = 0,1,2, . . . ,L − 1 and some integer L ≥ 1 for which β(L)(z) �= 0, and
E||β(L)(zt)||2 < ∞, then the following limit theory holds under the respective rate
conditions indicated:

(i) n
√

h
{
β̂(z)−β(z)−hL∗BL(z)−o(hL∗

)
}
�MN (0,
NS(z)), (2.8)

if nh2L → 0,nh → ∞,

(ii)

√
n

h2L−1

{
β̂(z)−β(z)−hL∗BL(z)−o(hL∗

)
}
�MN (0,
L(z)),

if nh2L → ∞, (2.9)

(iii) n1− 1
4L

{
β̂(z)−β(z)−hL∗BL(z)−o(hL∗

)
}

� c
1
2 − 1

4L ×MN (0,
L(z))+ c− 1
4L MN (0,
NS(z))

≡d MN
(

0,c1− 1
2L 
L(z)+ c− 1

2L 
NS(z)
)
, if nh2L → c ∈ (0,∞),

(2.10)

where L∗ = (L+1)1{L=odd} +L1{L=even},


NS(z) = ν0(K)σ 2
u

f (z)

(∫
BxB′

x

)−1

, (2.11)


L(z) = ν2L(K)

(L!)2f (z)

(∫
BxB′

x

)−1(∫
BxB′

x

(
B′

xβ
(L)(z)

)2
)(∫

BxB′
x

)−1

, (2.12)

and where the bias function BL(z) = μL∗ (K)

f (z) CL(z) = GL(z)
f (z) , just as in Theorem 2.1.

The division of the limit theory of FC cointegrating regression into three
categories was discovered in Phillips and Wang (2021) for the case where L = 1.
Theorem 2.2 extends those results to the general case and reveals the effect on
both the limit theory and the convergence rate of local flatness in the coefficient
function at the point of estimation. As shown in Phillips and Wang (2021) and
as is evident in the proof of Theorem 2.2, the presence of multiple categories to
the limit theory arises because two different sources of variability occur in the
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asymptotics – one from the random elements of the bias function and one from the
sample covariance of the regressor and the equation error. Correspondingly, the
form of the limit theory itself changes, according to the behavior of nh2L.

Category (i) where nh2L → 0 is comparable to the stationary case, but with
convergence rate n

√
h that embodies the O(

√
n) order of the I(1) regressor xt and a

limit variance matrix that replaces the stationary sample moment matrix limit �xx

with the corresponding quadratic functional
∫

BxB′
x for the nonstationary case in

the limit matrix 
NS in (2.11). The bias function hL∗BL(z) in the centering of β̂(z)
is identical to the stationary case and has the same order O(hL∗

). Mixed normal
limit theory, but with different rates of convergence and different variance matrices,
applies in cases (i), (ii) and the intermediate case (iii).

Remark 2.1 (Convergence-rate optimal bandwidth order). In case (iii) of Theo-

rem 2.2 where nh2L → c for some constant c ∈ (0,∞), the bandwidth h ∼a (c/n)
1

2L

and then the convergence rate in case (ii) becomes
√

n/h2L−1 = O
(√

n1+ 2L−1
2L

)
=

O
(

n1− 1
4L

)
. Similarly, the convergence rate in case (i) becomes n

√
h = O

(
n1− 1

4L

)
when h ∼a (c/n)

1
2L . This duality between the two cases implies that the conver-

gence rates in cases (i) and (ii) merge to the same O
(

n1− 1
4L

)
rate for the interme-

diate situation where the bandwidth satisfies nh2L → c. In fact, the case nh2L → c ∈
(0,∞) yields the maximum convergence rate outcome for FCC regression because,
for the boundary cases where nh2L → 0 or nh2L → ∞, we find that the respective

convergence rates are n
√

h = o
(

n1− 1
4L

)
and

√
n/h2L−1 = o

(
n1− 1

4L

)
. Thus, the

FCC kernel regression convergence rate is optimal in the intermediate case where
nh2L → c ∈ (0,∞). The associated convergence-rate optimal bandwidth, denoted

hopt, is hopt ∼a (c/n)
1

2L = O
(

n− 1
2L

)
. The limit distribution is a mixture of the mixed

normal component MN (0,
L(z)) (which comes from the random element of the
bias function) and the mixed normal component MN (0,
NS(z)) (which comes

from the usual equation error term). The coefficients in this mixture are c
1
2 − 1

4L and

c− 1
4L . For instance, if the locally flat function β(z) has the asymptotically regular

form β(z) ∼a a0zL as L → ∞, the variance matrix 
L(z) = O
(
(β(L)(z)/L!)2

) =
O(1). Then the c1− 1

2L 
L(z) component in the asymptotic variance in (2.10) remains

stable when L is large just like the c− 1
2L 
NS(z) component. Therefore the random

element coming from the bias function cannot be ignored even when the functional
coefficient is sufficiently flat at the point of estimation.

However, with h = O
(

n− 1
2L

)
, based on case (iii) of Theorem 2.2, the

bias term cannot be neglected because it is of order O
(

n1− 1
4L ×n− L∗

2L

)
=

O
(

n
4L−2L∗−1

4L

)
→ ∞ when L ≥ 2. Therefore when discussing the optimal

bandwidth order, we need to take the bias effect into consideration, not only the
convergence rate. This requires examination of the Mean Squared Error (MSE)
optimal bandwidth order, as given next.
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Remark 2.2 (Optimal bandwidth order). We explore the optimal bandwidth
order with respect to Root Mean Squared Error (RMSE). Let h = O(nγ ), −1 <

γ < 0, and β̂(z) − β(z) = O(ngL(γ )). The exponent function gL(γ ) in the latter
expression represents the order of the RMSE, which is determined by the maxi-
mum of the bias order and the standard deviation order. The subindex L in gL(γ )

indicates that the RMSE order function varies with parameter L.
First consider the case where L is odd in which case L∗ = L + 1. Based on

result (i) of Theorem 2.2, when nh2L → 0 or equivalently γ < − 1
2L , we have

β̂(z) − β(z) = Op

(
1

n
√

h
+hL∗) = Op(n−1−γ /2 + n(L+1)γ ). Then we have gL(γ ) =

max{−1 − γ /2,(L + 1)γ } when γ < − 1
2L . Similarly, based on result (ii) of

Theorem 2.2, we have gL(γ ) = max{(L−1/2)γ −1/2,(L+1)γ } when γ > − 1
2L .

Following result (iii) of Theorem 2.2, we have gL(γ ) = max
{−1+ 1

4L,(L+1)γ
}

when γ = − 1
2L . Straightforward analysis yields

g1(γ ) =

⎧⎪⎨
⎪⎩

2γ, −1/3 ≤ γ < 0

− 1−γ

2 , −1/2 < γ < −1/3

−(1+γ /2), −1 < γ ≤ −1/2

(2.13)

and

gL(γ ) =
{

(L+1)γ, − 2
2L+3 ≤ γ < 0

−1− γ

2 , −1 < γ < − 2
2L+3

(2.14)

for L ≥ 3.
Similarly, suppose L is even, in which case L∗ = L, and gL(γ ) can be derived

based on Theorem 2.2. Thus, if nh2L → 0 or equivalently γ < − 1
2L , we have β̂(z)−

β(z) = Op(
1

n
√

h
+ hL∗

) = Op(n−1−γ /2 + nLγ ). When γ = − 1
2L , we have gL(γ ) =

max{−1+ 1
4L,Lγ } = max{−1+ 1

4L, −1/2} = −1/2; and when γ > − 1
2L , we have

gL(γ ) = max{(L−1/2)γ −1/2,Lγ }. Standard calculations yield

gL(γ ) =
{

Lγ, − 2
2L+1 ≤ γ < 0

−1− γ

2 , −1 < γ < − 2
2L+1

(2.15)

when L is even. Note that (2.14) and (2.15) can be combined as

gL(γ ) =
{

L∗γ, − 2
2L∗+1 ≤ γ < 0

−1− γ

2 , −1 < γ < − 2
2L∗+1

(2.16)

for L ≥ 2.
The gL(γ ) functions are plotted in Figure 1. Evidently, when L = 1, the RMSE

optimal bandwidth order is hopt∗ = O(n−1/2), which equals the convergence-
rate optimal bandwidth order hopt. For L ≥ 2, the optimal bandwidth is hopt∗ =
O(n− 2

2L∗+1 ), which is smaller than the convergence-rate optimal bandwidth order
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(a) L = 1 (b) L is odd, L ≥ 3

(c) L is even

Figure 1. Plots of gL(γ ) for L ≥ 1. See online version for all color graphics.

hopt = O(n− 1
2L ) when L ≥ 2. The discrepancy between these two optimal band-

width rates is due to the fact that when L ≥ 2 bias dominates variance in result (iii)
of Theorem 2.2. To reduce bias, the RMSE optimal bandwidth prefers to select
a smaller order. When L is large, we can see the order of hopt∗ , viz., − 2

2L∗+1 , is
close to zero and then hopt∗ diminishes to zero at a very slow rate as n → ∞. This
outcome is consistent with heuristics as β(z) is close to a constant function at the
estimation point z when L is large; and estimation of an almost constant function
requires only a very low degree of localization.

Remark 2.3 (MSE optimal bandwidth formula). The above analysis tells us that
the RMSE optimal bandwidth order, or equivalently, the MSE optimal bandwidth
order, is achieved within case (i) of Theorem 2.2. Taking the standard approach to
optimal bandwidth selection that balances bias and variance (and using the scalar xt

case for convenience) leads to the following formula compared with the stationary
regressor case given in (2.6)

hopt* =
(


NS(z)

2L∗BL(z)2

) 1
2L∗+1 1

n2/(2L∗+1)
≡ cL(z)n

− 2
2L∗+1 (2.17)
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where cL(z) =
(


NS(z)
2L∗BL(z)2

) 1
2L∗+1 . To illustrate, suppose L is even in which case

cL(z) =
(


NS(z)

2LBL(z)2

) 1
2L+1 =

(
ν0(K)σ 2

u L!(L−1)!

2μL(K)2f (z)(
∫

B2
x)β

(L)(z)2

) 1
2L+1

. (2.18)

If, as before, the functional coefficient is flat at z = 0 with polynomial form
β(z) = ∑q

j=0 ajzL+j and a0 �= 0, then β(L)(z) = L!
∑q

j=0
(L+j)!

L!j! ajzj = O(L!) and
cL(z) = Op(1) as L → ∞, the randomness of cL(z) arising from the presence
of the quadratic functional

∫
B2

x in (2.18). Again, the optimal bandwidth hopt* =
Op(n−2/(2L+1)) and for large L the optimal bandwidth shrinks at a very slow rate
and the associated optimal convergence rate n

√
hopt∗ approaches n, giving a near-

parametric convergence rate for extremely flat functions. This suggests that a
larger bandwidth is needed for large L. But in practice in both stationary and
nonstationary cases, L is typically unknown, so cL(z) and the optimal bandwidth
order are also unknown in the absence of information about β(z) and its derivatives.
While estimation of optimal bandwidths by cross validation or by the use of
derivative function estimates is possible, these methods typically lead to very slow
convergence rates in optimal bandwidth formulas even in the simplest cases (Hall
and Marron, 1987; Hall et al., 1991). So the above findings are likely to be mainly
of importance and use in theoretical work.

Remark 2.4 (Asymptotics with MSE optimal bandwidth). When L = 1, choice
of the MSE optimal bandwidth order hopt∗ leads to asymptotics that are determined
according to case (iii) of Theorem 2.2 since nh2L

opt∗ = O(1) when L = 1. More

specifically, the limit theory for β̂(z) is given by

n3/4
(
β̂(z)−β(z)−h2

opt∗B1(z)
)
�MN

(
0,c1/2
L(z)+ c− 1

2 
NS(z)
)
, (2.19)

which matches the result in Phillips and Wang (2021, Thm. 2.1(c)) for the standard
case of no flatness in β(z). In this case, the bias can be neglected because n3/4 ×
h2

opt∗ = O(n−1/4) = o(1). When L ≥ 2, we have nh2L
opt∗ → 0 and the limit theory is

determined by case (i) of Theorem 2.2. Specifically with h = hopt∗ = O(n− 2
2L∗+1 ),

we have

n
2L∗

2L∗+1

{
β̂(z)−β(z)−hL∗

opt∗BL(z)
}
�MN (0,
NS(z)) . (2.20)

In this case, the random bias component involving 
L(z) can be ignored asymp-

totically but the deterministic bias term cannot be neglected because n
2L∗

2L∗+1 ×
hL∗

opt∗ = O

(
n

2L∗
2L∗+1 ×n− 2L∗

2L∗+1

)
= O(1). Using the MSE optimal bandwidth hopt∗ =

O
(

n− 2
2L∗+1

)
, the fastest convergence rate that β̂(z) can achieve is Op

(
n− 2L∗

2L∗+1

)
when L ≥ 2. As L → ∞, the fastest convergence rate approaches Op(n−1), leading
to the parametric cointegrating regression convergence rate β̂(z)−β(z) = Op(n−1)
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as L → ∞. As in the stationary case, this matches heuristic arguments because β(z)
approaches a constant function at the estimation point z when L → ∞.

3. IMPLICATIONS FOR INFERENCE

3.1. Procedures for Inference

When L is known or is correctly hypothesized standard test statistics for inference
about the functional coefficient β(z) can be constructed in a standard way.
Following Phillips and Wang (2021), but allowing now for local flatness in the
coefficient function, we start with the matrix normalization5

T̂(z;L) = V̂n(z;L)−1/2
[
β̂(z)−β(z)−hL∗ B̂L(z)

]
, (3.1)

where V̂n(z;L) = An(z)−1
̂n(z;L)An(z)−1 with An(z) =∑n
t=1 xtx′

tKtz,


̂n(z;L) = ν0(K)σ̂ 2
u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t

{
x′

t

1

L!
β̂(L)(z)(zt − z)LKtz

}2

, (3.2)

and

B̂L(z) = μL∗(K)

{
β̂(L)(z)

L!
1{L=even} +

[
β̂(L)(z)

L!

f̂ (1)(z)

f̂ (z)
+ β̂(L+1)(z)

(L+1)!

]
1{L=odd}

}
.

(3.3)

The statistic T̂(z;L) follows the same design as the robust t-test statistic developed
in Phillips and Wang (2021) for the nonflat case with L = 1.

The bias component hL∗ B̂L(z) in (3.1) and the second term of 
̂n(z;L) in (3.2)
are both infeasible in practical work unless L is known or is stated as part of a null
hypothesis such as

H0 : β(z) = β0,L = L0. (3.4)

Section 3.3.1 below discusses some of the difficulties involved in the direct
estimation of the derivative order parameter L. An alternative way to determine L
empirically is to test whether successive derivatives of β(z) are zero at the
point of estimation using consistent kernel estimates,6 β̂(	)(z), of the derivative
functions β(	)(z) and conducting inference to detect zero derivatives at the point
of interest. In most practical cases this procedure would involve examination of
only the first derivative or first two derivatives (	 = 1,2). Section 3.3.3 provides an
implementation of a two-step pre-test procedure. Fortunately, simulation evidence
presented in Section 4.2 indicates that the two-step pre-test approach works well in

5To avoid dealing with higher order bias when performing inference in this section we assume that the higher order
bias can be ignored after being scaled by the convergence rate. In the stationary case, condition

√
nhhL∗+1 → 0 is

adequate to ensure this. In the nonstationary case, condition n
√

hhL∗+1 → 0 works for case (i). Conditions for cases
(ii) and (iii) can be obtained in a similar fashion.
6Derivative estimates can be obtained in the usual way by employing higher order polynomial approximation.
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terms of coverage compared with the infeasible test procedure that employs correct
information about L.

Under H0 the statistic T̂(z;L0) may be used to construct a robust Hotelling’s T2

type statistic based on the quadratic form T̂2(z;L0) = T̂(z;L0)
′T̂(z;L0), so that

T̂2(z;L0) =
[
β̂(z)−β0 −hL∗

0 B̂L0(z)
]′

V̂n(z;L0)
−1
[
β̂(z)−β0 −hL∗

0 B̂L0(z)
]

.

The following result shows that under the null H0 with use of the correct value of L
the statistics T̂(z;L0) and T̂2(z;L0) satisfy T̂(z;L0) �N (0,Ip) and T̂2(z;L0) � χ2

p
as n → ∞. This pivotal limit theory provides a basis for performing inference about
β(z) when the functional coefficient is locally flat and the flatness parameter L is
correctly hypothesized. This approach covers both stationary and nonstationary
regressor cases.

THEOREM 3.1. Under either Assumption 1 or 2, when the null hypothesis H0

holds and nh → ∞, T̂(z;L0) �N (0,Ip) and T̂2(z;L0) � χ2
p .

3.2. Test Power

When the null hypothesis is false and the true value of the functional coefficient
β (z) �= β0 but the maintained hypothesis L = L0 is correct, asymptotic power can
be explored under local alternatives of the form

H1,β : β(z) = β0 +ρnm(z),

where m(z) is a p-vector function whose modulus is bounded away from the origin
and ρn is a real sequence for which ρn → 0. Let χ2

p (α) be the 1−α right tail critical
value of the χ2

p distribution. Then, under H1,β we have

lim
n→∞P

(
T̂2(z;L0) > χ2

p (α)
)

= 1, (3.5)

for any ρn satisfying ρ2
n nh → ∞ if xt is stationary and Assumption 1 holds or for ρn

satisfying ρ2
n n2h → ∞ if xt is nonstationary, nh2L0 → 0 and Assumption 2 holds.

To prove (3.5) first consider the stationary case. In view of Theorem 2.1 we have,
under H1,β,

√
nh[β̂(z)−β0 −ρnm(z)−hL∗

0 B̂L0(z)] �N (0,
S(z)) .

Since 1
nh An(z) →p �xxf (z) and

1

nh

̂n(z;L0) = ν0(K)σ̂ 2

u

1

nh

n∑
t=1

xtx
′
tKtz + 1

nh

n∑
t=1

xtx
′
t

{
x′

t

β̂(L0)(z)

L0!
(zt − z)L0 Ktz

}2

→p ν0(K)σ 2
u f (z)�xx, (3.6)

https://doi.org/10.1017/S0266466622000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000287


914 PETER C. B. PHILLIPS AND YING WANG

just as in the proof of (A.25), we obtain

nhV̂n(z;L0) =
(

1

nh
An(z)

)−1 1

nh

̂n(z;L0)

(
1

nh
An(z)

)−1

→p 
S(z). (3.7)

It follows that under H1,β and Assumption 1

T̂(z;L0) = V̂n(z;L0)
−1/2

[
β̂(z)−β0 −hL∗ B̂L0(z)

]
= V̂n(z;L0)

−1/2
[
β̂(z)−β0 −ρnm(z)−hL∗ B̂L0(z)

]
+
[
nhV̂n(z;L0)

]−1/2√
nhρnm(z)

∼a N
(

S(z)

−1/2
√

nhρnm(z),Ip

)
, (3.8)

so that (3.5) holds when ρ2
n nh → ∞ and m(z) �= 0 in the stationary case.

In the nonstationary case, the analysis can be carried out separately depending
on the rate of nh2L0 . We take nh2L0 → 0 as an example. When nh2L0 → 0 and
nh → ∞, from Theorem 2.2(i) under H1,β , we have

n
√

h
{
β̂(z)−β0 −ρnm(z)−hL∗

0 B̂L0(z)
}
�MN (0,
NS(z)), (3.9)

where 
NS(z) = ν0(K)σ 2
u

f (z)

(∫ 1
0 BxB′

x

)−1
. Now 1

n2h
An(z) �

∫ 1
0 BxB′

xf (z) and
1

n2h

̂n(z;L0) � ν0(K)σ 2

u f (z)
∫ 1

0 BxB′
x, so that

n2hV̂n(z;L0) =
(

1

n2h
An(z)

)−1 1

n2h

̂n(z;L0)

(
1

n2h
An(z)

)−1

� 
NS(z). (3.10)

Hence, under H1,β , Assumption 2 and with nh2L0 → 0 and nh → ∞ we have

T̂(z;L0) = V̂n(z;L0)
−1/2

[
β̂(z)−β0 −hL∗

0 B̂L0(z)
]

= V̂n(z;L0)
−1/2

[
β̂(z)−β0 −ρnm(z)−hL∗

0 B̂L0(z)
]
+
[
n2hV̂n(z;L0)

]−1/2√
n2hρnm(z)

∼a MNm

(

NS(z)

−1/2
√

n2hρnm(z),Ip

)
, (3.11)

where MNm(·,·) signifies a mean mixture normal distribution.7 The test statistic
T̂2(z;L0) then diverges when ρ2

n n2h → ∞ because it is asymptotically distributed
as a mixture noncentral chi-square variate with the divergent noncentrality param-
eter n2hρ2

n m(z)′
NS(z)−1m(z) → ∞. It follows that (3.5) holds in the nonstationary
case when ρ2

n n2h → ∞ and m(z) �= 0.
Results for nh2L0 → ∞ and nh2L0 → c ∈ (0,∞) can be obtained in similar

ways and the details are omitted. In the case where nh2L0 → ∞, the condition

7A random p-vector ξ has a mean mixture normal density with covariance matrix Ip if the density of ξ is the mixture

density 1
(2π)p/2

∫
ϑ∈�

e− 1
2 (x−ϑ)′(x−ϑ)dP(ϑ) where P(ϑ) is the probability measure of the mean-mixing variate vector

ϑ .
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nρ2
n/h2L0−1 → ∞ is needed for the test to be consistent. When nh2L0 → c ∈ (0,∞)

the test is consistent if n
1− 1

4L0 ρn → ∞ holds.
Before closing this section we point out that this test is not designed to detect

alternatives specifically about L in either stationary or nonstationary cases. To
illustrate the difficulties involved in such alternatives, we take the stationarity case
with nh2L0 → 0 and consider the alternative H1,L : β(z) = β0, L0 < L where the
flatness degree L exceeds the hypothesized L0. To examine test power observe that
√

nh
{
β̂(z)−β(z)−hL∗

0 B̂L0(z)
}

= √
nh
{
β̂(z)−β(z)−hL∗ B̂L(z)

}
+√

nh
{

hL∗ B̂L(z)−hL∗
0 B̂L0(z)

}
.

The order of the second term depends on both L and L0, noting that the order
of B̂L0(z) depends on L0 and L through the empirical estimates β̂(L0)(z) and
β̂(L0+1)(z) that are used in the construction of the test statistic. Due to the
fact that L is unknown under H1,L, the order of magnitude of the component√

nh
{

hL∗ B̂L(z)−hL∗
0 B̂L0(z)

}
cannot be precisely determined and the power char-

acteristics of the test are not known. Since these properties of the test in the case of
departures L from the hypothesized L0 are unknown, the statistic is not designed
to test hypotheses concerning the flatness order L.

3.3. Challenges in Test Construction when L is Unknown

3.3.1. Direct Estimation of L. The statistic T̂(z;L) cannot be used in practical
work if L is unknown or is not part of the null or an explicit maintained hypothesis.
A natural approach if this were not the case but if L were directly estimable (by
L̂, say) would be to employ plug-in estimates β̂(L̂)(z) and β̂(L̂+1)(z) of the required
derivatives of β(z) in the bias and variance matrix components of T̂(z;L). However,
as the analysis below reveals, in the general case of unknown L such a plug-
in approach encounters difficulties because of the challenge of direct consistent
estimation of L. Further, as earlier analysis reveals, the optimal bandwidth order
in FC regression depends on the flatness degree parameter L. Since L is a higher
order property of an unknown nonparametric function β(z), this dependence poses
a subtle question of how to determine the bandwidth h in estimation and inference.

In this respect, noting that β (zt)−β (z) = β(L)(z̃t)
L! (zt − z)L where z̃t lies on the

line segment between zt and z and β(L) (z) �= 0 by assumption, it follows that as
n → ∞ and h → 0

L†
n = 1

log(h)
log

(
1
n

∑n
t=1 |β(zt)−β(z)|Ktz

1
n

∑n
t=1 Ktz

)
→p L,

as shown in Part 1 in the Supplementary Material. Of course, L†
n is an infeasible

rate estimator reliant on the unknown function β(·) in a neighborhood of z. It
has a slow logarithmic convergence rate with L†

n − L = Op(1/ log(h)), so that
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when h = n−δ for some δ > 0 we have L†
n −L = Op(1/ log(n)). More specifically,

log(h)(L†
n −L) = log

(∣∣∣ β(L)(z)
L!

∣∣∣)+ log
(∫ |s|LK(s)ds

)+op(1), as shown in Part 1 of

the Supplementary Material.
Setting wtz = Ktz/

∑n
t=1 Ktz, this limit behavior suggests the following

“plausible” practical estimate of L

L̂ = 1

log(h)
log

(
n∑

t=1

∣∣∣β̂(zt)− β̂(z)
∣∣∣wtz

)
, (3.12)

which can be computed using a preliminary bandwidth h satisfying h → 0 and
nh → ∞. However, the estimator L̂ is consistent only when bandwidth h is
appropriately selected. Part 2 of the Supplementary Material provides a rigorous
demonstration of this property of L̂ in the cases L = 1 and L = 2. It is found that
when L = 1, L̂ is consistent only when condition nh3 → c ∈ (0,∞] is satisfied and
when L = 2, the consistency condition is nh5 → c ∈ (0,∞]. In general, we expect
that when nh2L+1 → c ∈ (0,∞] holds L̂ would be consistent for L ≥ 1. Hence,
“appropriate selection” of the bandwidth for L̂ to be consistent in general requires
knowledge of L, making L̂ infeasible in practice. Simulations that confirm these
findings are also provided in Part 2 in the Supplementary Material.

A further complication that should be mentioned is that even if a consistent esti-
mator of L were available, bias correction requires specification of the bandwidth
factor h(L) = hL in hLBL(z), which presents additional difficulties. For example,
whereas the infeasible estimator L†

n →p L, the consistency of L†
n does not mean

that hL†
n ∼a hL. At the end of Part 2 in the Supplementary Material, we show that

hL†
n is inconsistent for hL. Thus the slow rate of convergence of L†

n interferes with
consistent estimation of the factor hL needed for bias correction. In view of all these
technical difficulties, the feasibility of direct consistent estimation of L requires
further study and is left for future research.

3.3.2. Adaptive Statistic Design. This section comments briefly on the pos-
sibility of constructing an adaptive test statistic that does not require knowledge
of L. The idea stems from Remarks 3.2 and 3.3 in Phillips and Wang (2021) where
a statistic is developed that incorporates bias and variance matrix estimators that do
not involve L but instead rely on local information about the function obtained by
kernel estimation. In principle, it is straightforward to extend this idea to the case
where L > 1. Take the stationary case as an example. The adaptive bias estimator
is defined as

B̂(z) = An(z)
−1

(
n∑

t=1

xtx
′
t

)
1

n

n∑
t=1

[
β̂(zt)− β̂(z)

]
K

(
zt − z

h

)
,

where the sample average 1
n

∑n
t=1

[
β̂(zt)− β̂(z)

]
K
( zt−z

h

)
is introduced to approx-

imate E[β(zt) − β(z)]Ktz. Unfortunately this adaptive bias estimator B̂(z) is not
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consistent for the true bias when L > 1 because local kernel estimation in β̂(zt)−
β̂(z) is insufficiently precise to capture the required derivative components. In
consequence, the limit of B̂(z) has many additional terms when L > 1. Moreover,
direct (bias correction) adjustment to achieve consistent bias estimation is not
possible because the limit of B̂(z) depends on the unknown value of L. More
details are provided in the Supplementary Material showing how the adaptive bias
estimator fails in flat regions of the function where L > 1 in both stationary and
nonstationary cases. There are further obstacles to inference in the adaptive bias
estimator B̂(z) due to additional variation that affects the limit distribution of the
bias centered term β̂(z)−β(z)− B̂(z). In the nonstationary case, the variance of
this term depends on L and β(L)(z), making it difficult to estimate the limit variance
adaptively without introducing further bias effects. These complications combine
to make it difficult to design an adaptive statistic in cases where the flatness degree
is unknown, leaving this pursuit as a further challenge for future research.

3.3.3. Pre-testing. In response to these challenges we propose a feasible
pre-test method for practical work in cases where flatness may be suspected.
The approach is to focus on the first two derivatives and determine L by pre-
testing whether these derivatives are zero. Inference is implemented using the self-
normalized statistic T̂(z;L) with L replaced by the pre-testing estimate. A two-step
pre-test estimation procedure is suggested.

Step 1: Test H0,β(1) : β(1)(z) = 0. If H0,β(1) is rejected, conclude that L = 1 and
the procedure stops. Otherwise, continue to Step 2;

Step 2: Test H0,β(2) : β(2)(z) = 0. If H0,β(2) is rejected, conclude that L = 2 and
the procedure stops. Otherwise, we simply let L = 3.

The procedure stops at L = 3 for simplicity and because this measure of
flatness should suffice in most practical situations. Significance tests involving
the derivatives are constructed as follows. To test H0,β(1) we use limit theory for

the derivative estimator β̂(1)(z). In our ongoing work (Wang and Phillips, 2022)
using local p-th order polynomial estimation, the asymptotic theory for derivative
estimators β̂(k)(z) (k = 0,1,2, . . . ,p) in FC regressions are obtained. For example,
with nonstationary xt and local linear (p = 1) estimation, the asymptotic theory for
β̂(1)(z) (k = 1) is given by

β̂(1)(z)−β(1)(z)−h2f −1(z)μ2(K)−1μ4(K)B2p(z) ∼a

√
h

n
MN

(
0,
β,1,1(z)

)
+ 1

n
√

h3
MN

(
0,
u,1,1(z)

)
, (3.13)

where ∼a signifies asymptotic equivalence, B2p(z) = β(p+1)(z)
(p+1)! f (1)(z)+ β(p+2)(z)

(p+2)! f (z),


β,1,1(z) = ν6(K)μ2(K)−2f −1(z)B−1
(x,2)

∫ [
Bx(B′

x
β(2)(z)

2 )2B′
x

]
B−1

(x,2), 
u,1,1(z) =
ν2(K)μ2(K)−2σ 2

u f −1(z)B−1
(x,2), and B(x,2) = ∫

BxB′
x. From (3.13), it is not hard to

see that the optimal bandwidth order that balances bias and asymptotic variance
is n−2/7. Moreover, with this optimal bandwidth order the first term on the right
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side of (3.13) is negligible relative to the second term as
√

h/n = o( 1
n
√

h3
) when

h = O(n−2/7). Further, result (3.13) remains asymptotically valid when local
flatness exists as in that situation the first term is of smaller order than

√
h/n

and is again negligible when the optimal bandwidth order h = O(n−2/7) is used.
Hence the t-ratio for testing H0,β(1) : β(1)(z) = 0 can be constructed based on
(3.13). The construction follows that of the t-ratio given in (3.1). Estimation of the
asymptotic variance in (3.13) can be constructed in the same way as (3.2) since
the asymptotic variances 
β,1,1(z) and 
u,1,1(z) in (3.13) take similar forms to
those in (2.11) and (2.12) and are not repeated. For testing H0,β(2) : β(2)(z) = 0,
the asymptotic limit theory takes a more complicated form and is given in
Appendix D.

Denoting the pre-test estimator of L obtained in this way by L̂pre, tests can be
constructed using the plug-in statistic T̂(z;L̂pre). Further, with L̂pre available, the
relevant optimal bandwidth order can be employed, based on (2.6) for stationary
xt and Remark 2.2 for nonstationary xt. In this way bandwidth is adaptively deter-
mined to account for any local flatness of the function. Simulation performance of
the feasible statistic T̂(z;L̂pre) is reported in Section 4.2.

4. SIMULATIONS

The simulation experiments that follow employ a simple prototypical framework
for evaluating the adequacy of the asymptotic theory. We explore the behavior of
the FC estimators and the adequacy of the limit theory in locally flat and nonflat
regions of the function. The following sections consider estimation and inference
in stationary and nonstationary cases, separately.

4.1. Estimation

Nonstationary xt

In the first experiment the model (2.1) is used with a single I(1) exogenous
regressor xt generated as a random walk with iid N (0,σ 2

x ) innovations εxt and zero
initialization x0, iid N (0,σ 2

u ) equation errors ut, and iid U[−1,2] covariates zt. We
set σ 2

x = 1 and σ 2
u = 1. Throughout the simulations, the number of replications

used is 10,000 and the coefficient function is the quartic β(z) = z4, for which the
first three derivatives at z1 = 0 are zero, β(4)(z1) = 4! and β(1)(z2) = 4z3

2 = 4 at
z2 = 1.

Figure 2 shows the mean bias (plotted in the left panel), standard deviation
(plotted in the middle panel) and RMSE (plotted in the right panel) for β̂(z)
calculated at the points {z = 0,1} using samples of size n = 100,400 and 800,
based on 10,000 replications. In estimation we employ a Gaussian kernel and the
bandwidth formula h = σ̂z × nγ . The range −0.90 ≤ γ ≤ −0.05 is used to meet
the condition nh → ∞ and to avoid extremely small bandwidths for which there
is considerable imprecision in the simulation estimates, as is evident in the plotted
curves for the standard deviation and RMSE near the left limit of the domain of
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Figure 2. Nonstationary case: bias, standard deviation and RMSE plots for FCC estimator β̂(z) at
points z1 = 0 and z2 = 1 for the quartic coefficient function β(z) = z4. The figures show bias, standard
deviation, and RMSE in the left, middle, and right panels as functions of bandwidth power γ (−0.9 ≤
γ ≤ −0.05) in h = σ̂z × nγ for Model (2.1) with I(1) regressor xt and sample size n = 100,400, and
800.

definition.8 The plots show significant differences in estimator behavior between
the two points of estimation {z = 0,1}, which we summarize as follows.

8This imprecision is related to the fact that when nh → c < ∞ the asymptotic theory changes and no invariance
principle applies. Readers are referred to Phillips and Wang (2021) for further analysis and discussion of this
phenonomenon.

https://doi.org/10.1017/S0266466622000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000287


920 PETER C. B. PHILLIPS AND YING WANG

(i) Bias increases as the bandwidth widens and the bandwidth power γ → 0.
For very wide bandwidths, estimates at both z1 = 0 and z2 = 1 suffer large bias.
However, bias is smaller and usually much smaller at the point z1 = 0 of locally
flat functional form than at point z2 = 1. These findings all match the asymptotic
theory in Theorem 2.2, which shows that bias has order hL∗

, which is h4 when
z1 = 0 where L∗ = L = 4, compared with h2 when z2 = 1 where L∗ = L + 1 = 2
with L = 1.

(ii) Standard deviation rises in estimation at both points of estimation as the
bandwidth becomes very small when γ → −1 or as bandwidth becomes very
large when γ → 0. This outcome corresponds to asymptotic theory where there
are three convergence rates for the cases given in Theorem 2.2, where it is shown
that the highest convergence rate (or minimum standard deviation) occurs in the

intermediate bandwidth contraction case with h = O(n− 1
2L ). When the bandwidth

is very small (γ close to −1), considerable volatility in the standard deviation
estimates was found even with a large number of replications, particularly for
smaller sample sizes. We therefore only report results for γ ≥ −0.90 and some
volatility in the estimates is evident in the graphics close to this lower limit. The
standard deviation of β̂(z) at z2 = 1 is seen to be substantially greater than that at
z1 = 0 except for small bandwidths, again matching the limit theory.

(iii) The RMSE curves demonstrate similar U-shaped patterns to those of the
standard deviation curves. This simulation evidence corroborates the analysis in
Remark 2.2, where it is shown that the RMSE order gL(γ ) has a check function
shape with L = 4. Further, the RMSE is considerably lower when β(z) is flat at
z1 = 0 than when the coefficient function is rising at z2 = 1. These gains hold
throughout a wide range of bandwidth powers except for smaller bandwidths.

(iv) Across panels (a)–(c) in Figure 2, the main impact of larger sample sizes is
the anticipated reduction in the bias, standard deviation, and RMSE, which applies
to both z1 = 0 and z2 = 1 cases and across all bandwidth powers.9

To better illustrate the optimal bandwidth order discussed in Remarks 2.1
and 2.2, we report the bandwidth power values corresponding to the minimum
points of the standard deviation and RMSE curves from the simulations in Figure 2.
Results are collected in Table 1 under the panel headed “xt is nonstationary”.
According to Remark 2.1, the convergence-rate, or equivalently, the standard-
deviation optimal bandwidth order is achieved at − 1

2L , which is − 1
8 ≈ −0.13 for

z1 = 0 (L = 4) and − 1
2 for z2 = 1 (L = 1). Following Remark 2.2, the RMSE

optimal bandwidth order is − 2
2L+1 = − 2

9 ≈ −0.22 for z1 = 0 (L = 4) and − 1
2 for

z2 = 1 (L = 1). These are the figures reported in the last row of Table 1 for n = ∞.

9The numbers in this row are the optimal bandwidth orders based on the asymptotic theory as n → ∞. For the case
that xt is nonstationary, the standard-deviation optimal bandwidth order is the convergence-rate optimal bandwidth
order analyzed in Remarks 2.1. It is given as − 1

2L , which is − 1
8 ≈ −0.13 for z1 = 0 (L = 4) and − 1

2 for z2 = 1 (L = 1).
The RMSE optimal bandwidth follows Remark 2.2, which is − 2

2L∗+1 = − 2
9 ≈ −0.22 for z1 = 0 (L = L∗ = 4) and

− 1
2 for z2 = 1 (L = 1). For the case that xt is stationary, the RMSE optimal bandwidth order is − 1

2L∗+1 as given in

(2.6). Then the true value for z1 = 0 (L = L∗ = 4) is − 1
9 ≈ −0.11 and that for z2 = 1 (L = 1, L∗ = 2) is − 1

5 .
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Table 1. Finite sample optimal bandwidth order estimates

xt is nonstationary xt is stationary

StDev optimal RMSE optimal RMSE optimal

z1 = 0 z2 = 1 z1 = 0 z2 = 1 z1 = 0 z2 = 1

n = 100 −0.19 −0.56 −0.27 −0.56 −0.20 −0.40

n = 400 −0.18 −0.56 −0.26 −0.56 −0.17 −0.38

n = 800 −0.18 −0.55 −0.25 −0.55 −0.17 −0.36

n = ∞ −0.13 −0.50 −0.22 −0.50 −0.11 −0.20

Only when L = 1 are these two optimal bandwidth orders the same both here and
for z2 = 1 in Table 1. When L = 4, the convergence-rate optimal bandwidth power
is larger than the RMSE optimal bandwidth power. In Table 1 it is evident that
for z1 = 0, the standard-deviation optimal bandwidth order estimates are larger
than the RMSE optimal bandwidth order estimates. Moreover, as the sample size
n increases, the optimal bandwidth order estimates approach the corresponding
limit values reported in the last row for n = ∞. These results again corroborate the
analysis in Remarks 2.1 and 2.2 showing that the RMSE optimal bandwidth rate
equals the convergence-rate optimal bandwidth order when L = 1 or is less than
the convergence-rate optimal bandwidth order when L ≥ 2.

Stationary xt

In the second experiment the same model (2.1) is used but with a stationary
exogenous regressor xt generated by the autoregression xt = θxt−1 + εxt with
iid N (0,σ 2

x ) innovations εxt and zero initialization x0, iid N (0,σ 2
u ) equation errors

ut, and iid U[−1,2] covariates zt. We set σ 2
x = 1, σ 2

u = 1, and θ = 0.5. Again 10,000
replications are employed. The results for bias, standard deviation and RMSE are
shown in Figure 3. The plots for the stationary case mirror those in Figure 2 for
the FCC case. The imprecision in the simulation estimates at small bandwidths
is more severe than in the nonstationary case and results are accordingly reported
here for the reduced bandwidth power region −0.8 ≤ γ ≤ −0.05. The findings for
the stationary case are summarized below.

(v) The main difference with the nonstationary model occurs in the standard
deviation curves. Different from the nonstationary case, Theorem 2.1 shows that
the convergence rate on the left hand side is unaffected by the local flatness
parameter L or the bandwidth rate condition nh2L. We therefore expect to see
monotonously decreasing standard deviation curves for both points of estimation
{z = 0,1} as the bandwidth power γ increases. From the middle panel of Figure 3,
we observe that the standard deviation curve for z1 = 0 indeed shows a decreasing
pattern as γ increases to 0, but that for z2 = 1 the curve starts to rise slightly when γ

is close to 0. This is explained by the randomness that is present in the bias function
in finite samples. Although the randomness in the bias function is of smaller order
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Figure 3. Stationary case: bias, standard deviation and RMSE plots for the FC estimator β̂(z)

at points z1 = 0 and z2 = 1 for the quartic coefficient function β(z) = z4. The figures show bias,
standard deviation, and RMSE in the left, middle and right panels as functions of bandwidth power γ

(−0.80 ≤ γ ≤ −0.05) in h = σ̂z ×nγ for Model (2.1) with a stationary autoregressive regressor xt with
autoregressive coefficient θ = 0.5 and sample size n = 100,400 and 800.

than that of the usual error term asymptotically and therefore does not figure in
the limit theory, it can still affect finite sample performance. Moreover, the finite
sample effects are less severe when the functional coefficient is locally flatter (with
larger L) because the bias is smaller when L is larger. This explains why a marked
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rise in the curve is only observed towards the right limit near γ = 0 of the domain
of definition of the standard deviation curves for z2 = 1 but not for the curves for
z1 = 0.

(vi) For both RMSE curves, there is also a clear minimum RMSE bandwidth
choice as in the nonstationary case. Furthermore, the curves indicate that the
minimum RMSE bandwidth power γ is larger for estimation at z1 = 0 than at
z2 = 1. Direct evidence of this difference is given by the estimates of the RMSE
optimal bandwidth power reported in Table 1 under the panel “xt is stationary”.
These findings corroborate the analysis concerning the optimal RMSE bandwidth
order following Theorem 2.1.

(vii) The plots in Figure 3 show the finite sample gains in estimation that occur
from local flatness of the functional coefficient. These gains occur for bandwidths
large enough to be well beyond the region where there is imprecision in the
simulation estimates of the standard deviation and RMSE.

4.2. Inference

This Section reports findings on the finite sample performance of the t-ratios dis-
cussed in Section 3. Four statistics are considered: (i) the oracle t-ratio T(z;true L),
which assumes L, the derivatives (β(L)(z),β(L+1)(z)), and other components σ 2

u ,
f (z) and f (1)(z) are known; (ii) the infeasible statistic T̂(z;true L) in which the true
value of L is used and other components are estimated; (iii) the “naive” statistic
T̂(z;L = 1) where L = 1 is used as the simplest case without any attention to
potential flatness; and (iv) the pre-test statistic T̂(z;L̂pre). The oracle and infeasible
statistics provide two baselines to assess the relative performance of the naive and
pre-testing statistic for comparative purposes. The same generating mechanism is
used as in the previous section and we again consider the two evaluation points
z1 = 0 (with L = 4) and z2 = 1 (with L = 1). The bandwidth formula h = σ̂znγ and
a second order Epanechnikov kernel are employed throughout the computations.
The naive t-ratio T̂(z;L = 1) uses γ = −1/2 for nonstationary xt and γ = −1/5 for
stationary xt in the computation of β̂(z) and Ktz. The infeasible statistic T̂(z;true L)

is identical to the naive choice when L = 1. When L = 4, it uses the optimal order
γ = −1/(2L∗ +1) for stationary xt and γ = −2/(2L∗ +1) for nonstationary xt for
the computation of β̂(z) and Ktz. Given a known L or the estimate L̂pre, the oracle t-
ratio T(z;true L) and the pre-test statistic T̂(z;L̂pre) also use the optimal bandwidth
order in the computation of β̂(z) and Ktz. Other details concerning computation are
given in Appendix C.

The empirical densities of these t-ratio statistics are shown in Figure 4 for
stationary xt and in Figure 5 for nonstationary xt. From Figure 4, at the flat
point z1 = 0 the densities of the oracle statistic are evidently extremely close
to the standard normal. Densities of the naive, infeasible, and pre-test statistics
show some discrepancy from the standard normal, but the distribution of the
infeasible statistic is closer to standard normal when the sample size is large.
The improvement of the infeasible over the naive and pre-test statistics reveals
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(a) z1 = 0, L = 4

(b) z2 = 1, L = 1

Figure 4. Empirical densities of the self-normalized t-ratio T(z;true L), T̂(z;true L), T̂(z;L = 1), and
T̂(z;L̂pre) when xt is stationary.

(a) z1 = 0, L = 4

(b) z2 = 1, L = 1

Figure 5. Empirical densities of the self-normalized t-ratio T(z;true L), T̂(z;true L), T̂(z;L = 1), and
T̂(z;L̂pre) when xt is nonstationary.
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the gains from knowledge of L, or equivalently, the consequences of ignoring
or incorrectly estimating local flatness in the coefficient function at the point of
flatness. The naive and pre-test methods share similar performance. At the nonflat
point, the oracle statistic is the one closest to standard normal. The naive and
infeasible statistics are identical in this case because the true value of L is 1. The
pre-test statistic is competitive to these. Compared to the performance at the flat
point z1 = 0, the densities are closer to standard normal at the nonflat point. In
the nonstationary case in Figure 5, the oracle statistic is again extremely close
to standard normal at the flat point. The naive, infeasible and pre-test statistics
are competitive in performance, although all are too densely distributed at the
origin. The pre-test statistic is slightly closer to standard normal. At the nonflat
point, the naive and the infeasible distributions are again identical and their
performance is competitive to that of the oracle statistic. The pre-test statistic
shares the same competitive performance as the naive and infeasible statistics. In
summary, ignoring local flatness in the coefficient function seems to cause some
efficiency loss at the flat point and the pre-test method appears to recover slightly
this lost efficiency in the nonstationary case. To see these features more clearly
and consider their implications for inference we explore the coverage rates and
confidence interval lengths of the associated tests.

Table 2 reports coverage rates and lengths of the confidence intervals con-
structed at the two points z1 = 0 and z2 = 1 using the four statistics T(z;true L),
T̂(z;true L), T̂(z;L = 1), and T̂(z;L̂pre). Results are based on 20,000 replications.
In all situations considered, the oracle statistic has the best performance with
coverage rates close to the nominal level and confidence interval length the
narrowest in most cases. The infeasible statistic has the second best performance.
In the nonstationary case, it has coverage rates close to nominal levels but with
confidence intervals slightly wider than those of the oracle. In the stationary case,
the efficiency loss of the infeasible statistic versus the oracle is manifest in the
lower coverage rate, while the confidence interval can be slightly narrower than
the oracle. The naive method is identical to the infeasible method when L = 1.
When L = 4, the naive method shares similar coverage rates with the infeasible
method, but with much wider confidence interval lengths, especially when xt is
nonstationary. This finding reflects the efficiency loss of the naive method caused
by ignoring local flatness when it is present. The pre-test method has very similar
performance to the infeasible method, especially when L = 1. When L = 4, pre-
testing achieves similar coverage rates with the infeasible statistic at the cost of
slightly wider confidence intervals. It is worth noting that in the case of L = 4, the
pre-test method significantly outperforms the naive method with much narrower
confidence intervals. This finding reflects the efficiency gain of the estimator L̂pre

compared to simply treating L as 1. In sum, the pre-testing and infeasible statistics
share similar coverage rates but with slightly wider confidence bands around
the flat region for the pre-test statistic. Pre-testing appears to deliver significant
efficiency gains over the naive method with much narrower confidence bands in
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Table 2. Coverage rates and confidence interval length (in brackets) at points (z1,z2) based on the oracle t-ratio
T(z;true L), the infeasible t-ratio T̂(z;true L), the naive t-ratio T̂(z;L = 1), and the pre-test t-ratio T̂(z;L̂pre)

xt is nonstationary xt is stationary

n T(z;true L) T̂(z;true L) T̂(z;L = 1) T̂(z;L̂pre) T(z;true L) T̂(z;true L) T̂(z;L = 1) T̂(z;L̂pre)

z1 = 0 (L = 4) z1 = 0 (L = 4)

100 0.953 0.960 0.965 0.952 0.952 0.847 0.846 0.840

(0.205) (0.235) (0.628) (0.298) (0.660) (0.618) (0.742) (0.680)

200 0.950 0.972 0.974 0.962 0.951 0.879 0.872 0.858

(0.109) (0.125) (0.386) (0.149) (0.476) (0.441) (0.559) (0.494)

800 0.949 0.977 0.974 0.970 0.951 0.912 0.899 0.882

(0.031) (0.035) (0.094) (0.040) (0.252) (0.240) (0.325) (0.270)

z2 = 1 (L = 1) z2 = 1 (L = 1)

100 0.953 0.961 0.961 0.955 0.943 0.905 0.905 0.890

(0.768) (0.839) (0.839) (0.826) (1.154) (1.140) (1.140) (1.123)

200 0.954 0.969 0.969 0.969 0.950 0.918 0.918 0.916

(0.356) (0.384) (0.384) (0.383) (0.808) (0.794) (0.794) (0.793)

800 0.955 0.969 0.969 0.969 0.947 0.920 0.920 0.920

(0.116) (0.123) (0.123) (0.123) (0.413) (0.406) (0.406) (0.406)
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(a) xt is nonstationary, n = 200
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(b) xt is stationary, n = 200
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(c) xt is nonstationary, n = 800
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(d) xt is stationary, n = 800

Figure 6. Coverage rate (left scale) and length (right scale, with lines marked by circles) of the 95%
confidence bands over the support of zt for n = 200 and n = 800, from 20,000 replications.

the flat case. These results indicate a preference for the pre-testing approach among
the feasible statistics.

Figure 6 further demonstrates the overall performance of the four statistics in
the support of zt. The coverage rate curves and lengths of the confidence intervals
are plotted over the support [−1,2] of zt for sample sizes n = 200 and n = 800.
It is evident that the pre-test statistic has narrower confidence bands in the flat
region (the vicinity of the flat point z = 0) and the phenomenon is stronger in the
nonstationary case. These findings are explained by the results in Figure 7, which
shows the empirical frequencies of the pre-test estimator L̂pre, where it is clear that
L̂pre tends to over-estimate L in the flat region. The over-estimation is more severe
in the nonstationary case, although this over-estimation is mitigated by increasing
the sample size. At the same time, Figure 6 shows that the coverage rate of the
pre-test statistic is competitive with the naive and infeasible statistics in the flat
region. As we move away from the flat point z = 0, we find: (i) that the confidence
bands of the pre-test statistic grow wider and finally merge with the other three
methods; and (ii) that the coverage rate suffers a very small drop and then merges
with the naive and infeasible methods. The small drop in coverage rate may be
caused by the inferior performance of the derivative significance test in the shape
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(a) xt is nonstationary, n = 200
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(b) xt is stationary, n = 200
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(c) xt is nonstationary, n = 800
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(d) xt is stationary, n = 800

Figure 7. Empirical frequency of the pre-test estimator L̂pre over the support of zt for n = 200 and
n = 800, from 20,000 replications.

transformation region of the coefficient function. In sum, the pre-test method has
much narrower confidence bands around the flat region of the function at the cost
of slightly lower coverage rates in the transformation region. In terms of overall
performance, these results provide some promising support for practical use of the
pre-test method.

5. CONCLUSION

This paper extends existing limit theory in functional coefficient regression to
accommodate locally constant coefficients in the regression model (2.1), allowing
for both stationary and nonstationary regressors xt. The findings show that, in
the stationary case, the primary effects on the limit theory involve estimation
bias, which in turn affects optimal bandwidth choice and optimal convergence
rates. In the nonstationary case, both bias and dispersion are affected in the
limit theory. As a result, the conditions that separate the limit theory into three
different categories are affected by the flatness degree parameter. In particular,
both bias and variance depend on the number (L − 1) of zero derivatives in the
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coefficient function, with consequential effects on optimal bandwidth choice
and rates of convergence. In the boundary case where L → ∞ near parametric
rates of convergence apply for both stationary and nonstationary cases. In both
cases, locally flat functional coefficients make wider bandwidth choices beneficial
compared with those implied by standard limit theory. But optimal bandwidth
choice is complicated by the fact that bias-variance trade-offs may not correspond
to optimal convergence rates and bias correction is more complex due to the locally
flat behavior of the coefficient function.

In closing it is worth mentioning that extensions of the type given here are
relevant to existing asymptotic theory for nonparametric estimation whenever
locally flat functional behavior is present in other models such as probability
densities, models with nonstationary regressors that are more complex than I(1)

processes and models with time varying parameters. Common practice in the
latter models, for instance, is to use weak trend formulations of the parameters,
leading to time dependent coefficients of the form β( t

n ). Trend formulations of
this type in both stationary and nonstationary systems will lead to asymptotics that
involve extensions similar to those developed here, particularly in the stationary
regressor case where bias expressions, bias order, and optimal bandwidth choice
will all be influenced by flatness in the function. Similarly, in time varying
parameter cointegrated systems of the type studied in Phillips et al. (2017), the
limit theory will be affected by locally flat regions of the coefficient function. An
important simplification in both these cases is that the coefficient function β(·) is
deterministic, which means that the bias component affects centering but will not
contribute directly to variability and the form of the limit distribution, as it can do
in models with nonstationary regressors. These are some extensions of the present
theory that seem worthy of full investigation in future research.

In all of the above models, any regions of flatness in the function being estimated
are typically unknown a priori, including the degree of local flatness, just as the
function itself is unknown. Our analysis shows that in such cases the formulas
based on standard asymptotics that are used to measure bias and variance in
nonparametric estimation are only approximate and rates of convergence may be
wrong, especially in cases of nonstationary regressors. After extensive attempts
we have found it extremely challenging to devise a direct inference procedure that
accurately accommodates information about unknown locally flat characteristics
of a functional coefficient. Fortunately, the two-step pre-test procedure is found to
work well and can achieve evident efficiency gains at the flat region over the naive
approach that simply ignores the local flatness problem. Empirical estimation of
the precise degree of local flatness and improved inferential procedures that take
account of potential flatness both merit further research.

APPENDIX

This Appendix has four sections. Section A provides proofs of the main results in the
paper, Section B contains proofs of useful supporting lemmas, Section C provides additional
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computational details, Section D outlines some limit theory associated with testing that is
based on local quadratic estimation.

A. PROOFS OF THE THEOREMS

Proof of Theorem 2.1. We analyze the components in the following normalized decom-
position of the estimation error⎛
⎝ n∑

t=1

xtx
′
tKtz

⎞
⎠(β̂ (z)−β (z)

)
=

n∑
t=1

xtx
′
t[β(zt)−β(z)]Ktz +

n∑
t=1

xtutKtz

=
n∑

t=1

E(xtx
′
tξβt)+

n∑
t=1

[xtx
′
tξβt −E(xtx

′
tξβt)]+

n∑
t=1

xtutKtz, (A.1)

with ξβt = [β(zt)−β(z)]Ktz. Starting with the kernel-weighted signal matrix, we have

1

nh

n∑
t=1

xtx
′
tKtz = 1

nh

n∑
t=1

E
(
xtx

′
tKtz

)+ 1

nh

n∑
t=1

[xtx
′
tKtz −E(xtx

′
tKtz)]. (A.2)

Simple calculations give EKtz = h
∫

K (r) f (z+ rh)dr = hf (z) + O(h3), and EK2
tz =

h
∫

K2 (r) × f (z+ rh)dr = hf (z)
∫

K2(r)dr + o(h) = hf (z)ν0(K) + o(h), where νj(K) =∫
u jK2(u)du. It follows that Var(Ktz − EKtz) = EK2

tz − (EKtz)
2 = O(h) and so

Ktz −EKtz = Op(
√

h). We deduce that Var(xtx′
tKtz −E(xtx′

tKtz)) = O(h) and xtx′
tKtz −

E(xtx′
tKtz) = Op(

√
h). As a result, when nh → ∞, we have 1

nh
∑n

t=1[xtx′
tKtz −

E(xtx′
tKtz)] = Op(1/

√
nh) = op(1) since 1√

nh

∑n
t=1[xt ⊗ xtKtz − Ext ⊗ xtKtz] �

N
(
0,ν0(K)f (z)E

[
xtx′

t ⊗ xtx′
t|zt = z

])
from Lemma B.1(d)(i). Then we can get

1

nh

n∑
t=1

xtx
′
tKtz = 1

nh

n∑
t=1

E[KtzE
(
xtx

′
t|zt

)
]+op(1) →p �xx(z)f (z). (A.3)

Next, from the proof of Lemmas B.2(c) and (B.5), we have

Eξβt = hL∗+1CL(z)+o(hL∗+1),

where L∗ = L × 1{L=even} + (L+1)1{L=odd}, μL∗(K) = μL(K) × 1{L=even} + μL+1(K)

1{L=odd} and CL(z) defined in (2.5). Upon normalization and using Lemma B.2(c), the first
term in (A.1) is then

1

nhL∗+1

n∑
t=1

E
(
xtx

′
tξβt

)→p �xx(z)CL(z). (A.4)

The second term of (A.1) is, upon normalization and using Lemma B.2(b)(i),

1√
nh2L+1

n∑
t=1

[xtx
′
tξβt −E(xtx

′
tξβt)] �N

(
0,

ν2L(K)f (z)

(L!)2
E

[
(x′

tβ
(L)(z))2xtx

′
t|zt = z

])
,

(A.5)
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provided nh → ∞. Otherwise 1√
nh2L+1

∑n
t=1[xtx′

tξβt −E(xtx′
tξβt)] = Op(1) but no central

limit theorem holds, as shown in Lemma B.2(b)(ii). The final term of (A.1) is, after suitable
normalization and using Lemma B.1(c)(i),

1√
nh

n∑
t=1

xtutKtz �N (0,ν0(K)f (z)�xu(z)), (A.6)

provided nh → ∞. Otherwise from Lemma B.1(c)(ii), 1√
nh

∑n
t=1 xtutKtz = Op(1) but no

invariance principle applies.
Standardizing by the weighted signal matrix and recentering (A.1) we have the estimation

error decomposition

β̂(z)−β(z)−
⎛
⎝ n∑

t=1

xtx
′
tKtz

⎞
⎠

−1 n∑
t=1

Extx
′
tξβt =

⎛
⎝ n∑

t=1

xtx
′
tKtz

⎞
⎠

−1 n∑
t=1

[xtx
′
tξβt −Extx

′
tξβt]

+
⎛
⎝ n∑

t=1

xtx
′
tKtz

⎞
⎠

−1 n∑
t=1

xtutKtz, (A.7)

or, with each component appropriately standardized, as

β̂(z)−β(z)−hL∗
⎛
⎝ 1

nh

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

nhL∗+1

n∑
t=1

Extx
′
tξβt

=
√

h2L−1

n

⎛
⎝ 1

nh

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1√

nh2L+1

n∑
t=1

[xtx
′
tξβt −Extx

′
tξβt]

+ 1√
nh

⎛
⎝ 1

nh

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1√
nh

n∑
t=1

xtutKtz. (A.8)

Using (A.4), (A.5) and (A.6) in (A.8), we have

√
nh

⎛
⎜⎝β̂(z)−β(z)−hL∗

⎛
⎝ 1

nh

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

nhL∗+1

n∑
t=1

Extx
′
tξβt

⎞
⎟⎠

= hL

⎛
⎝ 1

nh

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1√

nh2L+1

n∑
t=1

[xtx
′
tξβt −Extx

′
tξβt]

+
⎛
⎝ 1

nh

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1√
nh

n∑
t=1

xtutKtz

= Op(hL)+
⎛
⎝ 1

nh

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1√
nh

n∑
t=1

xtutKtz (A.9)
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�N
(

0,
ν0(K)

f (z)
�−1

xx (z)�xu(z)�−1
xx (z)

)
. (A.10)

Using (A.3) and (A.4) we have

⎛
⎝ 1

nh

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

nhL∗+1

n∑
t=1

Extx
′
tξβt →p

GL(z)

f (z)
, (A.11)

which leads to

√
nh
(
β̂(z)−β(z)−hL∗BL(z)−o(hL∗

)
)
� N

(
0,

ν0(K)

f (z)
�−1

xx (z)�xu(z)�−1
xx (z)

)
(A.12)

where BL(z) = GL(z)
f (z) , giving the stated result for the first part, which holds whenever

nh → ∞ ensuring the central limit theorem (A.12).
In cases where nh → c ∈ [0,∞), in view of Lemmas B.1(c)(ii) and B.2(b)(ii), we still

have 1√
nh

∑n
t=1 xtutKtz = Op(1) and 1√

nh2L+1

∑n
t=1[xtx′

tξβt −Extx′
tξβt] = Op(1) although

no invariance principle holds. Further, in view of Lemma B.2(c) we have
∑n

t=1Extx′
tξβt =

Op(nhL∗+1). But the signal matrix
∑n

t=1 xtx′
tKtz = Op(

√
nh) and so the last term in (A.7)

is Op(1). Therefore β̂(z) is inconsistent when nh → c ∈ [0,∞). �

Proof of Theorem 2.2.
Case (i) We start with the decomposition

β̂(z)−β(z)−
⎛
⎝ n∑

t=1

xtx
′
tKtz

⎞
⎠

−1 n∑
t=1

xtx
′
tEξβt

=
⎛
⎝ n∑

t=1

xtx
′
tKtz

⎞
⎠

−1 n∑
t=1

xtx
′
tηt +

⎛
⎝ n∑

t=1

xtx
′
tKtz

⎞
⎠

−1 n∑
t=1

xtutKtz, (A.13)

which can be obtained in the same way as (A.7). Rescale the components according to their
asymptotic behavior, as determined in Lemma B.3, so that

β̂(z)−β(z)−hL∗
⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt

=
√

h2L−1

n

⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt

+ 1

n
√

h

⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

n
√

h

n∑
t=1

xtutKtz. (A.14)
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Then, since nh2L → 0 in this case, we rescale the equation by n
√

h, giving

n
√

h

⎛
⎜⎝β̂(z)−β(z)−hL∗

⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt

⎞
⎟⎠

=
√

nh2L

⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt

+
⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

n
√

h

n∑
t=1

xtutKtz

= op(1)+
⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

n
√

h

n∑
t=1

xtutKtz

�
(

f (z)
∫

BxB′
x

)−1(∫
BxdBuK

)
≡d MN

(
0,

ν0(K)σ 2
u

f (z)

(∫
BxB′

x

)−1
)

,

(A.15)

the mixed normality following from Lemma B.3(d)(i). In view of Lemmas B.3(b) and
B.3(c)(i) we have

⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt →p

GL(z)

f (z)
, (A.16)

for the bias function. Hence,

n
√

h
(
β̂(z)−β(z)−hL∗BL(z)−o(hL∗

)
)
�MN (0,
NS(z)), (A.17)

with 
NS(z) = ν0(K)σ 2
u

f (z)

(∫
BxB′

x
)−1, as given in the stated result (2.8) for case (i).

Case (ii)
When nh2L → ∞ the bandwidth goes to zero slower than O( 1√

n1/2L
). To derive the limit

theory in this case, rescale (A.14) by
√

n/h2L−1, giving

√
n

h2L−1

⎛
⎜⎝β̂(z)−β(z)−hL∗

⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt

⎞
⎟⎠

=
⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt

+ 1√
nh2L

⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

n
√

h

n∑
t=1

xtutKtz
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=
⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt +op(1)

�
(

f (z)
∫

BxB′
x

)−1(∫
BxB′

xdBη,L

)
(A.18)

≡d MN
(

0,
ν2L(K)

f (z)(L!)2

(∫
BxB′

x

)−1 ∫
BxB′

x

(
B′

xβ
(L)(z)

)2
(∫

BxB′
x

)−1
)

,

(A.19)

using Lemma B.3(a) and (c), where Bη,L is Brownian motion with variance matrix Vηη,L =
ν2L(K)f (z)

(L!)2 β(L)(z)β(L)(z)′.
Since Bη,L is singular Brownian motion whenever p > 1 we may write the inner product

Bx(r)′Bη,L(r) in the equivalent form Bx(r)′Bη,L(r) =
(

Bx(r)′β(L)(z)
)

Bf,L(r), where Bf,L

is scalar Brownian motion with variance ν2L(K)f (z)
(L!)2 . Then in view of the independence of

Bx and Bη,L we have

∫
BxB′

xdBη,L ≡d MN
(

0,
ν2L(K)f (z)

(L!)2

∫
BxB′

x

(
B′

xβ
(L)(z)

)2
)

, (A.20)

which leads to the mixed normal limit distribution given in (A.19). Combining this result
with the bias function evaluation obtained earlier in (A.16) yields

√
n

h2L−1

(
β̂(z)−β(z)−hL∗BL(z)−o(hL∗

)
)
�
(

f (z)
∫

BxB′
x

)−1(∫
BxB′

xdBη,L

)

≡d MN (0,
L(z)), (A.21)

where 
L(z) = ν2L(K)f (z)
(L!)2

(∫
BxB′

x
)−1 ∫ BxB′

x

(
B′

xβ
(L)(z)

)2 (∫
BxB′

x
)−1, giving the stated

result (ii) of Theorem 2.2.

Case (iii)

Since nh2L → c for some constant c ∈ (0,∞), h ∼a (c/n)
1

2L and then
√

n/h2L−1 =
O(

√
n1+ 2L−1

2L ) = O(n1− 1
4L ) = n

√
h. It follows that the first and second terms on the

right side of (A.14) have the same order and both therefore appear to contribute to the

asymptotics. So, upon rescaling (A.14) by n1− 1
4L we find that

n1− 1
4L

⎛
⎜⎝β̂(z)−β(z)−hL∗

⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt

⎞
⎟⎠

= (nh2L)
1
2 − 1

4L

⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt
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+ 1

(nh2L)
1

4L

⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

n
√

h

n∑
t=1

xtutKtz,

= c
1
2 − 1

4L ×
⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt

+ c− 1
4L

⎛
⎝ 1

n2h

n∑
t=1

xtx
′
tKtz

⎞
⎠

−1
1

n
√

h

n∑
t=1

xtutKtz. (A.22)

The asympototics are then jointly determined by the two terms of (A.22). Conditional on
Fx, these terms are uncorrelated as the conditional covariance involves the matrix

E

⎛
⎝ 1√

n3h2L+1

n∑
t=1

xtx
′
tηt

⎞
⎠
⎛
⎝ 1

n
√

h

n∑
t=1

xtutKtz

⎞
⎠

′
= 1√

n5hL+1

n∑
t,s=1

E
(
xtx

′
s(x

′
tηtusKsz)

)= 0.

(A.23)

From (A.22) and the bias function calculation (A.16) which continues to hold, it follows
that when nh2L → c > 0

n1− 1
4L

(
β̂(z)−β(z)−hL∗BL(z)−o(hL∗

)
)

∼a c
1
2 − 1

4L ×
(

f (z)
∫

BxB′
x

)−1(∫
BxB′

xdBη,L

)
+ c− 1

4L

(
f (z)

∫
BxB′

x

)−1(∫
BxdBuK

)

≡d c
1
2 − 1

4L ×MN (0,
L(z))+ c− 1
4L MN (0,
NS(z))

= MN
(

0,c1− 1
2L 
L(z)+ c− 1

2L 
NS(z)
)

. (A.24)

This proves result (iii) of Theorem 2.2. �

Proof of Theorem 3.1.
(i) Stationary xt We assume L is known. Using Lemma B.1, σ̂ 2

u →p σ 2
u , and any consistent

derivative estimator β̂(L)(z) of β(L) (z), we have


̂n(z;L) = ν0(K)σ̂ 2
u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t

{
x′

t
1

L!
β̂(L)(z)(zt − z)LKtz

}2

∼a nh

⎛
⎝ν0(K)σ 2

u
nh

n∑
t=1

xtx
′
tKtz + 1

nh

n∑
t=1

xtx
′
t

{
x′

t
β(L)(z)

L!
(zt − z)LKtz

}2
⎞
⎠

∼a nh

⎛
⎝ν0(K)σ 2

u f (z)�xx + 1

h
E

⎡
⎣xtx

′
t

{
x′

t
β(L)(z)

L!
(zt − z)LKtz

}2
⎤
⎦
⎞
⎠

∼a nh

⎛
⎝ν0(K)σ 2

u f (z)�xx + 1

h
E

⎡
⎣xtx

′
t

(
x′

t
β(L)(z)

L!

)2
⎤
⎦∫ {(zt − z)LK

(
zt − z

h

)}2
f (zt)dzt

⎞
⎠
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∼a nh

⎛
⎝ν0(K)σ 2

u f (z)�xx +E

⎡
⎣xtx

′
t

(
x′

t
β(L)(z)

L!

)2
⎤
⎦∫ {

(sh)LK (s)
}2

f (z+ sh)ds

⎞
⎠

∼a nh

(
ν0(K)σ 2

u f (z)�xx +h2L ν2L (K) f (z)

(L!)2
E

[
xtx

′
t

(
x′

tβ
(L)(z)

)2
])

∼a nhν0(K)σ 2
u f (z)�xx. (A.25)

Then

nhV̂n(z;L) =
[

1

nh
An (z)

]−1 [ 1

nh

̂n(z;L)

][
1

nh
An (z)

]−1

→p [f (z)�xx]−1
[
ν0(K)σ 2

u f (z)�xx

]
[f (z)�xx]−1 = ν0(K)σ 2

u
f (z)

�−1
xx = 
S(z). (A.26)

Combining (A.26) and Theorem 2.1 gives

T̂(z;L) = V̂n(z;L)−1/2
(
β̂(z)−β(z)−hL∗ B̂L(z)

)
∼a [
S(z)]−1/2

√
nh
(
β̂(z)−β(z)−hL∗BL(z)

)
� N

(
0,Ip

)
,

and T̂2 (z;L) � χ2
p follows. Further, in view of (A.25) in the stationary case, the simpler

estimate 
̃n(z;L) = ν0(K)σ̂ 2
u
∑n

t=1 xtx′
tKtz, which is based solely on the variance term, can

be employed and the same limit theory applies.
(ii) Nonstationary xt We again assume that L is known. We analyze each case of the

Theorem in turn.
Case (a) Using Lemma B.3(c) we have 1

n2h

∑n
t=1 xtx′

tKtz � f (z)
∫

BxB′
x. In place of

(A.25) and again using a consistent derivative estimator β̂(L)(z) →p β(L)(z) and σ̂ 2
u →p σ 2

u ,
we now have


̂n(z;L) = ν0(K)σ̂ 2
u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t

{
x′

t
1

L!
β̂(L)(z)(zt − z)LKtz

}2

∼a n2h

⎛
⎝ ν0(K)σ 2

u

n2h

n∑
t=1

xtx
′
tK

(
zt − z

h

)
+ h2L

n2h

n∑
t=1

xtx
′
t

{
x′

t
β(L)(z)

L!

(
zt − z

h

)L
K

(
zt − z

h

)}2
⎞
⎠

∼a n2h

⎛
⎝ν0(K)σ 2

u f (z)
∫

BxB′
x +nh2L−1

⎡
⎣ 1

n

n∑
t=1

xt√
n

x′
t√
n

{
x′

t√
n

β(L)(z)

L!

(
zt − z

h

)L
K

(
zt − z

h

)}2
⎤
⎦
⎞
⎠

∼a n2h

⎛
⎝ν0(K)σ 2

u f (z)
∫

BxB′
x +nh2L−1

⎡
⎣∫ BxBx

{
B′

x
β(L)(z)

L!

}2

E

{(
zt − z

h

)2L
K

(
zt − z

h

)2
}⎤
⎦
⎞
⎠

∼a n2h

⎛
⎝ν0(K)σ 2

u f (z)
∫

BxB′
x +nh2L−1

⎡
⎣∫ BxBx

{
B′

x
β(L)(z)

L!

}2 ∫
p2LK (p)2 f (z+ph)dph

⎤
⎦
⎞
⎠

∼a n2h

(
ν0(K)σ 2

u f (z)
∫

BxB′
x +nh2L ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′

xβ
(L)(z)

}2
)

(A.27)

∼a n2hν0(K)σ 2
u f (z)

∫
BxB′

x when nh2L → 0. (A.28)
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It follows that in this case

n2hV̂n(z;L) =
[

1

n2h
An (z)

]−1 [ 1

n2h

̂n(z;L)

][
1

n2h
An (z)

]−1

�
[

f (z)
∫

BxB′
x

]−1 [
ν0(K)σ 2

u f (z)
∫

BxB′
x

][
f (z)

∫
BxB′

x

]−1

= ν0(K)σ 2
u

f (z)

(∫
BxB′

x

)−1
= 
NS (z), (A.29)

from which we deduce from Theorem 2.2(i) that

T̂(z;L) = V̂n(z;L)−1/2
(
β̂(z)−β(z)−hL∗ B̂L(z)

)
∼a [
NS (z)]−1/2 n

√
h
(
β̂(z)−β(z)−hL∗BL(z)

)
� N

(
0,Ip

)
.

Then T̂2 (z;L) � χ2
p , as required.

Case (b)When nh2L → ∞ we have by calculations similar to those leading to (A.27)


̂n(z;L) = ν0(K)σ̂ 2
u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t

{
x′

t
1

L!
β̂(L)(z)(zt − z)LKtz

}2

∼a n2h

(
ν0(K)σ 2

u f (z)
∫

BxB′
x +nh2L ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′

xβ
(L)(z)

}2
)

= n3h2L+1
(

1

nh2L
ν0(K)σ 2

u f (z)
∫

BxB′
x + ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′

xβ
(L)(z)

}2
)

∼a n3h2L+1 ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′

xβ
(L)(z)

}2
.

Hence, in this case

n

h2L−1
V̂n(z;L) =

[
1

n2h
An (z)

]−1 [ 1

n3h2L+1

̂n(z;L)

][
1

n2h
An (z)

]−1

∼a

[
f (z)

∫
BxB′

x

]−1 [ v2L (K) f (z)

(L!)2

∫
BxBx

{
B′

xβ
(L)(z)

}2
][

f (z)
∫

BxB′
x

]−1

= ν2L(K)

(L!)2 f (z)

(∫
BxB′

x

)−1(∫
BxBx

{
B′

xβ
(L)(z)

}2
)(∫

BxB′
x

)−1
= 
L (z),

(A.30)

and from Theorem 2.2(ii) we deduce that

T̂(z;L) = V̂n(z;L)−1/2
(
β̂(z)−β(z)−hL∗ B̂L(z)

)

=
[

n

h2L−1
V̂n(z;L)

]−1/2√ n

h2L−1

(
β̂(z)−β(z)−hL∗ B̂L(z;L)

)

∼a [
L (z)]−1/2
√

n

h2L−1

(
β̂(z)−β(z)−hL∗BL(z)

)
� N

(
0,Ip

)
,

and T̂2 (z;L) � χ2
p , as required.
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Case (c) When nh2L → c ∈ (0,∞) we have by calculations similar to those leading to
(A.27)


̂n(z;L) = ν0(K)σ̂ 2
u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t

{
x′

t
1

L!
β̂(L)(z)(zt − z)LKtz

}2

∼a n2h

(
ν0(K)σ 2

u f (z)
∫

BxB′
x +nh2L ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′

xβ
(L)(z)

}2
)

∼a n2h

(
ν0(K)σ 2

u f (z)
∫

BxB′
x + c

ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′

xβ
(L)(z)

}2
)

.

Then

n2hV̂n(z;L) =
[

1

n2h
An (z)

]−1 [ 1

n2h

̂n(z;L)

][
1

n2h
An (z)

]−1

∼a

[
f (z)

∫
BxB′

x

]−1 [
ν0(K)σ 2

u f (z)
∫

BxB′
x

+ c
ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′

xβ
(L)(z)

}2
][

f (z)
∫

BxB′
x

]−1

= 
NS(z)+ c
L (z) . (A.31)

Hence, when nh2L → c or h ∼a (c/n)
1

2L and n2h ∼a c
1

2L n2− 1
2L as n → ∞ we have

n2− 1
2L V̂n(z;L) � c− 1

2L 
NS(z)+ c1− 1
2L 
L(z).

From Theorem 2.2(iii) it now follows that when nh2L → c we have

T̂(z;L) = V̂n(z;L)−1/2
(
β̂(z)−β(z)−hL∗ B̂L(z)

)
=
[
n2− 1

2L V̂n(z;L)
]−1/2

n1− 1
4L

(
β̂(z)−β(z)−hL∗ B̂L(z)

)
∼a [c− 1

2L 
NS(z)+ c1− 1
2L 
L(z)]−1/2n1− 1

4L

(
β̂(z)−β(z)−hL∗BL(z)

)
�N

(
0,Ip

)
,

and again T̂2 (z;L) � χ2
p , as required. �

B. USEFUL LEMMAS

Lemma B.1. Under Assumption 1, the following hold as n → ∞:

(a) (i) If nh → ∞, { 1√
nh

∑�n·�
t=1 ζtK, 1√

nh

∑�n·�
t=1 utKtz} � {BζK(·),BuK(·)}, where

{BζK,BuK} are independent Brownian motions with respective variances ν0(K)f (z),
and ν0(K)σ 2

u (z)f (z), with ζtK = Ktz − EKtz, Ktz = K( zt−z
h ), and σ 2

u (z) =
E(u2

t |zt = z);

(ii) If nh → c ∈ [0,∞), then { 1√
nh

∑�n·�
t=1 ζtK, 1√

nh

∑�n·�
t=1 utKtz} = Op(1) but no

invariance principle holds.
(b) (i) If nh → ∞, 1

nh

∑n
t=1 xtx′

tKtz →p �xx(z)f (z);

(ii) If nh → c ∈ [0,∞), 1√
nh

∑n
t=1 xtx′

tKtz = Op(1) but no invariance principle holds.
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(c) (i) If nh → ∞, 1√
nh

∑n
t=1 xtutKtz �N (0,ν0(K)f (z)�xu(z));

(ii) If nh → c ∈ [0,∞), 1√
nh

∑n
t=1 xtutKtz = Op(1) but no invariance principle holds.

(d) (i) If nh → ∞, 1√
nh

∑n
t=1[xt ⊗ xtKtz − E(xt ⊗ xtKtz)] � N (0,ν0(K)f (z)

E
[
xtx′

t ⊗ xtx′
t|zt = z

])
;

(ii) If nh → c ∈ [0,∞), 1√
nh

∑n
t=1[xt ⊗ xtKtz − E(xt ⊗ xtKtz)] = Op(1) but no

invariance principle holds.

Proof of Lemma B.1.
Part (a) (i) and (ii) See Lemma B.1(a) of Phillips and Wang (2021). For later use, note
that EKtz = hf (z)+o(h), and EK2

tz = hf (z)ν0(K)+o(h), so that Var(ζtK) = hf (z)ν0(K)+
o(h) and ζtK = Ktz −E(Ktz) = Op(

√
h). Further, Var(utKtz) = hν0(K)σ 2

u (z)f (z)+o(h) and
EutK2

tz = 0, so that the limit processes
(
BζK(r),BuK(r)

)
are independent. The functional

laws follow by standard weak convergence methods when nh → ∞ and (ii) follows by
showing the Op(1) property directly whereas the CLT does not hold because of failure of
the Lindeberg condition, just as in the proof of Phillips and Wang (2021, Lem. B.1(a) (ii)).

Part (b) (i) We have

1

nh

n∑
t=1

xtx
′
tKtz = 1

n

n∑
t=1

E(xtx′
tKtz)

h
+ 1

nh

n∑
t=1

[xtx
′
tKtz −E(xtx

′
tKtz)]

= 1

n

n∑
t=1

E[h−1KtzE(xtx
′
t|zt)]+Op

(
1√
nh

)
→p �xx(z)f (z), (B.1)

as in (A.3) by virtue of Lemma B.1(d)(i) and the law of large numbers. For (ii), when nh →
c ∈ [0,∞) we have 1√

nh

∑n
t=1[xtx′

tKtz −E(xtx′
tKtz)] = Op(1) as in Lemma B.1(d)(ii) with

no invariance principle holding. Then, as in (B.1), 1√
nh

∑n
t=1 xtx′

tKtz = √
nh × Op(1) +

Op(1) = Op(1), as stated.
Part (c) Result (i) follows by the central limit theorem for α-mixing processes. Stability

holds because the conditional variance matrix is

Var

〈
1√
nh

n∑
t=1

xtutKtz

〉
→p ν0(K)f (z)E[xtx

′
tσ

2(xt,zt)|zt = z] ≡ ν0(K)f (z)�xu(z). (B.2)

Setting wtK = xtutKtz and noting that E
∥∥∥wtK√

h

∥∥∥2
< ∞ we have, given ε > 0,

1

n

n∑
t=1

E

{∥∥∥∥wtK√
h

∥∥∥∥2
1[‖wtK‖>ε

√
nh
]
}

→ 0 (B.3)

and the Lindeberg condition holds when nh → ∞, giving the stated result. Part (ii) follows
because, although the stability condition continues to hold as in (B.2), the Lindeberg
condition fails when nh → c ∈ [0,∞) as (B.3) no longer tends to zero. To see this, it
suffices to look at the simple case with scalar xt, iid{(ut,zt)} and independent, strictly
stationary components with respective densities {fx(x),fu(u),f (s)} we have, given ε > 0
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and nh → c ∈ [0,∞)

1

n

n∑
t=1

E

{(
wtK√

h

)2
1[|wtK |>ε

√
nh
]
}

= 1

h

∫
x2u2K

(
s− z

h

)2
fx(x)fu(u)f (s)1[∣∣xuK

( s−z
h

)∣∣>ε
√

nh
]dxduds

=
∫

x2u2K(p)2fx(x)fu(u)f (z+ph)1[|xuK(p)|>ε
√

nh
]dxdudp

→
{

ν0(K)f (z)E(x2
t u2

t ) > 0 if nh → 0∫
x2u2K(p)2fx(x)fu(u)f (z)1[|xuK(p)|>ε

√
c
]dxdudp > 0 if nh → c ∈ (0,∞)

,

leading to failure in the Lindeberg condition.
Part (d) (i) and (ii) of Part (d) follow in the same way as (i) and (ii) of Part (c). �

LEMMA B.2. Under Assumption 1, if β(	)(z) = 0 for 	 = 0,1, · · · ,L−1 and β(L)(z) �= 0,
then the following hold as n → ∞ and h → 0:

(a) (i) If nh → ∞, 1√
nh2L+1

∑�n·�
t=1 ηt � Bη,L(·), where Bη,L(·) is Brownian motion with

variance matrix Vηη,L = ν2L(K)f (z)
(L!)2 β(L)(z)β(L)(z)′, with ηt = ξβt −Eξβt and ξβt =

[β(zt)−β(z)]Ktz;
(ii) If nh → c ∈ [0,∞), then 1√

nh2L+1

∑�n·�
t=1 ηt = Op(1), but no invariance principle

holds.
(b) (i) If nh → ∞, 1√

nh2L+1

∑n
t=1[xtx′

tξβt − Extx′
tξβt] � N

(
0, ν2L(K)f (z)

(L!)2

E
[
(x′

tβ
(L)(z))2xtx′

t|zt = z
])

;

(ii) If nh → c ∈ [0,∞), 1√
nh2L+1

∑n
t=1[xtx′

tξβt −Extx′
tξβt] = Op(1), but no invariance

principle holds.
(c) 1

nhL∗+1

∑n
t=1Extx′

tξβt →p GL(z)�xx(z), where L∗ = L×1{L=even} + (L+1)1{L=odd},
GL(z) = μL∗(K)CL(z) with μL∗(K) = μL(K)1{L=even} +μL+1(K)1{L=odd}, and

CL(z) = f (z)β(L)(z)

L!
1{L=even} +

[
β(L)(z)

L!
f (1) (z)+ β(L+1)(z)

(L+1) !
f (z)

]
1{L=odd}. (B.4)

Proof of Lemma B.2. Part (a) (i) Phillips and Wang (2021) proved a related result when
L = 1 in their Lemma B.1(b). A similar argument is employed here. But for general L we
need to compute the first and second moments of ηt = ξβt −Eξβt and deal with the precise
form of the local behavior of the coefficient function β(·) in the neighborhood of the point
of estimation z. To this end, the proof uses the following Taylor representations

β(z+ph)−β(z) = β(L) (z)
pLhL

L!
+β(L+1)

(
z̃p
) pL+1hL+1

(L+1) !

f (z+ph) = f (z)+ f (1)
(
z̆p
)

ph,

where
{
β(j) (z) = 0;j = 1, . . . ,L−1

}
and with z̃p and z̆p on the line segment connecting zt

and z. The first and second moments of ηt may now be deduced. Specifically, using the
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symmetry of K, we have

Eξβt = E[β(zt)−β(z)]Ktz =
∫ 1

−1
[β(s)−β(z)]K((s− z)/h)f (s)ds

= h
∫ 1

−1
[β(z+ph)−β(z)]K(p)f (z+ph)dp

= h
∫ 1

−1

[
hLpL

L!
β(L)(z)+ hL+1pL+1

(L+1) !
β(L+1)(z̃p)

]
K(p)

[
f (z)+ f (1)

(
z̆p
)

ph
]

dp

=
{

h
∫ 1

−1

hL

L!
β(L)(z)f (z)pLK(p)dp+o(hL+1)

}
×1{L=even}

+
{

h
∫ 1

−1

[
hL+1

L!
β(L)(z)f (1)

(
z̆p
)+ hL+1

(L+1) !
β(L+1)(z̃p)f (z)

]
pL+1K(p)dp+o(hL+2)

}

×1{L=odd}

=
{

hL+1μL (K)
β(L)(z)

L!
f (z)+o(hL+1)

}
×1{L=even}

+
{

hL+2μL+1 (K)

[
β(L)(z)

L!
f (1) (z)+ β(L+1)(z)

(L+1) !
f (z)+o(1)

]
+o(hL+2)

}
×1{L=odd}

= hL∗+1μL∗(K)CL(z)+o(hL∗+1) =: hL∗+1GL(z)+o(hL∗+1), (B.5)

where L∗, μL∗(K), GL(z) = μL∗(K)CL(z), and CL(z) are defined in the statement of the
Lemma. Next

Eξβtξ
′
βt = E[(β(zt)−β(z))(β(zt)−β(z))′K ((zt − z)/h)2]

= h
∫ 1

−1
(β(z+hs)−β(z))(β(z+hs)−β(z))′K(s)2f (z+hs)ds

= h
∫ 1

−1

[
hLsL

L!
β(L)(z)+o

(
hL
)][hLsL

L!
β(L)(z)+o

(
hL
)]′

K(s)2 [f (z)+o(1)]ds

= h2L+1

(L!)2
f (z)β(L)(z)β(L)(z)′

∫ 1

−1
s2LK2(s)ds+o(h2L+1)

= h2L+1

(L!)2
ν2L(K)f (z)β(L)(z)β(L)(z)′ +o(h2L+1).

It follows that

Var(ηt) = Eξβtξ
′
βt − (Eξβt)(Eξβt)

′ = h2L+1

(L!)2
ν2L(K)f (z)β(L)(z)β(L)(z)′ +o(h2L+1),

(B.6)

and ηt = Op

(
hL+ 1

2

)
. Next, in view of (B.5) the serial covariances satisfy

Cov(ξβt,ξβt+j) = Eξβtξ
′
βt+j −

(
Eξβt

)(
Eξβt

)′ = Eξβtξ
′
βt+j +O(h2L∗+2)
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and by virtue of the strong mixing of zt, measurability of β(·), and Davydov’s lemma the
covariances satisfy the bound

|Cov(ξβt,ξβt+j)| ≤ 8
(
E
∣∣ξβt

∣∣δ)2/δ |α(j)|1−2/δ = Aβh2L+2/δ |α(j)|1−2/δ +o(h2L+2/δ),

(B.7)

where Aβ = 8(
∫ ∣∣∣∣β(L)(z̃p)

L!

∣∣∣∣δ |p|δLK(p)δdpf (z))2/δ , since E
∣∣ξβt

∣∣δ = h1+Lδ
∫ ∣∣∣∣β(L)(z̃p)

L!

∣∣∣∣δ
|p|δLK(p)δdpf (z)+o(h1+Lδ) in a similar way to (B.5), and where z̃p is on the line segment
connecting z and z+hp. Further, for j �= 0 and using the joint density f0,j(s0,sj) of

(
zt,zt+j

)
we have

Eξβtξ
′
βt+j = E[(β(zt)−β(z))

(
β(zt+j)−β(z)

)′ KtzKt+j,z]

=
∫ ∫

(β(s0)−β(z))
(
β(sj)−β(z)

)′ K

(
s0 − z

h

)
K

(
sj − z

h

)
f0,j(s1,sj)ds0dsj

= h2
∫ ∫

(β(z+hp0)−β(z))(β(z+hpj)−β(z))′K(p0)K(pj)f0,j(z+hp0,z+hpj)dp0dpj

=
{

h2L+2 β(L)(z)

L!

β(L)(z)′
L!

f0,j(z,z)
∫

pL
1K(p1)dp1

∫
pL

2K(p2)dp2 +o(h2L+2)

}

×1{L=even}

+
{

h2L+4

[
β(L+1)(z)

(L+1)!

β(L+1)(z)′
(L+1)!

f0,j(z,z)+ β(L+1)(z)

(L+1)!

β(L)(z)′
L!

∂f0,j
∂sj

(z,z)

+β(L)(z)

L!

β(L+1)(z)′
(L+1)!

∂f0,j
∂s0

(z,z)+ β(L)(z)

L!

β(L)(z)′
L!

∂2f0,j
∂s0∂sj

(z,z)

]
∫

pL+1
1 K(p1)dp1

∫
pL+1

2 K(p2)dp2

+o(h2L+4)
}

×1{L=odd}

= O(h2L∗+2) ≤ O(h6) for L ≥ 1. (B.8)

We now deduce that the long run variance matrix of ηt, or variance matrix of the
standardized partial sum 1√

nh2L+1

∑n
t=1 ηt, is

V
LR(ηt) = E

⎡
⎣ 1√

nh2L+1

n∑
t=1

ηt

⎤
⎦
⎡
⎣ 1√

nh2L+1

n∑
t=1

ηt

⎤
⎦

′

= 1

nh2L+1

n∑
t=1

Eηtη
′
t +

1

nh2L+1

∑
t �=s

Eηtη
′
s

= 1

h2L+1
Eηtη

′
t +o(1) → ν2L(K)f (z)

(L!)2
β(L)(z)β(L)(z)′ =: Vηη,L, (B.9)

which follows from (B.6) and standard arguments concerning the o(1) magnitude of the
sum of the autocovariances of kernel-weighted stationary processes. In particular, from the
α mixing property of zt and using a sum splitting argument and results (B.5), (B.7) and
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(B.8) above, we have

1

nh2L+1

∑
t �=s

Eηtη
′
s = 1

h2L+1

n−1∑
j=−n+1,j �=0

[
1− |j|

n

]
[Eξβtξ

′
βt+j −

(
Eξβt

)(
Eξβt

)′]

= 1

h2L+1

M∑
j=−M,j �=0

[
1− |j|

n

]
[Eξβtξ

′
βt+j −

(
Eξβt

)(
Eξβt

)′]
+ 1

h2L+1

∑
M<|j|<n

(
1− |j|

n

)
[Eξβtξ

′
βt+j −

(
Eξβt

)(
Eξβt

)′]

= O

(
Mh2L∗+2

h2L+1

)
+O

⎛
⎝ 1

h2L+1

(
E
∣∣ξβt

∣∣δ)2/δ ∑
M<|j|<n

α
1−2/δ
j

⎞
⎠

= O
(

Mh×1{L=even} +Mh3 ×1{L=odd}
)

+O

⎛
⎝ h2 1+Lδ

δ

h2L+1Mc

∑
M<|j|<∞

jcα1−2/δ
j

⎞
⎠

= O
(

Mh×1{L=even} +Mh3 ×1{L=odd}
)

+O

⎛
⎝ 1

h1−2/δMc

∑
M<|j|<∞

jcα1−2/δ
j

⎞
⎠

= O
(

Mh×1{L=even} +Mh3 ×1{L=odd}
)

+o

(
1

(M
c

1−2/δ h)1−2/δ

)
= o(1), (B.10)

for a suitable choice of M → ∞ such that Mh → 0, Mτ h → ∞, and M
n → 0, with τ > 1,

c > τ(1 − 2/δ) and δ > 2. It then follows by arguments similar to the central limit theory
for weakly dependent kernel regression in Robinson (1983), Masry and Fan (1997), and
Fan and Yao (2008, Thm. 6.5) that the standardized partial sum process of ηt satisfies a
triangular array functional law giving

1√
nh2L+1

�n·�∑
t=1

ηt � Bη,L(·), (B.11)

where Bη,L is vector Brownian motion with variance matrix Vηη,L = ν2L(K)f (z)
(L!)2 β(L)(z)

β(L)(z)′. The effective sample size condition nh → ∞ is required for this result.
Part (a) (ii) Otherwise, when nh → c ∈ [0,∞) we have

1√
nh2L+1

�n·�∑
t=1

ηt = Op(1), (B.12)

but no invariance principle applies. Taking scalar xt and iid {zt} for ease of notation, the
stability condition

E

⎛
⎝ 1√

n

n∑
t=1

ηt√
h2L+1

⎞
⎠

2

= 1

n

n∑
t=1

E

(
ηt√

h2L+1

)2
= ν2(K)f (z)

(
β(L)(z)

L!

)2

+O(h),

https://doi.org/10.1017/S0266466622000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000287


944 PETER C. B. PHILLIPS AND YING WANG

is satisfied so that 1√
nh2L+1

∑n
t=1 ηt = Op(1) but the Lindeberg condition fails. To show

this, note that ηt = ξβt −Eξβt = ξβt + O(hL∗+1). Given ε > 0, nh �→ ∞ and β(L)(z) �= 0
imply

1

n

n∑
t=1

E

{(
ηt√

h2L+1

)2
1[|ηt|>ε

√
nh2L+1

]
}

=
∫

[[β(zt)−β(z)]Ktz +O(hL∗+1)]2

h2L+1
1[|[β(zt)−β(z)]Ktz+O(hL∗+1)|>ε

√
nh2L+1

]f (zt)dzt

=
∫ [ β(L)(z)

L! hLpLK(p)+O(hL∗+1)]2

h2L
1[| β(L)(z)

L! hLpLK(p)+O(hL∗+1)|>ε
√

nh2L+1
]f (z+ph)dp

=
(
β(L)(z)/L!

)2
f (z)

∫
p2LK2(p)1[| β(L)(z)

L! pLK(p)|>ε
√

nh
]dp+O(h)

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
β(L)(z)

L!

)2
f (z)ν2L(K) > 0 if nh → 0,(

β(L)(z)
L!

)2
f (z)

∫
p2LK(p)21[∣∣∣ β(L)(z)

L! pLK(p)

∣∣∣>ε
√

c
]dp > 0 if nh → c.

Part (b) This part follows in essentially the same way as Part (a) and the proof is
omitted.

Part (c) From (B.5) we have

Eξβt = hL∗+1μL∗(K)CL(z)+o(hL∗+1) = hL∗+1GL(z)+o(hL∗+1) (B.13)

from which it follows directly that 1
nhL∗+1

∑n
t=1Extx′

tξβt = 1
nhL∗+1

∑n
t=1E[ξβtE(xtx′

t|zt)]
→p GL(z)�xx(z), as required. �

LEMMA B.3. Under Assumption 2 and if β(	)(z) = 0 for 	 = 0,1, · · · ,L − 1 and
β(L)(z) �= 0, the following hold as n → ∞ and h → 0:

(a) (i) If nh → ∞, 1√
n3h

∑n
t=1 xtx′

tζtK �
∫

BxB′
xdBζK ≡d MN

(
0,ν0(K)f (z)

∫
BxB′

x ⊗
BxB′

x

)
, and 1√

n3h2L+1

∑n
t=1 xtx′

tηt �
∫

BxB′
xdBη,L ≡d MN

(
0, ν2L(K)f (z)

(L!)2

∫
BxB′

x[
B′

xβ
(L)(z)

]2 )
, where ζtK = Ktz −EKtz, and ηt = ξβt −Eξβt with ξβt = [β(zt) −

β(z)]Ktz;
(ii) If nh → c ∈ [0,∞], 1√

n3h2L+1

∑n
t=1 xtx′

tηt = Op(1), and 1√
n3h

∑n
t=1 xtx′

tζtK =
Op(1), both without invariance principles holding.

(b) With CL(z) defined as in (B.4) and GL(z) = μL∗(K)CL(z),

1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt � μL∗(K)CL(z)

∫
BxB′

x = GL(z)
∫

BxB′
x, (B.14)

where L∗ = L×1{L=even} + (L+1)1{L=odd}.
(c) (i) If nh → ∞, 1

n2h

∑n
t=1 xtx′

tKtz �
∫

BxB′
xf (z);

(ii) If nh → c ∈ [0,∞), 1√
n3h

∑n
t=1 xtx′

tKtz = Op(1) but no invariance principle holds.
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(d) (i) If nh → ∞, 1√
n2h

∑n
t=1 xtutKtz �

∫
BxdBuK ≡d MN

(
0,ν0(K)σ 2

u f (z)
∫

BxB′
x

)
;

(ii) If nh → c ∈ [0,∞), 1√
n2h

∑n
t=1 xtutKtz = Op(1) but no invariance principle holds.

Proof of Lemma B.3. Part (a) (i) First observe that when nh → ∞ we have the joint
convergence(

1√
n

x�n·�, 1√
nh

∑�n·�
t=1 ζtK, 1√

nh2L+1

∑�n·�
t=1 ηt

)
�
(
Bx(·), BζK(·), Bη,L(·)),

(B.15)

by virtue of Assumption 1, Lemmas B.1(a)(i) and B.2(a)(i), where the Brownian
motion {Bx} is independent of {BζK,Bη,L} by virtue of the exogeneity of xt. The

covariance between BζK and Bη,L is β(L)(z)
L! νL(K)f (z). This follows from the fact that the

contemporaneous covariance EζtKηt = EK2
tz(β(zt) − β(z)) − EKtzEKtz(β(zt) − β(z)) =

hL+1 β(L)(z)
L! νL(K)f (z)+ O(hL∗+2) = O(hL+1)and the cross serial covariance EζtKηt+j =

O(hL∗+2) for j �= 0, so that combined with the weak dependence of zt and an argument
along the same lines as that leading to (B.9) we have

E

⎛
⎝ 1√

nh

�n·�∑
t=1

ζt × 1√
nh2L+1

�n·�∑
t=1

ηt

⎞
⎠

= 1

hL+1
E(ζtKηt) {1+o(1)} = β(L)(z)

L!
νL(K)f (z){1+o(1)}.

Weak convergence to the stochastic integral limits

1√
n3h

n∑
t=1

xtx
′
tζtK =

n∑
t=1

(
xt√

n

x′
t√
n

)
ζtK√

nh
�
∫

BxB′
xdBζK, (B.16)

1√
n3h2L+1

n∑
t=1

xtx
′
tηt =

n∑
t=1

(
xt√

n

x′
t√
n

)
ηt√

nh2L+1
�
∫

BxB′
xdBη,L (B.17)

then follows directly from Ibragimov and Phillips (2008, Thm. 4.3) when nh → ∞,
respectively. Both stochastic integrals have mixed normal distributions, viz.,

∫
Bx ⊗BxdBζK ≡d MN

(
0,ν0(K)f (z)

∫
BxB′

x ⊗BxB′
x

)
, (B.18)

∫
BxB′

xdBη,L ≡d MN
(

0,
ν2L(K)f (z)

(L!)2

∫
BxB′

x

(
Bx(r)

′β(L)(z)
)2
)

, (B.19)

and the stated result holds.
Part (a) (ii) When the rate conditions nh → ∞ fails and, instead nh → c ∈ [0,∞)

applies, it follows from Lemmas B.1(a)(ii) and B.2(a)(ii) that 1√
nh

∑n
t=1 ζtK = Op(1)

and 1√
nh2L+1

∑n
t=1 ηt = Op(1), respectively, but with no invariance principles holding.

Correspondingly, in place of (B.16) and (B.17), we have
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1√
n3h

n∑
t=1

xtx
′
tζtK =

n∑
t=1

(
xt√

n

x′
t√
n

)
ζtK√

nh
= Op(1), (B.20)

1√
n3h2L+1

n∑
t=1

xtx
′
tηt =

n∑
t=1

(
xt√

n

x′
t√
n

)
ηt√

nh2L+1
= Op(1), (B.21)

again without invariance principles.
Part (b). Using (B.13) and standard weak convergence methods we have

1

n3hL∗+1

n∑
t=1

xtx
′
tEξβt = 1

n

n∑
t=1

xt√
n

x′
t√
n

Eξβt

hL∗+1
� GL(z)

∫
BxB′

x,

giving the stated result.
Part (c). Using (B.20), Part (i) follows as in Phillips and Wang (2021, Lem. B.1(c) (i)),

giving

1

n2h

n∑
t=1

xtx
′
tKtz = 1

n

n∑
t=1

xt√
n

x′
t√
n

EKtz

h
+op(1) �

∫
BxB′

xf (z). (B.22)

The proof of (ii) follows as in Phillips and Wang (2021, Lem. B.1(c) (ii)).

Part (d). (i) As in Part (a)(i), when nh → ∞ we have 1√
nh

∑n�·�
t=1 utKtz � BuK(·) as in

Lemma B.1(a) and then weak convergence to the stochastic integral 1√
n2h

∑n
t=1 xtutKtz �∫

BxdBuK follows directly from Ibragimov and Phillips (2008, Thm. 4.3). In view of the

independence between Bx and BuK
10, we have

∫
BxdBuK ≡d MN

(
0,ν0(K)σ 2

u f (z)
∫

BxB′
x

)
.

(ii) If nh → c ∈ [0,∞), then 1√
nh

∑n�·�
t=1 utKtz = Op(1) as in Lemma B.1 (a)(ii), and then

1√
n2h

∑n
t=1 xtutKtz = Op(1) but no invariance principle holds. �

C. ADDITIONAL COMPUTATIONAL DETAILS

The following paragraphs provide further details of how the three statistics in Figures 4,
5, 6 and Table 2 were computed.

(i) Computation of the naive t-ratio T̂(z;L = 1) follows the definition (3.1). Since the
use of T̂(z;L = 1) implies belief that L = 1, the optimal bandwidth order for that case is
employed in the computation. For the computation of β̂(z) and Ktz the bandwidth h = σ̂znγ

was used with γ = −1/2 for nonstationary xt and γ = −1/5 for stationary xt. For the other
unknown components β(1), β(2)(z), f (z) and f (1)(z) involved in (3.2) and (3.3), different

10Since xt is exogenous the covariance of the two processes is

E

⎛
⎝ xn�·�√

n

1√
nh

n�·�∑
t=1

utKtz

⎞
⎠=

√
h

n

n�·�∑
t,s=1

E

(
uxtus

1

h
K

(
zs − z

h

))
=

√
h

n

n�·�∑
t,s=1

E

(
uxtE

[
us

1

h
K

(
zs − z

h

)
|Fx

])

=
√

h

n

n�·�∑
t,s=1

E

(
uxtE

[
E(us|Fx)

1

h
K

(
zs − z

h

)])
= 0, (B.23)

leading directly to the stated independence of Bx and BuK . When exogeneity is relaxed, it can be shown that (B.23)
holds asymptotically as n → ∞ and h → 0 under a weak additional summability condition.
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bandwidth orders were used. Specifically, f̂ (z) used γ = −1/5, f̂ (1)(z) used γ = −1/7,
β̂(1) was estimated using local linear estimation with γ = −1/7 for stationary xt and
γ = −2/7 for nonstationary xt, and β̂(2) was estimated by local quadratic estimation with
γ = −1/9 for stationary xt and γ = −2/9 for nonstationary xt. Those orders were selected
based on optimal bandwidth order rules in the case of local p-th order polynomial estimation
to estimate β(p)(z) for p = 1,2 and they utilize ongoing work by the authors for local p-th
order polynomial estimation in functional coefficient regression.

(ii) For the infeasible statistic T̂(z;true L), the true L is used in the computation. For L = 1,
it is identical to the naive choice. For L = 4, we need to estimate β(4)(z). We use local 4-th
order estimation with bandwidth order γ = −1/13 for stationary xt and γ = −2/13 for
nonstationary xt. For the computation of β̂(z) and Ktz the optimal order γ = −1/(2L∗ +1)

for stationary xt and γ = −2/(2L∗ +1) for nonstationary xt were used.
(iii) For computation of the oracle t-ratio T(z;true L), the quantities L, β(L)(z), β(L+1)(z),

f (z), f (1)(z) and σ 2
u were assumed known. Given a known L, the optimal order was used

in the estimation of β̂(z) and computation of Ktz. More specifically, for L greater than 1,
the optimal order used is γ = −1/(2L∗ + 1) for stationary xt and γ = −2/(2L∗ + 1) for
nonstationary xt. For L = 1, the optimal order is γ = −1/5 for stationary xt and γ = −1/2
for nonstationary xt.

(iv) Computation of the pre-test based statistic T̂(z;L̂pre) follows similar lines as that of
the infeasible statistic, except that L is obtained from the two-step pre-test procedure.

(v) For the residual variance σ 2
u the same estimate was used in the naive choice and the

infeasible statistics. We used γ = −1/2 to compute β̂(zt) and hence the residual estimates
ût = yt − xtβ̂(zt). Then σ 2

u was estimated by σ̂ 2
u = 1

n
∑n

t=1 û2
t .

D. ASYMPTOTICS USED IN TESTING OF H0,β(2) : β(2)(z) = 0

For the convenience of readers, we outline the limit theory of estimator β̂(2)(z), which is
obtained by local quadratic estimation (p = 2). Detailed derivations are available in our
ongoing work Wang and Phillips (2022). We start by noting that

β̂(2)(z)−β(2)(z)

2
−h2f −1(z)[a20μ4(K)+a22μ6(K)]B2p(z) ∼a

√
h

n
MN (0,
β,2,2(z))

+ 1

n
√

h5
MN (0,
u,2,2), (D.1)

where aij, i,j = 0,1,2 denotes the (i + 1,j + 1)-element of the 3 × 3 matrix Mp(K)−1,

B2p(z) = β(p+1)(z)
(p+1)! f (1)(z) + β(p+2)(z)

(p+2)! f (z), 
β,2,2(z) = f −1(z)ω∗
2,2(K)B−1

(x,2)∫ [
BxB′

x
β(3)(z)

3!
β(3)(z)′

3! BxB′
x

]
B−1

(x,2)
, 
u,2,2(z) = σ 2

u f −1(z)ω2,2(K)B−1
(x,2)

, with ω2,2(K) =
m′

2Rp(K)m2, ω∗
2,2(K) = m′

2R∗
p(K)m2, row vector m′

2 denotes the third row of Mp(K)−1,

Mp(K)=
⎛
⎝ 1 μ1(K) μ2(K)

μ1(K) μ2(K) μ3(K)

μ2(K) μ3(K) μ4(K)

⎞
⎠, Rp(K)=

⎛
⎝ν0(K) ν1(K) ν2(K)

ν1(K) ν2(K) ν3(K)

ν2(K) ν3(K) ν4(K)

⎞
⎠,and R∗

p(K)=
⎛
⎝ν6(K) ν7(K) ν8(K)

ν7(K) ν8(K) ν9(K)

ν8(K) ν9(K) ν10(K)

⎞
⎠. Similarly, it can be verified that the MSE optimal bandwidth
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order is n−2/9, and with this order the first term in the RHS of (D.1) is ignorable. Therefore,
(D.1) is also asymptotically valid if local flatness exists. Construction of the t-ratio based
on (D.1) again follows in the same way as the t-ratio given in (3.1). Estimation of the
asymptotic variances in (D.1) can be constructed as in (3.2) since the asymptotic variances

β,2,2(z) and 
u,2,2(z) in (D.1) take similar forms to those in (2.11) and (2.12) and are
not reported.

SUPPLEMENTARY MATERIAL

Peter C. B. Phillips and Ying Wang (2022). Supplement to “Limit Theory
for Locally Flat Functional Coefficient Regressions,” Econometric Theory
Supplementary Material. To view, please visit: https://doi.org/10.1017/
S0266466622000287
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