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Ion transport in polyelectrolyte membranes (charged hydrogels) is of significant
technological (and biological) importance, but little is known of how micro-structural
inhomogeneity affects ionic conductivity. Whereas a uniform electric field drives
uni-directional electro-migrative and electro-osmotic ion fluxes in perfectly uniform
microstructures, this study considers the influence of spherical inclusions/cavities on
the hydrodynamic and ion permeability of charged hydrogels. Such cavities have
a high permeability, but they can bear a much lower conductivity due to the
partitioning of counter-ions between the cavity and bulk hydrogel phases, also inducing
micro-scale electro-osmotic flow. To understand these, perturbations from a nonlinear
Poisson—Boltzmann equilibrium state are used to compute the velocity disturbances,
and electrostatic and ion-concentration polarization. These furnish three independent
Onsager coefficients: one of which is the effective hydrodynamic permeability, and
all of which contribute to the two principal electrical conductivities (distinguished by
electrode configuration). Cavities with diameters in the range 10-1000nm are found
to be readily polarized, decreasing the effective conductivity of an otherwise uniform
polyelectrolyte. In highly permeable hydrogels, however, electro-osmosis may enhance
the electrical conductivity when flow is blocked by impenetrable electrodes. Explicit
formulas for the hydrodynamic permeability are provided, complementing a simplified
(Maxwell-Donnan) analysis of the conductivity, which neglects diffuse double-layer
effects and ion-concentration perturbations.
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1. Introduction

Hydrogels have traditionally been adopted for biological applications, but are now
emerging as platforms for a variety of other technologies, including energy storage,
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energy conversion and sustainable water-energy technologies. A comprehensive review
of fundamental properties and these contemporary applications was recently undertaken
by Guo et al. (2020). Charge transport in hydrogels is broadly considered to occur by ionic-
and electronic-conduction mechanisms, playing a crucial role in a redox reaction, catalytic
activity, ion absorption and electric double-layer formation.

While electrical conductivity provides a non-invasive and sensitive micro-structural
characterization, its interpretation is challenging due to multiple charge-transport
mechanisms. For example, Guo et al. (2020) highlight (i) ion transport in the solvent
and (ii) counter-ion hopping along the polyelectrolyte backbone as principal ion-transport
mechanisms. At high ion concentrations, solvent-shared ion pair, solvent-shared dimer,
contact dimer, contact ion pair and agglomerate mechanisms have also been invoked to
interpret conduction at high electrolyte concentrations (Hwang et al. 2018).

Even at low ion concentrations, other mechanisms are relevant. These include
electro-osmotic advection and ion diffusion, which are absent in ideal homogeneous
media, but may arise from inhomogeneities of charge and/or permeability. lon transport in
porous media with hierarchical architectures is important in a diversity of fields, including
deep brain stimulation (Pomfret, Sillay & Miranpuri 2013) and gel electrophoresis (Bikos
& Mason 2018). Electro-osmotic flow that accompanies ion transport has been harnessed
to great benefit for capillary electrochromatography, significantly enhancing molecular
separations by electro-osmotic flow suppressing hydrodynamic dispersion (Tallarek ez al.
2001).

Hierarchical nano-structured conducting polymer hydrogels for bioelectronics and
energy storage electrodes were synthesized by Pan ef al. (2012) from aniline monomer
and phytic acid. Using impedance spectroscopy, they reported a conductivity 0.11 S cm™!
for a sample that was purified by extensive rinsing and swelling in deionized water (water
fraction ~93 wt%). The authors highlighted the microstructure as having three levels of
hierarchical porosity — from Angstrom, nanometre to micron sized pores, suggesting this
as the reason from the unusually high conductivity (claimed as a record compared with
previous literature reports in the range 0.1-10 mS cm™!). At the conclusion of the results
section of the present work, a theoretical interpretation of this finding is undertaken on the
basis of phytic-acid counterions.

The present study, which focusses on cavity doped hydrogels, is motivated, in part,
by a desire to increase the hydrodynamic permeability of homogeneous polyelectrolyte
hydrogels with cavities. Synthetic techniques include foaming, phase separation, in situ
cross-linking polymerization, particulate leaching, freeze drying and reverse casting (see
Salerno, Borzacchiello & Netti (2011) and the references therein). Spherical cavities might
be formed by doping the pre-gel solution with nanoemulsion drops or bubbles (Barbetta
et al. 2010; Kenna & Morrin 2017; Deleurence et al. 2018), which could be removed
(post-gelation) upon drying or heating. Rehydrating the dried polymer would fill the
cavities with water/electrolyte, creating a microstructure with an enhanced hydrodynamic
permeability and modified electrical conductivity. Such an approach was recently
demonstrated, in part, by Afuwape & Hill (2021), who immobilized surfactant-stabilized
hexadecane drops in polyacrylamide hydrogels. However, the droplets in these composites
did not evaporate when subjected to drying at relatively low temperatures. Efforts to
remove the drops might benefit from emulsion oils with higher volatility.

Hydrogels are physically or chemically/covalently cross-linked networks of polymer
chains that are often charged by ion dissociation. Termed ionic hydrogels, these may
be anionic, cationic or ampholytic. A widely adopted structural parameter is the mesh
size (or correlation length) &£, which loosely measures a pore size or distance between
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adjacent cross-links. According to Guo et al. (2020), non-porous hydrogels have a mesh
size less than 10nm, whereas their micro- and macro-porous counterparts have pore
sizes in the range 10-100nm and 0.1-100 wm, respectively. An important distinction
between these pore-size classifications is the presence of multiple co-existing length
scales. Accordingly, pore sizes should vary with the measurement method, of which there
are many (Wisniewska, Seland & Wang 2018). According to Guo et al. (2020), direct
measures of pore size are based on molecular diffusion. However, other measures have
been undertaken using hydrodynamic permeability (Weiss & Silberberg 1977; Tokita &
Tanaka 1991) and shear rheology (Weiss & Silberberg 1977; Calvet, Wong & Giasson
2004).

There is a vast literature on the permeabilities (e.g. hydrodynamic and ion) of porous
media. Before introducing pertinent background on the microstructure of hydrogels, it
should be noted that the present work hinges on an averaging of the fluid velocity that, in
addition to being subject to a pressure gradient, is driven by an inhomogeneous electrical
body force through an inhomogeneous porous network. Foundational models coupling
pressure- and electric-field-driven transport through planar and cylindrical pores were
derived by Burgreen & Nakache (1964) and Rice & Whitehead (1965), respectively. These
provide the basis of a massive literature on streaming potential and electrical conductivity
of nano-structured porous materials, e.g. connecting electro-osmotic flow (in the absence
of a pressure gradient) to the Smoluchowski slip velocity when the Debye length is small
compared with the characteristic pore radius.

Among many contributions to understanding charge transport in colloidal dispersions,
O’Brien & Perrins (1984) pioneered the quantitative interpretation of electric current
in dense sphere packings, albeit for spheres having thin, but highly charged, electrical
double layers. Edwards (1995) developed a rigorous and general framework for periodic
microstructures, bringing attention to the principle of Onsager reciprocity. Along these
lines, Coelho et al. (1996) developed a direct computational methodology to address
finite double-layer thickness and pore structure on coupled transport processes in weakly
charged sphere packings and reconstructed media — later advanced to highly charged
media, albeit with thin double layers (Gupta, Coelho & Adler 2006).

The foregoing examples complement another literature addressing hydrodynamics.
A noteworthy example, which will be explicitly drawn upon in the present work, is
the self-consistent Brinkman analysis (and cell model) furnishing the hydrodynamic
permeability of porous-sphere packings by Davis & Stone (1993). They calculated the
force on a porous sphere from the conditionally averaged flow satisfying Brinkman’s
model, using this to self-consistently compute the hydrodynamic permeability of
porous-sphere packings for liquid chromatography.

Hydrodynamic permeability relates the superficial fluid velocity U (averaged over the
entire volume, or cross-sectional average volume flux) to the average pressure gradient
P via Darcy’s law (Happel & Brenner 1983): U = —P¢2/n, where 7 is the fluid shear
viscosity, and ¢ is the Brinkman (hydrodynamic) screening length (¢2 is termed the
permeability) (Brinkman 1947). Hydrodynamic permeability measurements undertaken
by Tokita & Tanaka (1991) furnished Brinkman lengths for polyacrylamide hydrogels in
the range 0.5-2.5 nm.

For ideal polymer networks, the Kuhn theory of rubber elasticity (Doi 2013) furnishes
a mesh size & from the shear modulus p = kT /&3, where kpT is the thermal energy
(product of Boltzmann’s constant and absolute temperature). Guo et al. (2020) suggest
that non-porous hydrogels (§ < 10nm) are so densely packed so as to limit solute
transport. Nevertheless, it should be noted that weak hydrogels with © ~ 1kPa have an
effective (Kuhn) mesh size & &~ 16 nm. For & to reach ~1nm, the shear modulus must
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be pu ~ 1 MPa, which is much higher than many hydrogels. Thus, for relatively weak
hydrogels (having low stiffness and high water content), the ‘pores’ are significantly
larger than the small ions contained within. Such hydrogels readily transport small ions,
as evidenced, for example, by the electrical conductivity of polyacrylic acid (anionic)
hydrogels (Kuhn mesh sizes & ~ 5-20nm) being comparable to those of the electrolyte
ions within (Adibnia, Afuwape & Hill 2020). Similar conclusions have been drawn from
the conductivity of uncharged polyacrylamide gels containing charged surfactant and
added salt ions (Afuwape & Hill 2021). For the highly charged polyacrylic acid hydrogels
of Adibnia et al. (2020), a systematic decrease in the effective conductivity (relative to the
increasing fixed charge) was attributed to counterion condensation (Manning 1969a,b).
Note that the linear charge density of these polymers was high (fractional charge <1),
even though the polymer concentration was only 8 %.

Measures of the mesh size via solute mobility are necessarily subject to hydrodynamic
and non-hydrodynamic interactions between the solute and network. These can make
the interpretation of such experiments challenging, to say the least, particularly if the
hydrogel microstructure bears multiple length scales due to templating or inhomogeneity
from phase separation (Weiss & Silberberg 1977). For example, based on the diffusion of
nano-spheres, agarose hydrogels are found to have a pore size that increases from 250 to
300 nm as the agarose concentration decreases from 3 % to 0.2 % (Bikos & Mason 2019).
Such large pores permit free diffusion of small molecules, enabling the hydrodynamic
sizes of small ions (charged dye molecules) to be ascertained from their electrophoretic
mobility (Bikos & Mason 2019).

Whereas the hydrodynamic permeability — at least in the absence of charge effects —
should be enhanced by cavities (Davis & Stone 1993), whether such cavities increase or
decrease the electrical conductivity is not clear. On one hand, the cavities replace charged
hydrogel with pure electrolyte having a lower intrinsic conductivity than the surrounding
polyelectrolyte, decreasing the conductivity. On the other, electrical conductivity also
reflects electro-osmotic advection, which is presumably enhanced by such cavities. The
theory developed herein seeks to establish the degree to which these characteristics
might influence conductivity measurements and hydrogel-based membrane performance
in technological applications.

The paper is organized as follows. Section 2 sets out the theoretical models and methods.
Section 2.1 presents the central electrokinetic model for a single cavity, upon which
effective transport properties (hydrodynamic permeability and electrical conductivity) of
cavity doped hydrogels are obtained. Section 2.2 details averaging of the current density
to ascertain bulk transport properties from a single-cavity electrokinetic model. This is
followed by a separate § 2.3 to average the fluid momentum (aided by ensemble averaging),
which is necessary to close the averaged current-conservation equation. Section 2.4
defines the Onsager principles and reciprocity relationship to complement the averaging
undertaken in §§2.2 and 2.3. Section 2.5 highlights pertinent details of the numerical
calculations and, finally, § 2.6 details an approximate analysis to estimate the conductivity
on the basis of Donnan equilibrium between cavities and bulk hydrogel. This analysis
completely neglects ion diffusion and advection, but later serves as a benchmark with
which to assess the full electrokinetic model, especially the role of electro-osmosis. The
results are presented in § 3 with conclusions and a summary in § 4.

2. Theory

With the objective of developing theoretical predictions of the electrical conductivity of
polyelectrolyte hydrogels doped with spherical cavities, the overall strategy is to compute
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(a) (b)

Figure 1. (a) A dilute random array of spherical cavities (radius R ~ 10-1000 nm) is subjected to a gradient
of electrostatic potential —E and/or a pressure gradient P, which induce a current density  and fluid velocity
U. The Onsager matrix of proportionality between these macroscale gradients and fluxes is calculated on the
basis of an electrokinetic model for a single cavity in an unbounded hydrogel, thus furnishing the effective
conductivity for various electrode configurations. The medium bears a fixed charge density ,o}’o , counter-ions

and added salt, furnishing a Debye screening length k! ~ 0.1-1000nm to complement the Brinkman
(hydrodynamic) screening length £ ~ 0.1-100 nm. (b) Schematic detail of a single cavity highlighting mobile
cations (+, green), mobile anions (—, red) and immobile anions (—, grey) fixed to the stationary polymer
skeleton.

steady-state ion fluxes for a single cavity in an unbounded hydrogel. This is undertaken
within the framework of a standard electrokinetic model (O’Brien 1981) by which an
equilibrium state, governed by the nonlinear Poisson—Boltzmann equation (Russel, Saville
& Schowalter 1989), is perturbed by separately subjecting the cavity to a uniform electric
field and a uniform pressure gradient. These solutions furnish dipole strengths of the
perturbed electrostatic potential, ion concentrations and pressure, which together furnish
averaged current and momentum fluxes in response to averaged gradients of electrostatic
potential and pressure. The analysis is for hydrogels in which the cavity volume fraction
¢ is small, thus neglecting cavity—cavity interactions. Such a composite is represented
schematically in figure 1.

2.1. Electrokinetic model

The steady-state electrokinetic model is the one adopted by Hill (2015) for nanoparticle
gel electrophoresis. It comprises the Poisson equation

—eoV2Y = pm + py, @.1)
a total of N ion-conservation equations with Nernst—Plank fluxes
D; .
0=-V.|nu—D;Vn; — zie—n;Vyr i=1,...,N) (2.2)
kgT
and solvent momentum (inertia-free) and mass (incompressible) conservation equations

0=nV2u—Vp— E%u — oV, Veu=0, (2.3a,b)
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where pr is the charge density fixed to the hydrogel skeleton, and

N
Pm = Zzl'eni (2.4)
i=1

is the net (mobile) charge density of ions in the fluid phase.

The functions to be calculated are the electrostatic potential i, the N mobile-ion
concentrations n;, and the fluid velocity u and pressure p. The parameters in the foregoing
equations are the thermal energy kT, dielectric permittivity €€p (assumed to be uniform
due to the cavities and hydrogel being predominantly occupied by water), ion diffusion
coefficients D;, ion charges z;e (valence z; and fundamental charge e), fluid shear viscosity
n and hydrogel (Brinkman) permeability ¢2.

The permeability and fixed charged density are prescribed functions of radial distance r

from the cavity centre: 072 = ny(r)6mas and pf = — xens(r), where
ng(r) 1
o 1— Eerfc[(r —R)/8] (2.5)

s

is the concentration of Stokes resistance centres (with radius ay), and x is the fraction of
Stokes resistance centres (bearing a single negative charge). Equation (2.5) is a convenient
phenomenological means to insert a spherical cavity, avoiding cumbersome boundary
conditions to couple the interior and exterior domains, also enabling one to vary the
sharpness of the transition. Although there are no experimental measures available,
the cavities in real hydrogels likely have a more gradual transition than assumed (for
simplicity) herein. All the results reported below were undertaken with § = 1 nm and
cavity radii in the range R = 1-1000 nm. Accordingly, the Brinkman length undergoes
a rapid variation from oo inside the cavity to a prescribed finite value in the bulk hydrogel

1
(= — (2.6)

N
Note that, when £ and ,ofOO are considered independent variables,

—pi/e

(©.9]
nS

X = = —(pj?o/e)6na352 (27)

may be (unphysically) greater than one. For example, varying £ from 0.1 to 100 nm
with a3 = 0.15 x 10710 m, ny° varies from 600M to 0.6 mM, whereas —pj?o/e will
be prescribed in the range 0.1-10mM. Note that these estimates of n{° neglect the
hydrodynamic interactions between the Stokes resistance centres, which increase the
effective value of a; when their volume fraction n>°4ma’/3 is not sufficiently small. In
very dense polymers, however, ion mobilities will be smaller than based on their limiting
molar conductivities (as assumed herein). The dielectric constant of the hydrogel would
also be smaller than the value for water (assumed herein).

The electrokinetic model, which is nonlinear, is solved by perturbing the variables from
their equilibrium values, calculated with the application of either an applied pressure
gradient P = Vp as r — oo or an electric field E = —Vy as r — co. More general
solutions with both fields acting are obtained by linear superposition.
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https://doi.org/10.1017/jfm.2022.82

https://doi.org/10.1017/jfm.2022.82 Published online by Cambridge University Press

lonic conductivity and hydrodynamic permeability of hydrogels

The equilibrium values, identified with superscripts O, are functions of radial position:
u’ = 0 with y°, n? and p? solving the nonlinear Poisson—-Boltzmann system

N
—eeoV2Y? = " zien) + py, (2.8)
i=1
0 Di oo .0 .
0=—V-(=DVa) —ze—n0vy®) (i=1,...,N), (2.9)
kT
N
0=-Vp"—> zen)Vy", (2.10)
i=1
with boundary conditions
dn? dy0
Yo and Y0 ar—o, @.11a,b)
dr dr
and
n? — n® and v0 >0 asr— oo. (2.12a,b)

Note that bulk electroneutrality demands ,Ofoo + pom = 0 atr = co. Moreover, it is assumed
that there is no external electrolyte bath, which would alter the bulk ion concentrations by
inducing a non-zero Donnan potential in the hydrogel (with respect to the bath) (Doi 2013).
The equilibrium solution is accomplished using finite differences with an adaptive mesh
(Hill, Saville & Russel 2003) and equilibrium pressure PV =— vazl zien?xjfo (furnished
by the equilibrium momentum equation).

Next, the equations are solved with boundary conditions for two linearly independent
solutions. In this work, both solutions have

ni — ny° asr— oo, (2.13)

since it is assumed that there are no macroscopic ion-concentration gradients (with
vanishing Donnan potential). As noted by O’Brien & Perrins (1984), this may be justified
when the forcing time scale is large compared with the micro-scale relaxation times (e.g.
micro-diffusion time scale ~ R2/D;) and short enough to avoid the build-up of substantial
ion-concentration gradients. For example, on the macro-scale with characteristic length L,
the diffusion time 7; ~ L? /D; with electro-migration time 7, ~ LkgT /(| E||z;|eD;). Thus,
with |E| = |AV|/L, where AV is the voltage across the sample, we find 7, ~ 74/|AV[*
where |AV|* = |AV||zile/ (kgT).

One linearly independent solution comes from the application of an electric field E in
the absence of a mean pressure gradient P = (0

Y — —r-E asr— oo. (2.14)

As readily verified from the momentum equation, this generates a uniform far-field flow
u— —F pf‘?oéz /n as r — oo. The other linearly independent solution comes from the

application of a pressure gradient P in the absence of a mean electric field E = 0
p—>r-P asr— oo, (2.15)

which generates a uniform far-field flow u — —P¢?/n as r — oc.
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Solutions of the linearized model have the general form (deduced by linearity and
symmetry considerations)

Y@ =y —r-E+ ¥ (e - X, (2.16)
ni(r) = nd(r) + (e, - X, (2.17)
¢ A
u=——P—pP—E+V xVxhrX, (2.18)
n n
where X' = E or P, thus solving
—ec0VY' = p,, + pf. (2.19)
0 / Di ’ 0 Di 0 ’ .
0=-V-(nlu—DVnl —zie—=nVy* — zie—n)Vyr (i=1,...,N), (2.20)
kgT kgT
0=nV2u—Vp — Lu— o vy — p0vy', V.u=0 2.21)
62 m m ’ ’ :
where
N
i=1

is the perturbed mobile-ion charge density. Note that primed variables denote the
perturbation from equilibrium, i.e. (-)' = (-) — (1)?, and that continuity of the perturbed
variables at the origin requires

U=hi=h(r=0=0 atr=0. (2.23)

Then the velocity, constructed from the scalar function A(r) above, may be written (radial
and tangential components)

h h
u= (Uo — 2—’X) -erer + |:UO - (h,r - —’) X:| - epey, (2.24)
r r
where the uniform far-field velocity
¢ A
Up=—-——P—p7—E. (2.25)
n n

The equations and boundary conditions are solved using finite differences with an
adaptive mesh (Hill et al. 2003). The pressure is eliminated by taking the curl of the
momentum equation and noting that the velocity written in terms of h(r) satisfies the
continuity equation. Pertinent aspects of this numerical solution are highlighted in § 2.5.
First, details on how the solutions of this model are used to derive the averaged fluxes for
cavity doped hydrogels are presented.

2.2. Averaged current density

The linearly independent solutions of the electrokinetic model detailed in § 2.1 provide
asymptotic coefficients that are shown in this section to prescribe the averaged fluxes in
a hydrogel that bears randomly distributed cavities with cavity volume fraction ¢ < 1.
The averaging undertaken here is inspired by the methodology of Saville (1979) for
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colloidal dispersions. As shown in Appendix A, this is equivalent to the ensemble
averaging applied by Koch & Brady (1985) to hydrodynamic dispersion in fixed beds
of spheres. Volume averaging over the entire composite is reduced to the evaluation of
unconditionally convergent volume integrals that enclose a single cavity in an unbounded
hydrogel. Then, following a methodology introduced by O’Brien (1981), these are
transformed to surface integrals that can be expressed in terms of the dipolar disturbances
of a single cavity in an unbounded hydrogel. In contrast to colloidal dispersions, the
averaged current density for a cavity doped hydrogel requires explicit knowledge of the
fluid-velocity disturbances.

The averaged electrical current density (steady state) is written as the volume average
of the advective, electro-migrative and diffusive current fluxes

1 / N
= = Zzl'eji dv
Vivig
- D;
=7 /V ; |:z,-enlc~’°u — z;eD;Vn; — (zie)zlq;—}nfovw] dv

N
1 . D:
+ v /V IZI: |:z,-ej,- — zien{°u + zieD;Vn; + (zie)zle;wn?oVw] dv, (2.26)

where the total flux of the ith mobile ion is
. D;
Ji=niu—D;Vn; — zje——n; V. (2.27)
kgT

Note that the integrands are written in terms of bulk variables that yield unconditionally
convergent integrals for random cavity configurations that are dilute enough for their
Debye layers not to overlap (Saville 1979). This requires a cavity volume fraction ¢ <
+ 1/(kR)]~'/3. Note that the velocity disturbances in the hydrogel (Brinkman medium)
decay as u' ~ r—3, reflecting the gradient of a dipolar decay of the accompanying pressure
perturbation in the far field (Brinkman 1947).
In a uniform hydrogel without cavities,

N
I= Z (Zlen U+ (z,e)zﬁnlooE> (2.28)
i=1

where U = Uy comprises the electro-osmotic and pressure driven terms in (2.25). With
bulk electro-neutrality, the current density in a uniform (cavity free) hydrogel is

,01?0262 p]?oKZ
I=0x(1+ E+ P, (2.29)
Ocol] n
where
» D
O = Z(z,e) o e (2.30)

is the electro-osmosis-free conductivity.
936 A27-9
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Note that the electro—migrative current density in a hydrogel for which the current is
dominated by the counter-ions is ~ Py ©D;Ee/(kgT), and the advective/electro-osmotic
current density is ~ ,ofooueo =Py 2EZz/n. Thus, the ratio of the electro-osmotic to

electro-migrative currents is
. oy P kpT

Co = =
" DiEe/(ksT) ~  nDie

where D; = kpT/(61tna;) with a; the Stokes radius of a counter-ion. This ratio may be
large or small, depending on the fixed charge density and permeability, both of which will

be varied systematically when the results are presented.
Now returning to the cavity filled hydrogel, (2.26) may be written

= 6mail’p° /e, (2.31)

N

I = Z[Zieni ( ) (Zze)szT n; (V‘/f>i|

i=1

/ Z[zze(n I @ o VY (e w]
(2.32)

where (-) denotes the volume average (or ensemble average). Note that the integrands in
the second line vanish beyond the diffuse layer of each cavity because n? —n?° and V0
are exponentially small there. It follows that the volume V over which the integrals are
evaluated in (2.32) can be replaced by an integral over the volume of a single cavity in
an unbounded hydrogel V’. This amounts to replacing V! fv with n fv/ (assuming all

integrals/cavities are equal), where n = 3¢/(4nR?) is the cavity number density. This is
equivalent to integrating the conditionally averaged fields (-); in ensemble averaging when
the dispersed phase is dilute (Hinch 1977; Koch & Brady 1985).

Having now established that the averaging in the second line of (2.32) can be evaluated
in terms of unconditionally convergent integrals, we may now draw on the following
identities (with V - u = V . j; = 0) to evaluate the volume integrals from (2.26):

/V(-)dV—> /(-)erdA, (2.33)
\%4 A
and
/jdV—) /xj-erdA and /udV—) /xu-erdA. (2.34a,b)
Vv A \% A

In this manner, the surface integrals may be evaluated using only the asymptotic far-field
decay of the spatial perturbations. This avoids having to numerically evaluate volume
integrals from the single cavity in an unbounded hydrogel (approximating conditionally
averaged fields (-)1). The volume integral in (2.32) may be written

4JTR3/ZZ1€X|:(” —VLOO)M—DV(}’I +n)—zle (nOVl// + /V¢O)j|

4RR3/ZZI [D (n? + n)e, + zie—— . T n + )er} (2.35)
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with A the area of a concentric sphere with radius » — oo where ¥ and n? — n?° are

exponentially small. Noting the respective even—odd symmetries of n? and n;, and ¥ and
¥/, the total current density becomes

N
D.
I= Z [zienﬁo(u) + (zie)sz—lTniooE}

i=1

¢ al 2 D; 1 2
—32 im |:zleD (n —an )er) + (zie) B_n <(1lf —xVy -)e,)9:|r )

(2.36)
where
02 02
lim <(n —an )e,) = lim nErzE— — lim nlUrzP JEE— JI.UP, (2.37)
r— 00 r— 00 n r— 00
and
02 52
lim (¥ —xVy/')e,), = lim vEPE — — lim ¢UrP = DEFE — —DYP.
r—00 n r—oo n
(2.38)

Note that (-)g = f (-)dA/ (41tr?) denotes a directional average over the surface of a
concentric sphere with radius r, thus identifying dipole strengths/asymptotic coefficients
for the concentration (JIX ), and electrostatic-potential (DY) disturbances.

In the next section, the averaged fluid velocity (u) in (2.36) is shown to be

e 0o ? e*3¢cv 3cE
where
cX = lim K52 (2.40)
r—00

are the dipole strengths/asymptotic coefficients for the pressure disturbances. This enables
(2.36) to be written

I=—p* [—%P of ﬁE+¢—23§3UP ¢3CE ]
+ 0o [E + 3¢DEE e j::DUP] (2.41)
where
DX = DX +— ZzleD JX (2.42)

i=1

are termed effective electrostatic dipole strengths/asymptotic coefficients. Note that the
superscripts U of the asymptotic coefficients above denote that the coefficient is calculated
when a uniform far-field velocity Uy = —Pn/£? is prescribed with E = 0.
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2.3. Averaged fluid momentum

In the sections above, the velocity disturbance u' = u — Uy decays as r~3, so it is tempting

to calculate the average in the first line of (2.32) as

3¢

() = 47 R3

3
/ (u—Ug)dV + Ug = —‘f lim (x(u — Uo) - e,)or” + Uy, (243)
v R’ r—o

which, from the far-field decay of &’ in (2.24), furnishes

Iz Iz 22cY 2CE
(yy=——P—p*—E+¢p——P—¢p—EFE. (2.44)
n f n n R3 R3

However, this average does not respect Onsager reciprocity, thus motivating consideration
of the averaged fluid momentum equation, which, as shown below, furnishes (2.39) (with
prefactor 3 multiplying C¥).

According to ensemble averaging (Hinch 1977; Koch & Brady 1985), the fields u, ¥
and p,, above (for a single cavity in an unbounded hydrogel) become approximations of
their conditionally averaged counterparts (-)p, i.e. the average of () over an ensemble of
dilute, random cavity configurations, conditioned on a single cavity centred at the origin.
Ensemble averaging the fluid momentum equation gives

(VD) + (n/€) () — (o) (V) = (/€ u) — (p), V). (2.45)
where (-) = (-) — (-), not the perturbation from equilibrium (-) — )0 adopted in the

sections above for the single cavity in an unbounded hydrogel. For dilute cavity doped
hydrogels, the averages on the right-hand side of (2.45) may be approximated as

AN U * Ego /
(/&) uw) ~ na i 1) (u)idr, (2.46)
oo Jr=0 1
and
(o/¢]
(V') ~ nof® f Lo b1) (v r, (2.47)
r=0 pf 1

where r = re, is position relative to the cavity centre (based on a uniform probability of
cavity centres). To avoid having to numerically evaluate these volume integrals, a means to
express them in terms of the asymptotic coefficient measuring the far-field decay of (p’);
is sought, as follows. Note that this will transform the averages (n /£%) and (p}’") on the

left-hand side of (2.45) to their bulk counterparts, n/ Ego and pfoo, respectively.

First, the volume integral in (2.46) for incompressible flow with radially varying
permeability may be written

o d(nt=2
(/) u') = —n f ra)y - ere, L0

=0 ar

dr. (2.48)

Next, by drawing on the Maxwell stress tensor (Russel ef al. 1989) for a uniform dielectric
eeoVY Vi —eegVyr - VI /2 (electrical stress on the medium comprising the charged
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polymer and fluid) and bulk electroneutrality, it can be shown that
(0 VV') = = (0 VY'), (2.49)

enabling the volume integral in (2.47) to be written

o0

(o, V') =n f ——e(y)dr. (2.50)

To derive a more general representation of (2.45) in terms of the asymptotic coefficients
CX, valid for cavities with arbitrary radial permeability and radial charge-density profiles,
let us now consider the single cavity in an unbounded hydrogel. Here, we will evaluate the
force F1 on the fluid within a large volume V that encloses the single cavity addressed in
the sections above (single-cavity problem). Accordingly, this analysis adopts the previous
notation by which (1) = () — ()0 denotes the perturbation from equilibrium (not the
disturbance from an average). The force, which vanishes in the absence of fluid inertia,
is

—/ %udV+/(Th+Te)-ndA+/pr1//dV, (2.51)
v? A 1%

where the integral of the electrical body force —psVr on the right-hand side corrects
the surface integral of the Maxwell/electrical stress tensor T, (the total electrical force on
the fluid and hydrogel). In the far field, —(17/¢5,)Uo — P — pf°E = 0, s0 —(1/€5,)u’ —

Vo' + ,ofOOVglf’ ~ 0 (neglecting O(r~%) smaller viscous shear stresses), which may be
integrated (in the radial direction), giving a far-field pressure disturbance

o
n n —
p(r) = —/ (p}X’le/ — eTu') ce.dr = Z (p}X’DX + eTCX) 72X - ey
r o X=P.E ©
(2.52)
Now, since F'1 = 0 (steady state, absence of fluid inertia), (2.51) and (2.52) furnish

0 /g2 0
—Uo%/ (L;—r)dV—p;”E/ 2 _1)av
Eoo r=0 \ ¢ ’ r=0 ,0

a( —2) ap
+ Y [ / 205X v e "a av — / DX - ee, dv}

X=P,E

=4nT Z c*x. (2.53)
oo X=P FE

The integrands of the volume integrals inside the square brackets of (2.53) are
equivalent to their counterparts in (2 48) and (2. 50) () e, =w—Up) e =
-2 5 PEh r X e and (y') = y° +> 5 PEY XX - e). Therefore multiplying
(2.53) by the cavity number density 7, and noting

n n m(fgo ) n oo [T Pr 00

N, Zo 1 )av=L. (o) —np 5 —1|dv=p

<zoo> 2 |\ ;s T o\ /
(2.54a.b)

transforms (2.45) to (2.39).
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Equation (2.39) is the same as derived by Hill (2006) for uncharged hydrogels doped
with charged nanoparticles. In that case, the asymptotic coefficients CX measure the force
monopole (FX = —4nCXXn/¢?) for a particle that is immobilized by mechanical contact
with the hydrogel. In (2.39), the term involving CX represents a body force equal to
FX times the cavity number density n. Of course, (2.39) may be applied to the purely
hydrodynamic limit of the model, i.e. of pressure-driven flow past a spherical cavity in
a Brinkman medium. To this end, Davis & Stone (1993) ascertained the drag force by
integrating the hydrodynamic traction over the surface of porous spheres (of which a cavity
is a special case). Their formula for the force on a cavity is readily verified to yield the
same force as furnished by the far-field decay of the velocity disturbance (measured by CY
herein) according to Hill (2006): F U= _4ncU n /Ez. Explicit formulas for C U (albeit
without electrical influences) are provided in § 3.2. Note that Davis & Stone used the force
to self-consistently determine the effective permeability of packed beds of porous spheres
(not a cavity filled Brinkman medium), thus implicitly averaging the fluid velocity by an
averaged momentum/force balance.

2.4. Onsager relationships

The foregoing volume averaged current density may be derived from a general Onsager
principle by which the macroscopic/averaged fluxes (I, U) are linearly related to the
macroscopic/average gradients (—E, P) that drive these fluxes (Doi 2013). Adopting
a power-series expansion in the cavity volume fraction for all macroscopic terms, e.g.
U=Uy+¢U;+--- andI =1y + ¢I| + - -, the linear response may be written

U = —(€*/n+ aup)P + (—p°0* /n + ¢payp)E + 0(¢°), (2.55)
and
I=—(—pP0/n+ ¢pap)P + (00 + pf°* /1) + paip)E + O(¢7), (2.56)

where «;; are (dimensional) Onsager matrix coefficients for the cavity contributions to the
macroscopic fluxes. Specifically, ¢ayp furnishes the mass flux proportional to the pressure
gradient in the absence of an electric field, which is the cavity contribution to the effective
hydrodynamic permeability. Similarly, ¢z is the cavity contribution to the conventional
electrical conductivity (when there is no pressure gradient), and ¢oyg = pap is the
cavity contribution to average electro-osmotic flow (in the absence of an average pressure
gradient). The Onsager matrix must be symmetric to respect time-reversal symmetry
of the fluctuations at equilibrium (Doi 2013). For the present problem (e.g. with no
ion-concentration or temperature gradients), this demands only that the two off-diagonal
terms are equal, i.e.

aye = agp.  (Onsager reciprocity) (2.57)
Note that ¢ozp furnishes the cavity contribution to the electric current from flow driven by

a pressure gradient (in the absence of an electric field).
Equating the foregoing Onsager fluxes to their averaged counterparts above furnishes

023cv 3CE
ayp = —;F’ QUE = —?, (258a,b)
20, 3DY 2 3¢cv 3DE 3CE
app = < —R; pﬁo;—R?’ , UWIE= O'oo_R; + p;OF’ (2.59a,b)

where g = ap. As noted above, the reciprocity relation provides a valuable consistency
check on the calculations of CX and DX and Jl.X .
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To relate the current density I to measurements, there are two pertinent experimental
configurations. One is conducted with zero pressure gradient, for which the ratio

! _ _ 002 2
= op=0= (000 + pp 7 /m) (1 + Aop—opp + - - -), (2.60)

thus defining a (dimensionless) conductivity increment
pf° 3¢t 3DE
Ooo R3 R3
P fooz 02
Ocol]
The other is conducted with impenetrable electrodes so that there is zero average flow,
for which the ratio

(2.61)

Aop=o =

1+

1
= ou=0= 0ol + Aoy=0p +--+), (2.62)

thus defining a conductivity increment

o0 p2
3D§+pf €“3pY
R3 n o R

Aoy=o = (2.63)
Note that the conductivity increment counterpart for colloidal dispersions is (Saville 1979;
O’Brien 1981; Hill ef al. 2003)

3DE 3pY

R R
where M =V/E = —U/E is the particle electrophoretic mobility. Of course, for
immobile particles (M = 0), the conductivity increment depends only on the effective
electric-field-induced dipole strength, as is the case for ideal conducting solid composites.
When we examine the results for cavity doped hydrogels, the conductivity increments
will be compared with a greatly simplified analysis based on the conductivities of the
cavity interior and exterior for electro-migration of mobile ions, as predicted by Donnan
equilibrium between the hydrogel and cavity. This completely neglects electro-osmosis
and the other diffuse-layer polarization effects captured by the full electrokinetic model.

Ao = (0/00 — 1)/ = , (2.64)

2.5. Numerics

The numerical solution is challenging due to several disparate length scales, exemplified
by the ratios kR and R/¢, and the coupled diffusion, advection and electro-migration.
Here, numerical stiffness is tackled using the method of Hill (2006) for the electrokinetics
of spherical nanoparticles in hydrogels. This code, which employs finite-difference
approximations and an adaptive mesh (Hill er al. 2003), was modified to solve the
equations on 0 <r < ry,. Based on Hill er al. (2003), the equations are scaled
using a characteristic velocity u™ = (kBT/e)zee(,/(na), where a is the radius of a
colloidal sphere. The counterpart for the present problem is u, = K(kBT/e),o]?"E2 /n=

u*Ka(/cZ)zpfoo /(2le), so a becomes an arbitrary/numerical parameter/length that only

affects the numerical solution via its influence on the ion Péclet numbers, for example. Of
course, owing to linearity, the value of u. should not affect the physical solution. This was
verified to be so, and the dimensionless quantities gleaned from the flow/pressure-driven
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flows herein are appropriately scaled by a factor ka so that their resulting O(1) magnitudes
are independent of a (thus depending on R).

Numerical accuracy was tested by examining Onsager reciprocity. Here, the coefficients
CY and CF of the velocity disturbances were found to be susceptible to the choice of i,
(or a), irrespective of other numerical factors, such as the spatial discretization and the
maximum radial extent of the computations, r,,,,, which must be very large to capture the
far-field asymptotic decays of all the perturbations. The ratio of the off-diagonal Onsager
coefficients ayr/ap was initially found to deviate (by a ratio of the order of one) from
one. This did not have a significant or even perceptible impact on the resulting conductivity
increments (under conditions where electro-osmosis is weak), but the calculation of C v
and CF (and therefore the Onsager coefficients) was tremendously improved by setting
uc to a very large value. The resulting calculations were then readily verified to satisfy
Onsager reciprocity. This also stabilized computations for large cavities (R 2 100 nm),
lending further confidence to the numerical accuracy of the results reported herein.

Calculations with R/¢ < 1 and kR < 1 exhibited notable systematic departures of
ayge/amp from one. In such cases, however, the velocity disturbances, as measured by
CY and CF were very weak, and so the conductivity increments were not susceptible
to numerical inaccuracies in CY and CE. Furthermore, because the cavities under these
conditions present vanishing disturbances, the breakdown seems to reflect numerical
stiffness.

Further checks of the numerical accuracy were undertaken by comparing the Onsager
coefficient ayp for weakly charged hydrogels with exact analytical formulas derived by
solving the Stokes and Brinkman equations for a spherical cavity within a continuous
Brinkman medium. These formulas are provided in the results section, and are compared
with the numerically calculated Onsager counterpart ayp.

Note that the maximum radial extent for the computations reported herein was set to
K¥max = 20k R + 40 with 10000 grid points for each of the 7 functions (potential, 4 ion
concentrations, and two scalar functions that prescribe the velocity, 4, and g = h,). This
enabled all the scalar fields to robustly establish their asymptotic power-law decay at r =
I'max- Failing to do so generally produced poor mesh convergence and a notable violation
of Onsager reciprocity (as revealed by ayg/op deviating from one).

2.6. Donnan—Maxwell model

This section begins by establishing how the bulk electrolyte composition is prescribed
to be electroneutral, also establishing independent analytical calculations of the Donnan
potential ¥p, and cavity and hydrogel conductivities o, and 0. These are used to compute
what will be termed a Donnan—Maxwell conductivity increment Aopys, which neglects
electro-osmosis and space-charge perturbations.

While Donnan equilibrium (Doi 2013) is anticipated when the cavity radius R is large
compared with the Debye length « !, i.e. when xR >> 1, it will be seen that this is not
sufficient for the accompanying Donnan—Maxwell conductivity to approximate the full
electrokinetic model. Nevertheless, it still provides a valuable benchmark with which to
interpret electro-osmosis and space-charge polarization effects emerging from the full
model.

As a specific illustrative example, let us consider a four-component electrolyte,
comprising HY, C1~, Na* and OH™ ions. Assuming, for simplicity, that the fixed charge
density ,ofoo is independent of the pH (i.e. a strong electrolyte), electro-neutrality in the
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bulk hydrogel demands
107PH — [CI7] + [Nat] — 10PH7H 4 o /(10°Npe) = 0, (2.65)
where [-] explicitly denotes an ion concentration in M = mol 1!, and pH = — log [H]

with [HT][OH™] = 10~ M2 (N4 is Avogadro’s number).
If the pH and p2° are adopted as independent variables, then [Nat] or [CI~] may be
f
prescribed according to the sign of

107PH — 1P 4 52 /(10°Ne), (2.66)

thus ascertaining [CI~] or [Na™], respectively, from the electro-neutrality condition. At
pH = 7, for example, this identifies Na™ (CI1™) counter-ions for a negatively (positively)
charged hydrogel.

Thus, with an electro-neutral bulk, the equilibrium electrostatic potential ¥° decays
to zero when « (r — R) < 1. Inside the cavity, «po increases toward (minus) the Donnan
potential rp as r — 0. In a sufficiently large cavity (kR >> 1), electro-neutrality requires

N
Y zien exp(zivpe/ (kpT)) = 0, (2.67)

and in the bulk hydrogel,

N
> zien® + p° = 0. (2.68)
i

Solving these furnishes the Donnan potential ¥p, to which —y° in a finite cavity
approaches when kR > 1.

For a hydrogel with a negatively charged skeleton (yp < 0) bearing H* and Na*
counter-ions and (added NaCl), the general Donnan condition above furnishes

ksT | ngy- +ng ksT | [CI7] + 10PH-14
_ L Ta- T Ton- _ RBD

Vo= 2e nyee +ng s 2e 1 10-PH 1+ [Nat]’ (2.69)
with either (depending on the sign of 107PH — joPH—14 ,of°° /(103Nse))
[CI7] = [Na®]+ 107PH — 10971 4+ o2 /(10°Nye), (2.70)
or
[Na*] = [CI7] — 107PH 4 10°771 — p2°/(10°Nye). 2.71)
Note that the electrolyte conductivity in a large (kR > 1) cavity is
s 2 o0 D,
0p = Xi:(zie) 7 exp(zilﬂpe/(kBT))kB—T. 2.72)
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Expressing this in terms of independent variables pj?" and [CI] gives

N 00 o0 zi/2
_ P T D;
oc=p @e)yn |~ |
; My + g+ B

1/2
2 00 00
€ 00 o0 nCl_ + nOH_
= — D D _
kT (- Dre + - Dra) ( nyy g
1/2
2 o0 00
e nH+ + nN +
+ — (X _De- + 1 Doy-) | ——22— , (2.73)
kgT ( (o/ng®! OH~"7OH ) (ngu_ +”?)OH—)
or
- pH—14 PP 1z
—GCkBT - <[Cl_]D -+ 10PH=14p _) [C1+10 ~ 10°Nge
103Nye? cl OH [CI] + 10PH-14
P
+ [ 107PHDy+ 4+ ([C17] — 107PH 4 joPH-1 - _L__p
( + + ([C17] 103NA€) Na*
H—14 12
CI™]+ 10P7—
[T+ e (2.74)
- H-14 _ _
[CI7] + 10P 103N,e
For example, when pH = 7 with — p}’o /e and ng‘l’_ > 1077 M, (2.73) reduces to
e e D D 1 o " 2.75
O X kT (Deyi- + D) | 1 — ngore , (2.75)

so when there is an excess of added salt (NaCl) such that — ,ofo < ng]’_ e, the conductivity
is that of a NaCl electrolyte. On the other hand, when — ,ofOO > n®_e (counter-ion

cr-
1/2

dominated hydrogel), o, ~ [CI7]"/~, i.e.

2 12
e
o % 12 (D + D) (—ngﬁ_ PR /e) L (o> e (2.76)

The foregoing Donnan equilibrium provides a basis for interpreting the conductivity
of cavity doped hydrogels, albeit limited to advection-free conduction in large,
space-charge-free cavities. The conductivity of the hydrogel accompanying (2.75) is

o L2 00
Ooo X a-¢ D+ (11— P Dyt | - (2.77)
kgT n® e a

ClI™

Thus, the classical Maxwell analysis (Russel et al. 1989) for a spherical inclusion with
conductivity o, embedded in an unbounded continuum with conductivity o, furnishes a
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Donnan—-Maxwell electrostatic dipole strength

Dpy 0c/000 — 1

= , 2.78
R3 0¢)000 +2 (2.78)
and accompanying conductivity increment
Aopy = (0/00c — 1)/ = S (2.79)
where
0o \ 1/2
Pf
(DCI—/DNa+ + 1) (1 - noo e)
Cl™
0¢/0c0 = P . (2.80)
Do~ /Dy + 1= =2
a-¢

Interestingly, for a symmetrical electrolyte, such as KCl, o, /0 would span the range 1-0
as —,ofOO / (ng‘l’_ e) > 0 increases from 0 to oo, so Aopy spans the range 0 to —3/2. For
NaCl, for which D¢ /Dy,+ ~ 1.5, however, 0./0 may be > 1 when — pj?o / (ng‘f_ e) K
1, thus furnishing a positive increment with sufficient added salt.

As will be shown below, the dipole strength furnished by the full electrokinetic
model often deviates considerably from (2.78). This reflects additional ion conduction
mechanisms, namely electro-osmotic advection and, perhaps, ion diffusion at finite values
of kR. Note that the foregoing Maxwell analysis is based on the absence of a space charge
(the charge is confined to the interface at » = R). Thus, for example, it furnishes a perfectly
uniform electric field inside the cavity, whereas the full electrokinetic model often reveals
a non-zero space charge inside and outside the cavity.

3. Results

The results are organized as follows. Section 3.1 briefly examines the Donnan equilibrium
upon which the perturbations in following sections depend. Section 3.2 systematically
examines the electric-field- and flow/pressure-driven perturbations to the electrostatic
potential, ion concentrations and flow, showing how these determine the Onsager
coefficients, and the effective permeability and conductivity. These results are focussed on
hydrogels with a low hydrodynamic permeability (¢/ = 1 nm) with negligible added salt
(nc- = 0.01 mM), but systematically varying the hydrogel charge density ,o;-’o and cavity
radius R. Having established the principal physical features emerging from the general
framework, the next sub-sections briefly elaborate by examining responses with higher
hydrodynamic permeability (§ 3.3, £ = 100nm), and with added salt and intermediate
hydrodynamic permeability (§ 3.4, nc- = 1 mM, £ = 10nm). Overall, these elucidate
the range of qualitative responses that exist within a physically relevant parameter
space. Finally, § 3.5 provides an interpretation of the conductivity of the highly charged,
hierarchical ionic hydrogels synthesized by Pan et al. (2012).

3.1. Donnan equilibrium

The equilibrium potential at the cavity centre is plotted in figure 2 vs the scaled cavity
radius « R for hydrogels with fixed charge densities the range —pj?o /e = 0.1-10 mM. Note

that the ionic strength varies with ,oj?o, causing the potentials superpose when kR < 1 and
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Figure 2. Scaled electrostatic potential at the cavity centre vs the scaled cavity radius « R for hydrogel charge
densities furnishing — pf°° /e = 0.1 (blue), 1 (red), 5 (yellow) and 10 (violet) mM with NaCl electrolyte (ng, =
0.01 mM, pH = 7). Dashed lines are (minus) the Donnan potential, (2.69).

plateau to their respective Donnan value when xR >> 1. Under the conditions prevailing in
figure 2 with — pj?o /e = 10mM (ng, = 0.0 mM), (2.69) furnishes a substantial Donnan
potential (in the gel relative to a large cavity) ¥p &~ —3.45kpT /e, which is approached for
sufficiently large cavities with kR &~ 100. With a higher electrolyte concentration n(oj‘f_ =
1 mM, for example, ¥p ~ —1.20kgT /e.

Further insights into the equilibrium state are gleaned from the radial electrostatic
potential and ion-concentration profiles shown in figure 3. These highlight the positive
equilibrium potential inside the cavity relative to the bulk hydrogel, which bears a negative
fixed charge — ,oj?o /e = 10 mM. Note that the added concentration of salt corresponds to a

bulk concentration ngo, = 0.01 mM, so with pH = 7, the dominant ion is Na™. As shown

in (b), the Na™ concentration decays by almost two orders of magnitude, while the C1~
concentration increases by two orders of magnitude, so that the bulk ionic strength inside
the cavity is considerably lower than in the bulk hydrogel. Given that there is no fixed
charge inside the cavity («kr < 23.3), there is an excess of positive charge (Na™ ions) on
the cavity side of the cavity wall, as expected from the positive equilibrium potential .

3.2. Perturbations from equilibrium in the low-permeability limit

Now consider the electric-field- and flow/pressure-induced perturbations from equilibrium,
shown in figure 4. The response to an electric field in (a) indicates an excess deficit
of Na™ (relative to CI17) in the direction of E (positive x-axis). Thus, the resulting
negative (positive) charge density along the positive (negative) x-axis induces a negative
electrostatic dipole that hinders electro-migration. It will be seen below that this manifests
as a negative conductivity increment. As seen in panel (), pressure-gradient-induced flow
U along the positive x-axis also induces a negative electrostatic polarization, which is
dominated by a deficit of Na™ ions, accompanied by relatively small perturbations in the
other ion concentrations. As expected from the equilibrium ion concentrations in figure 3,
the polarization is dominated by the perturbations in the concentrations of Na™ and Cl~
at the prevailing pH = 7 and hydrogel charge density ( —,of"o /e = 10mM).
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Figure 3. (a) Scaled equilibrium electrostatic potential vs scaled radial position k. (b) Scaled equilibrium ion
concentrations vs the scaled radial position «r: HT (blue), C1~ (red), Na*t (yellow), OH™ (violet). Parameters:
R =100nm (kR = 23.3), n?°_ = 0.01, —,of°°/e =10mM, £ = 1 nm.
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Figure 4. (a) Scaled electric-field-induced perturbations to the electrostatic potential (left) and
ion-concentrations (right). (b) Scaled flow/pressure-induced perturbations to the electrostatic potential
(left) and ion concentrations (right): H' (blue), C1~ (red), Na™ (yellow), OH™ (violet). Parameters are the

same as in figure 3. Log-log scaling of the axes (not shown) reveals power-law decays ¥X ~ D¥r~2 and
aX ~ JXr~2asr — oo.

Iso-contours of the electric-field-induced electrostatic potential are shown in figure 5.
The total perturbation in (a) highlights that electro-migration (perpendicular to the
iso-contours) directs current in the hydrogel around the cavity, as expected by the relatively
low conductivity/ionic strength inside. Subtracting the potential of the applied electric
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Figure 5. Iso-contours of the electric-field-induced electrostatic potential perturbation constructed from
VE(r) in figure 4(a): (@) ¥' = ¥ — ¢ and (b) ¥’ + E - r with E directed along the x-axis.

(b) 2

(a) 2

x/R x/R

Figure 6. Iso-contours of the streamfunction for the (a) electric-field- and (b) flow/pressure-induced flows
accompanying figures 4-5.

field —E - r, as shown in (b), details the dipolar electrostatic cavity polarization, e.g.
revealing fore—aft poles that reflect space-charge perturbations at the cavity—hydrogel
interface.

Streamlines of the flows induced by the electric field and flow/pressure gradient are
shown in figure 6. When subjected to an electric field, (a) reveals recirculating flow
(toroidal vortex) inside the cavity. This is driven by the electrical body force of the applied
field acting on the positive equilibrium charge density at the cavity walls. While the
hydrogel bears a net positive charge (in the fluid phase), owing to the counter-ions, this is
hindered by hydrodynamic coupling to the hydrogel. Thus, recirculating flow is confined
to the cavity. Turning to the pressure-induced flow, (b) reveals that the high hydrodynamic
permeability of the cavity draws fluid from the hydrogel into the cavity. This appears
to increase the tortuosity, but still decreases the overall viscous dissipation, presumably
because the cavity replaces a highly dissipative Brinkman flow with pure fluid (Stokes
flow). As quantified below, this manifests in an Onsager coefficient ayp that reflects an
increase in the effective hydrodynamic permeability.

Let us consider a purely hydrodynamic analysis of the Onsager coefficient «yyp, which
furnishes the effective hydrodynamic/Darcy permeability of cavity doped hydrogels Eg
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when the cavity volume fraction ¢ < 1

ayp 3¢V
=1l x.... 3.1
62/n+ ) + 3.1

Coupling the steady Stokes equations inside a spherical cavity (radius R) to the steady
solution of Brinkman’s equations in the hydrogel (with Brinkman screening length ¢)
furnishes

(/0> =1+¢

avp ., (R/0? +6(R/0)* + I5R/€ + 15
2/n T (R/€)3 +6(R/0)2+45R/0 + 45"

As seen in figure 7(a) (dashed line), (3.2) transits from 1 when R/¢ <1 to 3 when
R/¢ > 1. This not only provides a reference for the electrokinetic model, which captures
electro-viscous effects, but serves as a bounding limit of a more general hydrodynamic
model with Brinkman permeabilities Zg and ¢ inside and outside the cavity, respectively.
The solution of this hydrodynamic problem furnishes (from the far-field decay of the
velocity and pressure disturbances)

(3.2)

i R Forrr e @
where
A =K?K —3K?/K + 3K — 3K?/K* + 3, (3.4)
B =K>+3K?/K — 3K + 3K?/K* - 3, (3.5)
C =2K}/K + K*K — 3K*/K + 3K — 3K2/K* + 3, (3.6)
D =2K}/K* + K* + 3K?/K — 3K + 3K /K* - 3. (3.7)

Note that (3.2) is readily verified to be consistent with the drag force independently
derived by Davis & Stone (1993) from the traction acting on the cavity surface. Equation
(3.3), which is its more general counterpart, is plotted vs K = R/{ for fixed values of
K. = R/{. in figure 7(a) (solid lines). Crossing of the ordinate identifies zero permeability
contrast, i.e. £ = £.. The impenetrable-cavity limit, achieved as R/{. — oo, is readily
obtained from the pressure dipole in Brinkman’s calculation (Brinkman 1947) of the drag
force on a sphere embedded in a porous/Brinkman medium (dash-dotted line)

app  3[ 3 3
e 2[1+R/£+—(R/£)2] (3.8)

Equation (3.3) bridges the bounds set by (3.2) and (3.8). As the streamlines in (b—e)
demonstrate, low-permeability cavities (left) direct streamlines around them, tending to
decrease the permeability of the composite (¢yp < 0), whereas high-permeability cavities
(right) draw streamlines into them, tending to increase the composite permeability («yp >
0). These inferences are consistent with the analysis of Grosan, Postelnicu & Pop (2010),
who computed the streamlines for several similar flows (seemingly unaware of Davis &
Stone 1993), but did not evaluate the force/dipole strengths underlying (3.3).

The cavity contributions to the Onsager coefficients, constructed from the foregoing
electric-field- and flow/pressure-induced perturbations, are shown in figure 8. Note
that R/¢ > 1, so ayp &~ 3¢2/n is practically independent of the hydrogel charge, i.e.
electro-viscous effects are weak and largely independent of the cavity radius, whereas
the other two independent Onsager coefficients «jg and ojp = ayr vary much more
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significantly with the hydrogel charge and cavity size. As expected based on the negative
electrostatic polarization, «r is negative here, manifesting in a negative conductivity
increment for hydrogels with low permeability (¢ = 1 nm).

Of particular interest in figure 8 is the magnitude and changing sign of o;p = ayg
(dashed lines), which are scaled so that positive (negative) values correspond to cavities
that enhance (hinder) electro-osmotic flow in the bulk hydrogel (U = — FEe?/n).
By Onsager reciprocity, these also correspond to an enhancement (hindering) of the
current driven by pressure-induced flow (I = /ofooPé2 /1). Enhancement is favoured by
small cavities in weakly charged gels, reflecting a weaker perturbation of the flow (low
tortuosity). Conversely, hindering of the flow or current by large cavities in highly charged
gels reflects flow perturbations that manifest as internal recirculation.

The two conductivity increments defined by (2.60) and (2.62), and which accompany the
Onsager coefficients in figure 8, are shown in figure 9. Because the hydrogel permeability
is low, the increments are very similar, reflecting principally the electric-field-induced
electrostatic polarizability (as measured by DX, not shown). This is also evident from the
conductivity deduced by the Donnan—Maxwell theory leading to (2.78) (dashed lines). The
closest correspondence between the full model and the Donnan—-Maxwell approximation
occurs for the largest cavities in the most highly charged hydrogels (under conditions of
zero mean flow), as seen in (b). While large cavities bring the equilibrium state closer to
Donnan equilibrium (homogeneous cavity and hydrogel), as does increasing the hydrogel
charge (decreasing the Debye layer thickness, '), increasing the cavity radius also
increases the cavity Péclet number, making the polarization susceptible to electro-osmotic
advection.

3.3. Perturbations from equilibrium in the highly permeable limit

Having now examined the general methodology and some illustrative results emerging
from the model, let us now consider increasing the hydrodynamic permeability of the
hydrogel. To emphasize the physical consequences, from a qualitative perspective, the
results are presented with a very large hydrodynamic screening length (¢ = 100 nm). This
brings the results into a regime where £/R is at least of the order of one, so that we may
reasonably expect hydrodynamic influences to be more significant than above.

As shown in figure 10, the scaled Onsager coefficients now vary considerably with the
hydrogel charge and cavity radius. Interestingly, and perhaps surprisingly, cavities decrease
the hydrodynamic permeability. This electro-viscous effect is strongest for small, highly
charged cavities. However, there is a notable maximum (in the magnitude) with respect
to R, and this systematically shifts according to the magnitude of ,ol?o. When replotting
the Onsager coefficients vs kR (not shown), the maxima are seen to occur when kR ~ 5,
qualitatively similar to the maximum electro-viscous drag on charged colloidal spheres
(Hill & Ostoja-Starzewski 2008).

Streamlines of the electric-field-induced flow (and the accompanying electrostatic-
potential perturbation) are shown in figure 11 for cavities with radius R = 50 (a) and
200nm (b). Increasing R/{¢ causes the flow in the hydrogel to separate from flow
within the cavity. Note that the flow/pressure-induced streamlines (not shown) are (to
the eye) the same as shown here for the electric-field-induced flow. This suggests that
the internal flow is controlled by viscous coupling to the external flow. Interestingly,
the electrostatic polarization is very strong, as evidenced by the electrostatic-potential
disturbance inside the cavity significantly distorting the applied electric field in the
surrounding hydrogel. This disturbance is especially strong for the example with £/R = 2
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Figure 7. Hydrodynamic permeability according to analytical hydrodynamic theory: (a) scaled Onsager
coefficient ayp/(£2/n) from (3.3) for uniform pressure-driven flow past a Brinkman sphere/cavity
(permeability 63) embedded in a Brinkman medium (permeability Ez): R/t. =0.01, 0.03, 0.1, 0.3, 1, 2, 4,
8, 16, 32, 64, 128 (top to bottom). Dashed line is the Stokes—Brinkman equation (3.2) (empty cavity), and
the dashed-dotted line is (3.8) (impenetrable cavity). Positive (negative) values of ayp indicate conditions that
increase (decrease) the permeability of the medium with permeability £2. (b—e) Streamlines for representative
permeability contrasts (from Brinkman’s equations with continuous velocity and stress at r = R).
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QuiLpPIE

10! 10? 103

R (nm)
Figure 8. Scaled Onsager coefficients ayp/ (02 /n)  (solid), «r/(000 + ,of‘-x’zﬁz /n) (dashed) and
arp/(— pf‘?oéz /n) = aye/(— ,0f°°£2 /n) (dash-dotted) accompanying results presented in figures 3-6:
—,of°O /e = 0.1 (blue), 1 (red), 5 (yellow) and 10 (violet) mM. Other parameters: £ = 1 nm, NaCl electrolyte

(ng’, = 0.01 mM, pH = 7). Black dashed line is the Stokes—Brinkman equation (3.2) for ayp/ (€2 /n).

1 72.0 1
10! 102 103 10! 102 103
R (nm) R (nm)

2.0

Figure 9. Conductivity increments derived from the Onsager coefficients in figure 8: —p°/e = 0.1 (blue),
1 (red), 5 (yellow) and 10 (violet) mM. Solid lines are the full electrokinetic model, and dashed lines are the
Donnan—Maxwell equation (2.78).

(R = 50nm), suggesting that, under these conditions, the advective contribution to the ion
fluxes plays a significant role in the cavity polarization.

The role of advection in polarizing the cavities is highlighted by the conductivity
increments shown in figure 12. Interestingly, these take very large negative values (for
smaller cavities in highly charged hydrogels) in the absence of an average pressure
gradient, as seen in (a). However, they revert to large positive values (for larger cavities in
highly charged hydrogels) in the absence of an average flow, as seen in (b). The large
negative conductivity increments in (a) reflect a strong electrostatic polarization from
electro-osmosis that is unimpeded by an adverse pressure gradient. In (b), however, the
positive conductivity increments seem to reflect a net (positive) cavity polarization that
must be attributed to the back flow required to maintain zero net flow.

The qualitative similarity of Aop— in figure 12(a) to the Onsager coefficients in
figure 10 suggests that the conductivity is dominated by the contribution from og,
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10! 10? 103
R (nm)
Figure 10. Scaled Onsager coefficients aUp/(Zz/n) (solid), /(000 + pjﬁ-’ozﬁz/n) (dashed) and
oup/(—pj‘?oﬁz/n) = aUE/(—pj?okz/n) (dash-dotted), as shown in figure 8, but for hydrogels with £ = 100 nm:
—pj?o /e = 0.1 (blue), 1 (red), 5 (yellow) and 10 (violet) mM. Black dashed line is the Stokes—Brinkman
equation (3.2) for ayp/(£2 /7).

which depends on a weighted sum of DZ and CE. Note that Aop—( does not correlate
entirely with the electrostatic dipole (DeE), so the advective contribution coming from
the velocity disturbance (CF) is significant. Note that the qualitative form of Aoy—¢ in
figure 12(b) bears closer resemblance to the electrostatic dipole DE,J (not shown), again
suggesting that the electrical polarization is dominated by pressure-driven back flow when
the electrodes are blocked. Moreover, the flow/pressure-induced electrostatic polarization
is qualitatively the same as the electric-field-induced disturbances shown in figure 11
(without the contribution of the applied field —E - r).

3.4. Perturbations from equilibrium at intermediate permeability with added salt

Results for hydrogels bearing the same fixed charged densities as in the examples above,
but now with a significant amount of added salt (ng]’_ = 1 mM) and an intermediate
hydrodynamic permeability (£ = 10nm) are shown in figures 13 and 14. Added salt
increases the conductivity of the cavity and hydrogel domains, also reducing the Donnan
potential, which reduces the conductivity contrast between the cavity and hydrogel
domains. Whereas one might expect the weaker concentration/conductivity contrast to
diminish the conductivity increments, this is not the case, again owing to electro-osmosis.

As shown in figure 13, the electrokinetic model for the hydrogel with the weakest
charge (blue lines) furnishes a permeability increment («yp) that agrees exactly with
the Stokes—Brinkman hydrodynamic calculation, (3.2) (black dashed line). The effective
hydrodynamic permeability not only increases with the cavity volume fraction, since
ayp > 0 (solid lines), but also varies significantly with the cavity radius and hydrogel
charge. Here, strong electro-viscous effects (as highlighted in § 3.3) arising from cavity
polarization are suggested by the effective hydrodynamic permeability decreasing with
increasing charge (compare with the charge-invariant permeability in figure 8).

Whereas the Donnan—Maxwell theory predicts relatively small, negative conductivity
increments, due to the weak conductivity contrast between the cavities and hydrogel,
the conductivity increments shown in figure 14 deviate significantly from the
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£/R =2 (R =50 nm)
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Figure 11. Electric-field-induced streamlines (left) and iso-contours of the (total) electrostatic-potential
perturbation (right). Parameters: ng‘;_ =0.0lmM (pH =7), —pf°°/e = 10mM, ¢ =100, R =50nm (a)
and 200nm (b). Note that the streamlines for the flow/pressure-induced flow are the same as for the
electric-field-induced flow. Streamlines inside the cavity have a smaller separation of the streamfunction than

outside the cavity.

35 L 2 *
10! 102 103 10! 102 103
R (nm) R (nm)

Figure 12. Conductivity increments (defined by (2.60) and (2.62)) accompanying the scaled Onsager
coefficients in figure 10: —pj?o /e = 0.1 (blue), 1 (red), 5 (yellow) and 10 (violet) mM. Solid lines are the

full electrokinetic model, and dashed lines are the Donnan—-Maxwell equation (2.78).
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3

10! 10? 103
R (nm)
Figure 13. Scaled Onsager coefficients oyp/ (02 /n)  (solid), ag/(0s0 + pf"°2€2 /n) (dashed) and
alp/(—pfooﬁz/n) = aUE/(—p)?oﬂz/n) (dash-dotted): —pj?o/e =0.1 (blue), 1 (red), 5 (yellow) and 10
(violet) mM. Other parameters: £ = 10nm, NaCl electrolyte (n%‘l’, = 1mM, pH = 7). Black dashed line
(overlapping the blue solid line) is the Stokes—Brinkman equation (3.2) for ayp/(¢2/n).
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Figure 14. (a,b) Con ductivity increments (defined by (2.60) and (2.62)) accompanying the scaled Onsager
coefficients in figure 13. Solid lines are the full electrokinetic model, and dashed lines are the Donnan—Maxwell

equation (2.78). (c,d) Scaled electrostatic dipole strengths: DX (effective dipole, see (2.42), solid lines), DX
(electrostatic dipole, dashed lines).
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Donnan-Maxwell theory, particularly when there is zero mean flow. As highlighted
above, the pressure-induced back flow manifests in positive increments in highly charged
hydrogels, increasing with the cavity size. The distinctly different magnitudes of the
(scaled with R3) electrostatic dipole strengths (fo /R3) in (¢,d) [from the conductivity
increments in (a,b)] again highlight the role of advection.

3.5. Experimental interpretation

Before concluding, let us consider the hierarchical hydrogels of Pan et al. (2012). Using the
characteristic compositions (highlighted in the introduction), the maximum fixed charge
density may be crudely estimated from the water (w) fraction & 93 wt% and molar ratios
of aniline monomer (an) and phytic acid (pa) R = Nuu /Ny in the range 2:1 to 7:1. From
the molecular weights of the components (am, pa, w), we have

1

0.93 ~ , (3.9)
1+ 18/(93Nun/N,y 4+ 660N,4/N,,)

with a maximum of 6 negative fixed charges for each phytic acid molecule. Thus, the
maximum fixed charge density is

6eNpq

e (3.10)
Ny 18/ pw

-7 <

where p,, &~ 0.97 gcm™3, giving
—pf°/e < (0.34-0.53) mol 1. (3.11)

Next, assuming the counter-ions are H3O%, the conductivity based on the molar
conductivity of H30" (~350S cm?mol~!, equivalent to Dy+ ~ 9.3 x 107" m?s~! at
T =298 K) alone is estimated by (2.30) to be, e.g. 000 ~ 0.17Scm™!, when R = 3.
Note that dried, compressed polyaniline was reported by Pan et al. to have an electronic
conductivity 0.23Scm™!. Therefore, in the swollen hydrogel state, we might expect
an additive electronic contribution to the hydrogel conductivity < (1 —0.93) x 0.23 =
0.016 Scm™! (assuming a volume fraction < 0.07), giving a total (ionic plus electronic)
conductivity

0> <0.1740.016 = 0.19S cm™!. (3.12)

For such a gel, Pan ef al. reported a conductivity 0.11Scm™!, which is ~42 %
lower than predicted here on the basis of complete ionization (6 strong acid moieties)
without micro-scale electrokinetic effects or coupling of ionic- and electronic-conduction
mechanisms.

Pan et al. (2012) claimed their value as a record high, noting others as having registered
values in the range 0.1-10 mS cm~!. Thus, if such a high value can indeed be attributed to
the hierarchical micro-structure, then it may reflect the net result of (i) partial ionization
and hindered ion mobility decreasing the conductivity — both of which are plausible
given the high charge densities suggested by (3.11) — and (ii) micro-scale electrokinetic
effects increasing the conductivity — via a positive conductivity increment, as predicted
for highly charged gels in figures 12(b) and 14(b). All these factors (including the
coupling of the ionic and electronic conduction) clearly need to be carefully considered in
designing an experimental program that is capable of accurately correlating conductivity
and microstructure. The theory advanced herein provides a rational basis for such a
program.
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4. Summary and conclusions

A theoretical study of transport in charged hydrogels containing spherical cavities
has been undertaken to ascertain how micro-scale inhomogeneity affects the electrical
conductivity, albeit under quasi-steady conditions. On the basis of an electrokinetic
model for a spherical cavity in an unbounded, charged hydrogel — modelled as a
Brinkman medium with a prescribed hydrodynamic permeability and fixed charge
density — the fluid momentum and charge fluxes were averaged to elucidate their
linear dependence on the averaged gradients of electrostatic potential and pressure.
The linear (matrix) relationship satisfied Onsager reciprocity, and the principal Onsager
coefficients derived from the electrokinetic model were used to construct effective
conductivities under (i) zero-pressure-gradient and (ii) zero-flow conditions. The full
electrokinetic model was complemented with a substantially simplified model (termed
a Donnan—Maxwell theory), neglecting space-charge perturbations and electro-osmotic
flow. Exact solutions of Brinkman’s model were also obtained, furnishing the effective
hydrodynamic permeability of cavity doped hydrogels, albeit in the absence of charge
effects at low cavity volume fraction.

In general, electro-osmosis was found to have a significant impact on the
electrical conductivity, thus limiting the quantitative and qualitative capabilities of the
Donnan-Maxwell analysis, even for cavities for which the Debye length is very small
compared with the cavity radius. Electromigration and electro-osmotic advection act in
concert to impart electrical polarization and electro-viscous effects.

The model provides guidance on how boundary conditions and the microstructure of
polyelectrolyte hydrogels affect ion transport and osmosis in charged porous membranes.
For example, electro-osmosis in highly charged and permeable hydrogels imparts a large
negative conductivity increment with open boundary conditions (zero pressure gradient),
and a large positive conductivity increment with closed boundary conditions (zero flow).
These both reflect flow-induced electrical polarization (space-charge density perturbation).
With open boundary conditions, cavities are polarized in a manner that attenuates the
applied electric field, thus hindering ion conduction. With closed boundaries, however, the
electro-osmotic back flow may impart a polarization that accentuates the applied electric
field, thus enhancing conduction. Note also that space-charge density perturbations arising
from flow in the absence of an applied electric field decrease the effective hydrodynamic
permeability relative to that predicted on purely hydrodynamic grounds, i.e. (3.2) and
(3.3). This electro-viscous effect is maximized when the Debye length (depending on the
counterion concentration) is of the order of the cavity radius.

The present theory is based on steady state, which may be challenging to realize in
practice. Thus, future advances should address the dynamic response, i.e. the response
to an oscillatory electric field, which is how electrical conductivity measurements
are typically undertaken (at kilohertz frequencies). Such a theory would predict a
frequency-dependent complex conductivity, thus providing a quantitative interpretation
of dielectric spectroscopy. On the other hand, the present steady-state analysis may still
be relevant to the relatively slow macroscale dynamics of devices (depending on their
characteristic length).

Although Onsager reciprocity was verified for all the results presented, there were
found exceptional regions of the parameter space (of limited physical significance) where
reciprocity broke down, namely cavities with R/¢ < 1 and xR < 1. It seems plausible
that this may reflect numerical stiffness, since the cavities under these conditions present
vanishing electrostatic and hydrodynamic disturbances to an otherwise perfectly uniform
hydrogel.

936 A27-31


https://doi.org/10.1017/jfm.2022.82

https://doi.org/10.1017/jfm.2022.82 Published online by Cambridge University Press

R.J. Hill

Finally, it should be noted that the model developed herein is readily extended to
hydrogel filled cavities, providing a foundation for understanding the conductivity and
hydrodynamic permeability of microgel doped hydrogels (Latreille et al. 2019). Microgels
are nano-scaled spherical hydrogels that could be dispersed in a contrasting pre-gel
solution, thus providing independent control of the charge and permeability contrast
on micro- and macro-scales. Such materials may be beneficial for membrane-based
technologies and micro-actuators where the internal driving force is by ionic charge
redistribution (Kim, van den Berg & Crosby 2021).
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Appendix A. Ensemble averaged current density
Ensemble averaging (Koch & Brady 1985) the current density gives

N
D.
1= Zl [z,-e<n,-><u> - (z,-e>2kB—’T<ni><w>}
1=
N D
+n ; [Zie / (ni)1 (') dr — (z,-e>2kB—’T / ()1 (VY )1 dr} , (A1)
assuming V(n;) = 0. Note that (-) = (-) — (-), not the perturbation from equilibrium.
Drawing on the single-cavity problem to approximate the conditionally averaged fields
(dilute, random dispersed phase), we have

(VY Y VA + X e, (A2)
X=P,E
and
(i~ () + AfX - e — )1, (A3)
X=P.E
with (Vi) = —E. Next, considering the even—odd symmetries of the functions in the

integrands above, we have

/(néh(u/)l dr = /((n? —n)) 1 (u'); dr, (A4)
and

/ W) (V' dr= 3 / (0 + R - e — nPN (VO + P¥X - €)1 dr

X=PE

= 3 [ [0 =K e+ G en (T o as)

X=P.E
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giving, to linear order with respect to the perturbations from equilibrium,

I= Z[z, e(m){ <z,e>2D <nl><w}+n2'z, f(n —n®))i () 1dr

i=1 i=1

N
Y@ on 3 [ [t - n v @ e
i=1

X P.E
X - e (VYO) 1] dr, (A6)

or, similarly to the averaged momentum in § 2.3,

1= Z[z;en — e T, w}+n2zl /(n?—n;?°>>1<u>1dr

N
—nZ(ae) DY / 01— nNVIYX e~ E 1)y
i=1

X P.E
+(X - e <V¢f°>1] dr. (AT)

which is equivalent to (2.32) in the main text (noting the even—odd symmetries of the
perturbations from equilibrium).
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