
BULL. AUSTRAL. MATH. SOC. 1 6 R 1 0 , 1 6 S 3 6 , 2 0 M 2 5

VOL. 57 (1998) [387-391]

S E M I G R O U P R I N G S IN SEMISIMPLE VARIETIES

A.V. KELAREV

We describe semigroup rings which belong to self-dual varieties generated by a finite
number of finite fields.

A variety is called semisimple if it is generated by a finite number of finite fields.
Semisimple varieties play important roles in the theory of ring varieties. They occur in
solutions to several natural problems and have been investigated in [1, 3, 4, 5, 7, 9, 10,
11, 12, 14, 16, 17, 18], and other papers. On the other hand, considerable attention
in the literature is devoted to semigroup algebras satisfying polynomial identities (see [8,
Chapter 20]). The aim of this note is to describe semigroup algebras which belong to
self-dual semisimple varieties. As a corollary, we obtain the main result of [13].

Denote by GF(pn) the Galois field of order pn. The variety generated by GF(pn)
will be denoted by var[GF(p")]. It coincides with the variety var[pa; — xp" - x = 0]
defined by identities px = xp" - x — 0. If n divides m, then GF(pm) D GF(pn).

A variety of associative rings is said to be self-dual if the lattice of its subvarieties
is self-dual. It was proved in [14] that a semisimple variety is self-dual if and only if it
can be generated by a finite number of finite fields with pairwise distinct characteristics.
We shall consider a variety

where the primes pi,...,pm are pairwise distinct. These varieties also occur in [15].

The characteristic of a ring R will be denoted by char(fl). A semilattice is a
commutative semigroup satisfying the identity x2 = x.

THEOREM 1 . Let Pi,...,pn be pairwise distinct primes, n j , . . . , nm positive inte-
gers. A nonzero semigroup ring RS belongs to the variety

V=vaT[GF(pn
1>),...,GF(pn

m")]

if and only ifR € V and either S is a semilattice or char (R) = p, and S is a commutative
semigroup satisfying the identity xp<' = x.
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Note that a semigroup satisfies the identity xp" — x if and only if it is a union of
groups whose orders are divisors of p" - 1.

Let us begin with two lemmas characterising semisimple varieties. Let Q(p) be the
ring defined by generator a and relations pa = a2 = 0. The variety generated by Q{p)

will be denoted by var[Q(p)]. It is the variety v&r\px — xy = 0].

LEMMA 2 . [4, Theorem 5] A variety V is generated by a finite number of finite

fields if and only if it does not contain any varieties var[<J(p)].

If R is a ring, then we put

Ftp = {x € R | pkx = 0 for some k > 0}.

LEMMA 3 . Let pi,..., pm be pairwise distinct primes, Hi,..., nm positive integers.

Then the variety
(1) vw[GF(p?%--.GF(iC)]

is equal to the variety

(2) var [pi • • -pmx = 0, px • • -Pi-iPi+i • • •pm(x^' - x) = 0, for i = 1 , . . . , m]

and is equal to the variety

(3) var L • • • pmx = x f[ (x""'"1 — l) = oj .

PROOF: The identities of semisimple varieties were described in [3]. For complete-
ness we include a short self-contained proof.

Obviously, the variety (1) satisfies all identities in the definitions of (2) and (3).
Therefore (1) C (2) and (1) C (3).

Clearly, Q(p) does not satisfy all identities of the variety (2). Lemma 2 implies that
the variety (2) is generated by a finite number of finite fields. Take any of these finite
fields F. Since it satisfies the identity p\ • • • pmx — 0, we get char (F) = pt for some
1 ^ i ^ m. The identity

Pi • • -Pi-iPi+i • •Pm(xPi' - x) = 0

shows that F satisfies x"? - x = 0. Hence F belongs to var [GF(p"j)] C (1). Thus we
get (1) = (2).

Since Q(p) does not satisfy the identities of (3), Lemma 2 tells us that the variety
(3) is generated by a finite number of finite fields. Take any of these fields, say F. Since
it satisfies the identity pi • • • pmx = 0, we get char (F) = Pi for some 1 ^ i < m. Suppose
that F = GF(p") for a positive integer n. Take any element i in F. If x?> - x — 0 for
some j 7̂  i, then this and xp? = x yield x2 = x; whence x satisfies xp<' = x. If, however,
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a^j - x / 0 for all j ^ i, then the identity IT l^Pi — x) — 0 implies that xp*' — x,

again. Thus F satisfies xp<' = x, and so n ^ n, and F belongs to var[GF(p"j)] C (1).
Therefore (1) = (3). D

P R O O F O F T H E O R E M 1: Suppose that R € V and 5 is either a semilattice or a
commutative semigroup satisfying the identity xpi' — x = 0 if Pi = char (R). Lemma 3
shows that char (R) is a nonzero integer whose divisors are the pt that appear in the
definition of V. In both the cases 5 satisfies all identities xpi = x, for all pt dividing
char(i?). Since Rp is a homomorphic image of R, R 6 V implies Rp ,6 V. Clearly,
R = II Rp and RS € V if and only if all the RpS € V, and therefore without loss of

p|char(fi)

generality we may assume that R = Rp for a prime p — Pi- Then R satisfies the identity
PP2 • • -PmX — 0. This means the additive order of a nonzero x e R — Rp divides both
PPz • • -Pm and pk for some k > 0, and this can only occur if its order equals p. Since
this is true for all nonzero x € R, we have char (R) = p. A similar argument and the
identity pi • • •pm(xpn — xj = 0 , where n — ri\, of (2) in Lemma 3 imply that R satisfies
the identity xp" — x — 0. Since R has characteristic p, it satisfies (x + y)p" = xpn + ypn.

This and the identity xp" = x of the semigroup S show that RS satisfies xp" ~ x. Hence
RS e V by Lemma 3.

Conversely, assume that RS € V. Obviously, R € V, as it is a homomorphic image
of RS. Take any p = p{ dividing char (R). Then Rp ^ 0 and RpS 6 V, too. Therefore
Rp e V and as above we see that Rp satisfies px — 0. The identities in the definition of
variety (2) of Lemma 3 show that RpS satisfies the identity xpi' = x. Hence Rp satisfies
the same identity, and so it contains a nonzero idempotent e.

Take any s,t € S. Given that RpS € V and V is commutative, we get (es)(et) =

(et)(es), whence st — ts. Thus S is commutative.
Further, take any s in 5. Substituting es for x in the identity xp<' — x we see that

5 satisfies the same identity sp<' = s as a semigroup. Thus we see that if char (R) = pit

then 5 satisfies the identity ip<" - x — 0. If, however, char(i?) is not a prime, then
it has two prime divisors by Lemma 3, say pi and pj. Then 5 satisfies the identities
xpi' — x = xpi — x — 0. Therefore S satisfies x2 — x, and so it is a semilattice. u

The variety var [2x — x2— x — 0] of all Boolean rings is generated by the two-element
field GF(2). Therefore Theorem 1 yields the following corollary.

COROLLARY 4 . [13] A nonzero semigroup ring RS is a Booieac ring if and only

if R is a Boolean ring and S is a semilattice.

For a prime p, a ring is called a p-ring if it satisfies the identities px — xp — x =
0 (see [6, Section 33]). Since these identities define the variety generated by GF(p),
Theorem 1 gives us the following corollary.

COROLLARY 5 . A nonzero semigroup ring RS is a p-ring if and only if R is a
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p-ring and S is a commutative semigroup satisfying xp — x.

Following [2], we say that a semigroup S stabilises a variety V if R e V implies
RS € V. Theorem 1 immediately gives the following

COROLLARY 6 . Let pi,...,pm be pairwise distinct primes, rii,...,nm positive
integers. A semigroup S stabilises the variety V = var [GFipi1),... ,GF[p^)\ if and
only if either S is a semilattice or n = 1 and S is a commutative semigroup satisfying
the identity xpi = x.

REMARK 7 . Every semigroup ring in a variety V is semisimple if and only if V is
semisimple.

P R O O F : A quasi-reqular ring does not have nonzero idempotents. Therefore the
variety (2) does not contain nonzero quasiregular rings. It follows that all rings in a
semisimple variety are semisimple.

Conversely, suppose that a variety V is not semisimple. By Lemma 2 V contains
var [<2(p)] = var \px — xy — 0] for a prime p. Take any semigroup 5. The semigroup ring
Q(p)S belongs to var [Q(p)\ C V and is not semisimple. D
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