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THE TRANSIENT BLOCKING PROBABILITIES IN M/M/N LOSS
SYSTEMS VIA LARGE DEVIATIONS

T. CHOUKRIL,* Telecom Paris

Abstract

By using large devaitions theory, we give asymptotic formulas for the
transient blocking probabilities of M/M/N/N and M (with finite Poissonian
sources) M/N/N queues.
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1. Introduction and motivation

This paper follows the short communication [7], based on [3], in which the author gives an
intuitive method for the derivation of the transient blocking probability in a
M[AN]/M[u]}/N/N loss system, where AN and u represent the parameters of the exponential
interarrival and service distributions. In this paper we denote this system by Z,. In the
references mentioned, the probability Py(f, N) that all the N servers are busy at time ¢ was
approximated by the following formula:

1 Py(t, N)= C[P(t, D]" = C[1 —exp (—(A+ p)1)]",

where P,(t, 1) is the blocking probability of an M[A]/M[u]/1/1 system at time ¢, supposed to
be initially free. We prove here that this probability (1) is rather related to the transient
blocking probability of a M[A(N — Q(¢))]/M[u]/N/N queue, where A(N — Q(¢)) means that
the interarrival time between two successive customers entering the system has an exponential
distribution with parameter A(N — Q(¢)), when the number of busy servers just before the
arrival of the new customer is Q(¢). We denote this second system by Z,. We also give the
corrected formula for the system M[AN]/M[u]/N/N. The proofs are based on the principle of
large deviations.

2. Main results

Let us denote by (Q"(¢),=, the queue length process which is a pure jump Markov process
for both systems X, and =,. We denote by 1 the indicator of event E; it is equal to 1 if E is
true and 0 otherwise. When Q"(f)=gq, the jumps e, =+1 occur with the intensities
AN(q) =NAL<y and AV(q)=A(N —q) for =, and =, respectively, and the jumps e_=—1
occur with the intensity u"(q) = u(q A N) for both systems, where g A N is the minimum of g
and N. The sequence of processes (X"(r))=(Q"(r)/N) satisfies the principle of large
deviations (cf. [4], [5], [6]). Let A" denote the infinitesimal generator of X". The
instantaneous Laplace transform of (X"(¢)) is defined by G"(x, z) = (A™./f.)(x) where
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f.(x) = exp (zx). Direct computations give

) G"(x, z) = NG(x, z/N)
where
3) G(x, z)=Ax)[e’ — 1]+ u(x A D[e™* —1]

with A(x) = Al 5, for Z, and A(x) = A(1 — x) for Z,. Its Cramer—Legendre transform (cf. [5]) is
defined by

4 H(r, r'y=sup (zr' — G(r, 2)).

Let B, r be the set of piecewise differentiable right-continuous functions ¢ defined on (0, T),
having left limits and such that ¢(0) = X, and ¢(T) =1, where X, is the equilibrium point
of X~(t)=limy_,.X"(¢). The action functional (cf. [2]) of By is S(Bo,) =
infycp, , Jo H(¢(t), ¢'(t)) dt. By the principle of large deviations, we have

1
(5) S(BO,T) = NliT - Nlog P((XN(I))0§,§T€ BO,T)*
The Euler-Lagrange equation associated to the dynamic programming problem (cf. [1], [6])
T
®) SB)=inf SBor) = _inf [ H(p(), ¢'(0) dr
0=T TZ0,¢eBy 1 Jo
is:
6H d (0H
7 2t
@ ot dt\or'
(8) r(0)=X.,, and r(T)=1.
An integration by parts gives
, ,OH _
H(r,r')—r pw =0,

r0)=X., and r(T)=1.
Thus, for a solution r of (7, 8), we obtain

T oH "™ 5H
9 SB=jr't—,dt=j —'dr.
©® ®=] rosra=] 3

From the definition (4) we get dH/dr' = z(r'), where z(r') maximizes zr' — G(r, z). This,
together with the Euler-Lagrange equation (7), gives G(r, z(r')) =0; from which we can
solve z(r') as a function of r and get a tractable expression of [/ (3H/ar') dr.

For Z,:

A
r(0)=Xeq=;,

z(r')= log%r.

S(B) = log (’f) - (1 —ﬁ)

Thus,

We can easily check that

lim —%log (B(N, p= ﬁ)) =S(B)

N—>+oo
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where B(N, p) is the Erlang loss probability.

For X,:
A
r(0) _Xeq-my
"= ur
z(r") log)l(l—r)’
Thus,

S(B) =log (1 + ‘X‘)

For finite T, S(B,,7) is computed by using the optimal function (r(¢)) realizing the minimum
of S(B). The optimal function verifies

(1) = w(r(®) = Ar@) (10)
r(T)=1.
The initial condition r(0) depends on 7" and is computed by using the final condition r(T) = 1.
Therefore,
r(0)
(11) S(Bo.r)=S8(B)— z(r')ydr =S(B) - I(T),
Xeq
where
r(0)
(12) I(T)= z(r')dr.
Xeq

The solution of the linear differential equation (10) added to the condition r(T) =1 give the
initial value of r(¢). This yields for 3, and Z,, respectively:

(13) 12 0) = {15 11— exp (T exp (~uT)

(19 1 0) = {1= = (1= exp (U + D)1} exp (~(u + )T,

Let us determine /(7T) and compute its asymptotic value when T grows to infinity. By
replacing, for Z,, expression (13) of r3,(0) into the definition of I(T), we obtain
5,(0)

I(T)= z(r') dr

AMu

u/Ars,(0)
= f log (r) dr
1

= {rlog (r) = P}t~ exp (—uT),

Using the Maclaurin expansion of log (1 +y) for y = (u/A — 1) exp (—uT) and large values of
T, we obtain that I(T) is equivalent (denoted by ~) to (u/A) — 1)> exp (—2uT) when T grows
to infinity. The expression of I(T) and its equivalent for =, are derived in a similar way.
These results are summarized as follows:

L (T)=QQ+y)log(1+y)—y—1, where y=((u/4)—1)exp(—uT),

1 (D)~ 1y (£=1) exp (-2uT),
as) 3
Is(T) = a1+ y) log (1+y) +[1— a1 +y) g (1- 2= '),

where a=A/(A+pu)and y’' = (u/1)exp (—(A + u)T),
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1
(16) L(T) ~ron 5 S oxp (<2 + WT).

Remark that the asymptotic value of I, (T) depends exponentially only on u while I5(T)
depends on u and A. The coefficient of T in (15) and (16), which we call relaxation time,
represents the convergence rate of X™. It is larger for £, than for X, due to the dynamic of
the customers’ arrivals. The relaxation time (A + u) of X,, derived in [7] (formula 1) is, in
fact, related to that of =, given here by formula (16).

This method can be applied to more general queueing networks than M/M/N/N loss
systems studied in this paper. Since this technique is based on large deviations theory, the
time-transient behavior result is asymptotic when the network is large.
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