THE TRANSIENT BLOCKING PROBABILITIES IN *M/M/N* LOSS SYSTEMS VIA LARGE DEVIATIONS

T. CHOUKRI,* Telecom Paris

Abstract

By using large devaitions theory, we give asymptotic formulas for the transient blocking probabilities of M/M/N/N and M (with finite Poissonian sources) M/N/N queues.

LARGE DEVIATIONS; LOSS SYSTEM

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60K25

1. Introduction and motivation

This paper follows the short communication [7], based on [3], in which the author gives an intuitive method for the derivation of the transient blocking probability in a $M[\lambda N]/M[\mu]/N/N$ loss system, where λN and μ represent the parameters of the exponential interarrival and service distributions. In this paper we denote this system by Σ_1 . In the references mentioned, the probability $P_N(t, N)$ that all the N servers are busy at time t was approximated by the following formula:

(1)
$$P_N(t, N) \approx C[P_1(t, 1)]^N = C[1 - \exp(-(\lambda + \mu)t)]^N$$

where $P_1(t, 1)$ is the blocking probability of an $M[\lambda]/M[\mu]/1/1$ system at time t, supposed to be initially free. We prove here that this probability (1) is rather related to the transient blocking probability of a $M[\lambda(N-Q(t))]/M[\mu]/N/N$ queue, where $\lambda(N-Q(t))$ means that the interarrival time between two successive customers entering the system has an exponential distribution with parameter $\lambda(N-Q(t))$, when the number of busy servers just before the arrival of the new customer is Q(t). We denote this second system by Σ_2 . We also give the corrected formula for the system $M[\lambda N]/M[\mu]/N/N$. The proofs are based on the principle of large deviations.

2. Main results

Let us denote by $(Q^N(t)_{t \ge 0}$ the queue length process which is a pure jump Markov process for both systems Σ_1 and Σ_2 . We denote by 1_E the indicator of event E; it is equal to 1 if E is true and 0 otherwise. When $Q^N(t) = q$, the jumps $e_+ = +1$ occur with the intensities $\lambda^N(q) = N\lambda I_{q \le N}$ and $\lambda^N(q) = \lambda(N-q)$ for Σ_1 and Σ_2 respectively, and the jumps $e_- = -1$ occur with the intensity $\mu^N(q) = \mu(q \land N)$ for both systems, where $q \land N$ is the minimum of qand N. The sequence of processes $(X^N(t)) = (Q^N(t)/N)$ satisfies the principle of large deviations (cf. [4], [5], [6]). Let A^N denote the infinitesimal generator of X^N . The instantaneous Laplace transform of $(X^N(t))$ is defined by $G^N(x, z) = (A^N f_z/f_z)(x)$ where

Received 17 September 1990; revision received 16 July 1992.

^{*} Postal address: E.N.S.T. Département Réseaux, 46 Rue Barrault, 75634 Paris Cedex, France.

 $f_z(x) = \exp(zx)$. Direct computations give

(2)
$$G^{N}(x, z) = NG(x, z/N)$$

(3)
$$G(x, z) = \lambda(x)[e^{z} - 1] + \mu(x \wedge 1)[e^{-z} - 1]$$

with $\lambda(x) = \lambda I_{x \le 1}$ for Σ_1 and $\lambda(x) = \lambda(1 - x)$ for Σ_2 . Its Cramer-Legendre transform (cf. [5]) is defined by

(4)
$$H(r, r') = \sup (zr' - G(r, z)).$$

Let $B_{0,T}$ be the set of piecewise differentiable right-continuous functions ϕ defined on (0, T), having left limits and such that $\phi(0) = X_{eq}$ and $\phi(T) = 1$, where X_{eq} is the equilibrium point of $X^{\infty}(t) = \lim_{N \to +\infty} X^{N}(t)$. The action functional (cf. [2]) of $B_{0,T}$ is $S(B_{0,T}) = \inf_{\phi \in B_{0,T}} \int_{0}^{T} H(\phi(t), \phi'(t)) dt$. By the principle of large deviations, we have

(5)
$$S(B_{0,T}) = \lim_{N \to +\infty} -\frac{1}{N} \log \mathbf{P}((X^{N}(t))_{0 \le t \le T} \in B_{0,T})$$

The Euler-Lagrange equation associated to the dynamic programming problem (cf. [1], [6])

(6)
$$S(B) = \inf_{0 \le T} S(B_{0,T}) = \inf_{T \ge 0, \phi \in B_{0,T}} \int_0^T H(\phi(t), \phi'(t)) dt$$
is:

(7)
$$\frac{\partial H}{\partial t} - \frac{d}{dt} \left(\frac{\partial H}{\partial r'} \right) = 0$$

(8)
$$r(0) = X_{eq}$$
 and $r(T) = 1$.

r

An integration by parts gives

$$H(r, r') - r' \frac{\partial H}{\partial r'} = 0,$$

(0) = X_{eq} and $r(T) = 1.$

Thus, for a solution r of (7, 8), we obtain

(9)
$$S(B) = \int_0^T r'(t) \frac{\partial H}{\partial r'} dt = \int_{r(0)}^{r(T)} \frac{\partial H}{\partial r'} dr.$$

From the definition (4) we get $\partial H/\partial r' = z(r')$, where z(r') maximizes zr' - G(r, z). This, together with the Euler-Lagrange equation (7), gives G(r, z(r')) = 0; from which we can solve z(r') as a function of r and get a tractable expression of $\int_{r(0)}^{r(0)} (\partial H/\partial r') dr$.

For Σ_1 :

$$r(0) = X_{eq} = \frac{\lambda}{\mu},$$
$$z(r') = \log \frac{\mu r}{\lambda}.$$

Thus,

$$S(B) = \log\left(\frac{\mu}{\lambda}\right) - \left(1 - \frac{\lambda}{\mu}\right).$$

We can easily check that

$$\lim_{N \to +\infty} -\frac{1}{N} \log \left(B\left(N, \rho = \frac{\lambda}{\mu}\right) \right) = S(B)$$

where $B(N, \rho)$ is the Erlang loss probability.

For Σ_2 :

$$r(0) = X_{eq} = \frac{\lambda}{\mu + \lambda},$$
$$z(r') = \log \frac{\mu r}{\lambda(1 - r)}.$$

Thus,

$$S(B) = \log\left(1 + \frac{\mu}{\lambda}\right).$$

For finite T, $S(B_{0,T})$ is computed by using the optimal function (r(t)) realizing the minimum of S(B). The optimal function verifies

$$r'(t) = \mu(r(t)) - \lambda(r(t))$$

$$r(T) = 1.$$
(10)

The initial condition r(0) depends on T and is computed by using the final condition r(T) = 1. Therefore,

(11)
$$S(B_{0,T}) = S(B) - \int_{X_{eq}}^{r(0)} z(r') dr = S(B) - I(T),$$

where

(12)
$$I(T) = \int_{x_{eq}}^{r(0)} z(r') dr.$$

The solution of the linear differential equation (10) added to the condition r(T) = 1 give the initial value of r(t). This yields for Σ_1 and Σ_2 , respectively:

(13)
$$r_{\Sigma_1}(0) = \left\{ 1 - \frac{\lambda}{\mu} [1 - \exp(\mu T)] \right\} \exp(-\mu T)$$

(14)
$$r_{\Sigma_2}(0) = \left\{1 - \frac{\lambda}{\mu + \lambda} \left[1 - \exp\left((\mu + \lambda)T\right)\right]\right\} \exp\left(-(\mu + \lambda)T\right).$$

Let us determine I(T) and compute its asymptotic value when T grows to infinity. By replacing, for Σ_1 , expression (13) of $r_{\Sigma_1}(0)$ into the definition of I(T), we obtain

$$I(T) = \int_{\lambda/\mu}^{r_{\Sigma_1}(0)} z(r') dr$$

= $\int_{1}^{\mu/\lambda_{r_{\Sigma_1}(0)}} \log(r) dr$
= $\{r \log(r) - r\}_{1}^{\mu/\lambda - (1 - \exp(\mu T))} \exp(-\mu T).$

Using the Maclaurin expansion of $\log (1 + y)$ for $y = (\mu/\lambda - 1) \exp (-\mu T)$ and large values of T, we obtain that I(T) is equivalent (denoted by \sim) to $(\mu/\lambda) - 1)^2 \exp (-2\mu T)$ when T grows to infinity. The expression of I(T) and its equivalent for Σ_2 are derived in a similar way. These results are summarized as follows:

(15)

$$I_{\Sigma_{1}}(T) = (1+y) \log (1+y) - y - 1, \quad \text{where} \quad y = ((\mu/\lambda) - 1) \exp (-\mu T),$$

$$I_{\Sigma_{1}}(T) \sim_{T \to \infty} \frac{1}{2} \left(\frac{\mu}{\lambda} - 1\right)^{2} \exp (-2\mu T),$$

$$I_{\Sigma_{2}}(T) = \alpha (1+y') \log (1+y') + [1 - \alpha (1+y')] \log \left(1 - \frac{\alpha}{1-\alpha} y'\right),$$
where $\alpha = \lambda/(\lambda + \mu)$ and $y' = (\mu/\lambda) \exp (-(\lambda + \mu)T),$

(16)
$$I_{\Sigma_2}(T) \sim_{\tau \to \infty} \frac{1}{2} \frac{\mu}{\lambda} \exp\left(-2(\lambda + \mu)T\right).$$

Remark that the asymptotic value of $I_{\Sigma_1}(T)$ depends exponentially only on μ while $I_{\Sigma_2}(T)$ depends on μ and λ . The coefficient of T in (15) and (16), which we call relaxation time, represents the convergence rate of X^N . It is larger for Σ_2 than for Σ_1 due to the dynamic of the customers' arrivals. The relaxation time $(\lambda + \mu)$ of Σ_1 , derived in [7] (formula 1) is, in fact, related to that of Σ_2 given here by formula (16).

This method can be applied to more general queueing networks than M/M/N/N loss systems studied in this paper. Since this technique is based on large deviations theory, the time-transient behavior result is asymptotic when the network is large.

Acknowledgement

The author thanks the referee for helpful comments.

References

[1] DREYFUS, S. E. (1965) Dynamic Programming and the Calculus of Variations. Academic Press, New York.

[2] FREIDLIN, M. I. (1972) The action functional for a class of stochastic processes. *Theory Prob.* Appl. 17, 511-515.

[3] JAGERMAN, D. L. (1975) Nonstationary blocking in telephone traffic. Bell System Tech. J. 54, 625-661.

[4] VARADHAM, S. R. S. (1984) Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics 46, SIAM, Philadelphia.

[5] VENTSEL, A. D. (1976) Rough limit theorems on large deviations for Markov stochastic processes 1. Theory Prob. Appl. 11, 225-242.

[6] WEISS, A. (1986) A new technique for analyzing large traffic systems. Adv. Appl. Prob. 18, 506-532.

[7] YUNUS, M. N. (1986) A simple derivation of an approximation to the transient blocking probability in a loss system. Adv. Appl. Prob. 18, 862-863.

486