THE TRANSIENT BLOCKING PROBABILITIES IN $M / M / N$ LOSS SYSTEMS VIA LARGE DEVIATIONS

T. CHOUKRI,* Telecom Paris

Abstract

By using large devaitions theory, we give asymptotic formulas for the transient blocking probabilities of $M / M / N / N$ and M (with finite Poissonian sources) $M / N / N$ queues.

LARGE DEVIATIONS; LOSS SYSTEM
AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60K25

1. Introduction and motivation

This paper follows the short communication [7], based on [3], in which the author gives an intuitive method for the derivation of the transient blocking probability in a $M[\lambda N] / M[\mu] / N / N$ loss system, where λN and μ represent the parameters of the exponential interarrival and service distributions. In this paper we denote this system by Σ_{1}. In the references mentioned, the probability $P_{N}(t, N)$ that all the N servers are busy at time t was approximated by the following formula:

$$
\begin{equation*}
P_{N}(t, N) \approx C\left[P_{1}(t, 1)\right]^{N}=C[1-\exp (-(\lambda+\mu) t)]^{N} \tag{1}
\end{equation*}
$$

where $P_{1}(t, 1)$ is the blocking probability of an $M[\lambda] / M[\mu] / 1 / 1$ system at time t, supposed to be initially free. We prove here that this probability (1) is rather related to the transient blocking probability of a $M[\lambda(N-Q(t))] / M[\mu] / N / N$ queue, where $\lambda(N-Q(t))$ means that the interarrival time between two successive customers entering the system has an exponential distribution with parameter $\lambda(N-Q(t))$, when the number of busy servers just before the arrival of the new customer is $Q(t)$. We denote this second system by Σ_{2}. We also give the corrected formula for the system $M[\lambda N] / M[\mu] / N / N$. The proofs are based on the principle of large deviations.

2. Main results

Let us denote by $\left(Q^{N}(t)_{t \geqq 0}\right.$ the queue length process which is a pure jump Markov process for both systems Σ_{1} and Σ_{2}. We denote by 1_{E} the indicator of event E; it is equal to 1 if E is true and 0 otherwise. When $Q^{N}(t)=q$, the jumps $e_{+}=+1$ occur with the intensities $\lambda^{N}(q)=N \lambda I_{q \leqq N}$ and $\lambda^{N}(q)=\lambda(N-q)$ for Σ_{1} and Σ_{2} respectively, and the jumps $e_{-}=-1$ occur with the intensity $\mu^{N}(q)=\mu(q \wedge N)$ for both systems, where $q \wedge N$ is the minimum of q and N. The sequence of processes $\left(X^{N}(t)\right)=\left(Q^{N}(t) / N\right)$ satisfies the principle of large deviations (cf. [4], [5], [6]). Let A^{N} denote the infinitesimal generator of X^{N}. The instantaneous Laplace transform of $\left(X^{N}(t)\right)$ is defined by $G^{N}(x, z)=\left(A^{N} f_{z} / f_{z}\right)(x)$ where

[^0]$f_{z}(x)=\exp (z x)$. Direct computations give
\[

$$
\begin{equation*}
G^{N}(x, z)=N G(x, z / N) \tag{2}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
G(x, z)=\lambda(x)\left[e^{z}-1\right]+\mu(x \wedge 1)\left[e^{-z}-1\right] \tag{3}
\end{equation*}
$$

with $\lambda(x)=\lambda I_{x \leq 1}$ for Σ_{1} and $\lambda(x)=\lambda(1-x)$ for Σ_{2}. Its Cramer-Legendre transform (cf. [5]) is defined by

$$
\begin{equation*}
H\left(r, r^{\prime}\right)=\sup _{z}\left(z r^{\prime}-G(r, z)\right) . \tag{4}
\end{equation*}
$$

Let $B_{0, T}$ be the set of piecewise differentiable right-continuous functions ϕ defined on $(0, T)$, having left limits and such that $\phi(0)=X_{\mathrm{eq}}$ and $\phi(T)=1$, where $X_{\text {eq }}$ is the equilibrium point of $X^{\infty}(t)=\lim _{N \rightarrow+\infty} X^{N}(t)$. The action functional (cf. [2]) of $B_{0, T}$ is $S\left(B_{0, T}\right)=$ $\inf _{\phi \in B_{0, T}} \int_{0}^{T} H\left(\phi(t), \phi^{\prime}(t)\right) d t$. By the principle of large deviations, we have

$$
\begin{equation*}
S\left(B_{0, T}\right)=\lim _{N \rightarrow+\infty}-\frac{1}{N} \log \boldsymbol{P}\left(\left(X^{N}(t)\right)_{0 \leqq t \leqq T} \in B_{0, T}\right) . \tag{5}
\end{equation*}
$$

The Euler-Lagrange equation associated to the dynamic programming problem (cf. [1], [6])

$$
\begin{equation*}
S(B)=\inf _{0 \leqq T} S\left(B_{0, T}\right)=\inf _{T \geqq 0, \phi \in B_{0, T}} \int_{0}^{T} H\left(\phi(t), \phi^{\prime}(t)\right) d t \tag{6}
\end{equation*}
$$

is:

$$
\begin{gather*}
\frac{\partial H}{\partial t}-\frac{d}{d t}\left(\frac{\partial H}{\partial r^{\prime}}\right)=0 \tag{7}\\
r(0)=X_{\text {eq }} \quad \text { and } \quad r(T)=1 . \tag{8}
\end{gather*}
$$

$$
\begin{aligned}
H\left(r, r^{\prime}\right)-r^{\prime} \frac{\partial H}{\partial r^{\prime}} & =0, \\
r(0)=X_{\mathrm{cq}} \quad \text { and } \quad r(T) & =1 .
\end{aligned}
$$

Thus, for a solution r of $(7,8)$, we obtain

$$
\begin{equation*}
S(B)=\int_{0}^{T} r^{\prime}(t) \frac{\partial H}{\partial r^{\prime}} d t=\int_{r(0)}^{r(T)} \frac{\partial H}{\partial r^{\prime}} d r . \tag{9}
\end{equation*}
$$

From the definition (4) we get $\partial H / \partial r^{\prime}=z\left(r^{\prime}\right)$, where $z\left(r^{\prime}\right)$ maximizes $z r^{\prime}-G(r, z)$. This, together with the Euler-Lagrange equation (7), gives $G\left(r, z\left(r^{\prime}\right)\right)=0$; from which we can solve $z\left(r^{\prime}\right)$ as a function of r and get a tractable expression of $\int_{r_{(0)}(T)}^{\left.r^{\prime}\right)}\left(\partial H / \partial r^{\prime}\right) d r$.

For Σ_{1} :

$$
\begin{aligned}
& r(0)=X_{\text {eq }}=\frac{\lambda}{\mu}, \\
& z\left(r^{\prime}\right)=\log \frac{\mu r}{\lambda} .
\end{aligned}
$$

Thus,

$$
S(B)=\log \left(\frac{\mu}{\lambda}\right)-\left(1-\frac{\lambda}{\mu}\right) .
$$

We can easily check that

$$
\lim _{N \rightarrow+\infty}-\frac{1}{N} \log \left(B\left(N, \rho=\frac{\lambda}{\mu}\right)\right)=S(B)
$$

where $B(N, \rho)$ is the Erlang loss probability.
For $\Sigma_{\mathbf{2}}$:

$$
\begin{aligned}
& r(0)=X_{\mathrm{eq}}=\frac{\lambda}{\mu+\lambda} \\
& z\left(r^{\prime}\right)=\log \frac{\mu r}{\lambda(1-r)}
\end{aligned}
$$

Thus,

$$
S(B)=\log \left(1+\frac{\mu}{\lambda}\right)
$$

For finite $T, S\left(B_{0, T}\right)$ is computed by using the optimal function $(r(t))$ realizing the minimum of $S(B)$. The optimal function verifies

$$
\begin{align*}
& r^{\prime}(t)=\mu(r(t))-\lambda(r(t)) \tag{10}\\
& r(T)=1 .
\end{align*}
$$

The initial condition $r(0)$ depends on T and is computed by using the final condition $r(T)=1$. Therefore,

$$
\begin{equation*}
S\left(B_{0, T}\right)=S(B)-\int_{X_{\mathrm{cq}}}^{r(0)} z\left(r^{\prime}\right) d r=S(B)-I(T) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
I(T)=\int_{X_{\mathrm{cq}}}^{r(0)} z\left(r^{\prime}\right) d r . \tag{12}
\end{equation*}
$$

The solution of the linear differential equation (10) added to the condition $r(T)=1$ give the initial value of $r(t)$. This yields for Σ_{1} and Σ_{2}, respectively:

$$
\begin{align*}
& r_{\Sigma_{1}}(0)=\left\{1-\frac{\lambda}{\mu}[1-\exp (\mu T)]\right\} \exp (-\mu T) \tag{13}\\
& r_{\Sigma_{2}}(0)=\left\{1-\frac{\lambda}{\mu+\lambda}[1-\exp ((\mu+\lambda) T)]\right\} \exp (-(\mu+\lambda) T) \tag{14}
\end{align*}
$$

Let us determine $I(T)$ and compute its asymptotic value when T grows to infinity. By replacing, for Σ_{1}, expression (13) of $r_{\Sigma_{1}}(0)$ into the definition of $I(T)$, we obtain

$$
\begin{aligned}
I(T) & =\int_{\lambda / \mu}^{r_{1}(0)} z\left(r^{\prime}\right) d r \\
& =\int_{1}^{\mu / r_{\Sigma_{1}}(0)} \log (r) d r \\
& =\{r \log (r)-r\}_{1}^{[\mu / \lambda-(1-\exp (\mu T)] \mid} \exp (-\mu T)
\end{aligned}
$$

Using the Maclaurin expansion of $\log (1+y)$ for $y=(\mu / \lambda-1) \exp (-\mu T)$ and large values of T, we obtain that $I(T)$ is equivalent (denoted by \sim) to $(\mu / \lambda)-1)^{2} \exp (-2 \mu T)$ when T grows to infinity. The expression of $I(T)$ and its equivalent for Σ_{2} are derived in a similar way. These results are summarized as follows:

$$
\begin{gather*}
I_{\Sigma_{1}}(T)=(1+y) \log (1+y)-y-1, \text { where } y=((\mu / \lambda)-1) \exp (-\mu T), \\
I_{\Sigma_{1}}(T) \sim_{T \rightarrow \infty} \frac{1}{2}\left(\frac{\mu}{\lambda}-1\right)^{2} \exp (-2 \mu T), \\
I_{\Sigma_{2}}(T)=\alpha\left(1+y^{\prime}\right) \log \left(1+y^{\prime}\right)+\left[1-\alpha\left(1+y^{\prime}\right)\right] \log \left(1-\frac{\alpha}{1-\alpha} y^{\prime}\right) \tag{15}\\
\text { where } \alpha=\lambda /(\lambda+\mu) \text { and } y^{\prime}=(\mu / \lambda) \exp (-(\lambda+\mu) T),
\end{gather*}
$$

$$
\begin{equation*}
I_{\Sigma_{2}}(T) \sim_{T \rightarrow \infty} \frac{1}{2} \frac{\mu}{\lambda} \exp (-2(\lambda+\mu) T) \tag{16}
\end{equation*}
$$

Remark that the asymptotic value of $I_{\Sigma_{1}}(T)$ depends exponentially only on μ while $I_{\Sigma_{2}}(T)$ depends on μ and λ. The coefficient of T in (15) and (16), which we call relaxation time, represents the convergence rate of X^{N}. It is larger for Σ_{2} than for Σ_{1} due to the dynamic of the customers' arrivals. The relaxation time $(\lambda+\mu)$ of Σ_{1}, derived in [7] (formula 1) is, in fact, related to that of Σ_{2} given here by formula (16).

This method can be applied to more general queueing networks than $M / M / N / N$ loss systems studied in this paper. Since this technique is based on large deviations theory, the time-transient behavior result is asymptotic when the network is large.

Acknowledgement

The author thanks the referee for helpful comments.

References

[1] Dreyfus, S. E. (1965) Dynamic Programming and the Calculus of Variations. Academic Press, New York.
[2] Freidlin, M. I. (1972) The action functional for a class of stochastic processes. Theory Prob. Appl. 17, 511-515.
[3] Jagerman, D. L. (1975) Nonstationary blocking in telephone traffic. Bell System Tech. J. 54, 625-661.
[4] Varadham, S. R. S. (1984) Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics 46, SIAM, Philadelphia.
[5] Ventsel, A. D. (1976) Rough limit theorems on large deviations for Markov stochastic processes 1. Theory Prob. Appl. 11, 225-242.
[6] Weiss, A. (1986) A new technique for analyzing large traffic systems. Adv. Appl. Prob. 18, 506-532.
[7] Yunus, M. N. (1986) A simple derivation of an approximation to the transient blocking probability in a loss system. Adv. Appl. Prob. 18, 862-863.

[^0]: Received 17 September 1990; revision received 16 July 1992.

 * Postal address: E.N.S.T. Département Réseaux, 46 Rue Barrault, 75634 Paris Cedex, France.

