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mE TRANSIENT BLOCKING PROBABILITIES IN M /M /N LOSS
SYSTEMS VIA LARGE DEVIATIONS
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Abstract

By using large devaitions theory, we give asymptotic formulas for the
transient blocking probabilities of M/M/ N / Nand M (with finite Poissonian
sources) M/N/N queues.
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1. Introduction and motivation

This paper follows the short communication [7], based on [3], in which the author gives an
intuitive method for the derivation of the transient blocking probability in a
M[AN]/ M[Jl]/N / N loss system, where AN and Jl represent the parameters of the exponential
interarrival and service distributions. In this paper we denote this system by ~1. In the
references mentioned, the probability PN(t, N) that all the N servers are busy at time twas
approximated by the following formula:

(1)

where p.(t, 1) is the blocking probability of an M[A]/M[Jl]/1/1 system at time t, supposed to
be initially free. We prove here that this probability (1) is rather related to the transient
blocking probability of a M[A(N - Q(t))]/M[Jl]/N/N queue, where A(N - Q(t)) means that
the interarrival time between two successive customers entering the system has an exponential
distribution with parameter A(N - Q(t)), when the number of busy servers just before the
arrival of the new customer is Q(t). We denote this second system by ~2. We also give the
corrected formula for the system M[AN]/ M[Jl]/N / N. The proofs are based on the principle of
large deviations.

2. Main results

Let us denote by (QN(t)t~O the queue length process which is a pure jump Markov process
for both systems ~1 and ~2. We denote by IE the indicator of event E; it is equal to 1 if E is
true and 0 otherwise. When QN(t)=q, the jumps e+=+l occur with the intensities
AN(q)=NAlq:f:N and AN(q)=A(N-q) for E, and ~2 respectively, and the jumps e_=-l
occur with the intensity JlN(q) = Jl(q 1\ N) for both systems, where q 1\ N is the minimum of q
and N. The sequence of processes (XN(t))=(QN(t)/N) satisfies the principle of large
deviations (cf. [4], [5], [6]). Let AN denote the infinitesimal generator of X N. The
instantaneous Laplace transform of (XN(t)) is defined by GN(x, z) = (ANfz/fz)(x) where
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fz(x) = exp (zx). Direct computations give

(2) GN(x, z) = NG(x, z/N)
where
(3) G(x, z) = A(x)[eZ

- 1] + Jl(x 1\ 1)[e- Z
- 1]

with A(X)= Alx~l for ~1 and A(X)= A(I- x) for ~2. Its Cramer-Legendre transform (cf. [5]) is
defined by

(4) H(r, r') = sup (zr' - G(r, z)).
Z

Let Bo,T be the set of piecewise differentiable right-continuous functions ep defined on (0, T),
having left limits and such that ep(O) = X e q and ep(T) = 1, where Xe q is the equilibrium point
of XOO(t) = Iim, __+ooXN(t). The action functional (cf. [2]) of Bo,T is S(BO,T)=
infq>EBo.T f6H( ep(t), ep'(t)) dt. By the principle of large deviations, we have

. 1 N )(5) S(BO,T) = lim - -NlogP«X (t))O~t~TEBO,T .N__ +oo

The Euler-Lagrange equation associated to the dynamic programming problem (cf. [1], [6])

(6) S(B) = ~~~S(BO,T) = n;o~~~Bo'TfH(cjJ(t), cjJ'(t» dt

is:

(7)

(8)

An integration by parts gives

en d (aH)at-di ar' =0
r(O) = X e q and r(T) = 1.

aH
H(r, r') - r' ar' = 0,

r(O) = X eq and r(T) = 1.

Thus, for a solution r of (7, 8), we obtain

iT en Jr(T) en
(9) S(B) = r'(t) -, dt = -, dr.

° ar r(O) ar

From the definition (4) we get aH / ar' = z(r'), where z(r') maximizes zr' - G(r, z). This,
together with the Euler-Lagrange equation (7), gives G(r, z(r')) = 0; from which we can
solve z(r') as a function of r and get a tractable expression of f~~~) (aH / ar') dr.

For~l:

A
r(O) = X e q = -,

Jl
, Jlr

z(r ) = log;:.

Thus,

S(B) = log (I) - (1 -~),

We can easily check that

lim - .!.log (B(N, p = ~)) = S(B)N__ +oo N Jl
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where B(N, p) is the Erlang loss probability.

For ~2:

A
r(O)= X eq =--, ,

IJ+A

, IJr
z(r )=logA(I_r).

Thus,
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(10)

S(B) = log ( 1 + i).
For finite T, S(Bo,T) is computed by using the optimal function (r(t» realizing the minimum
of S(B). The optimal function verifies

r'(t) = lJ(r(t» - A(r(t»
r(T) = 1.

The initial condition r(O) depends on T and is computed by using the final condition r( T) = 1.
Therefore,

(11)

where

jr (o )

S(BO,T) = S(B) - z(r') dr = S(B) - I(T),
X cq

(12) J
r (O)

I(T) = z(r') dr.
X cq

The solution of the linear differential equation (10) added to the condition r(T) = 1 give the
initial value of r(t). This yields for ~1 and ~2' respectively:

(13)

(14)

r1:,(O) ={1-~ [1- exp (/IT)]} exp (-/IT)

r1:2(O) = {1 - /l ~ A[1- exp «/l + A)T)]} exp (-(/l + A)T).

Let us determine I(T) and compute its asymptotic value when T grows to infinity. By
replacing, for ~1' expression (13) of r~t(O) into the definition of I(T), we obtain

J
~t (O)

I(T) = z(r') dr
Alp.

f
P./A~t (O)

= 1 log (r) dr

= {r log (r) - r} \P./A-< l-exp(p.T») exp (-IJT).

Using the Maclaurin expansion of log (1 + y) for y = (IJI A-I) exp (-IJT) and large values of
T, we obtain that I(T) is equivalent (denoted by ---) to (IJI A) - 1)2exp (-2IJT) when T grows
to infinity. The expression of I(T) and its equivalent for ~2 are derived in a similar way.
These results are summarized as follows:

(15)

I~t(T) = (1 + y) log (1 + y) - y -1, where y = «IJIA) - 1) exp (-IJT),

1 (IJ )2I}:t(T) ---T-+oo 2 ;:- 1 exp (-2IJT),

I~2(T) = £1'(1 + y') log (1 + y') + [1 - £1'(1 + y')] log (1 -~ y'),
1-£1'

where £1'= A/(A + IJ) and y' = (IJIA) exp (-(A + IJ)T),
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(16)
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Remark that the asymptotic value of I":i:..(T) depends exponentially only on IJ while Il:.
2(T)

depends on IJ and A. The coefficient of T in (15) and (16), which we call relaxation time,
represents the convergence rate of X N

• It is larger for ~2 than for ~1 due to the dynamic of
the customers' arrivals. The relaxation time (A+ IJ) of ~1' derived in [7] (formula 1) is, in
fact, related to that of ~2 given here by formula (16).

This method can be applied to more general queueing networks than M/ M/ N / N loss
systems studied in this paper. Since this technique is based on large deviations theory, the
time-transient behavior result is asymptotic when the network is large.
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