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QUANTUM DOUBLE FINITE GROUP ALGEBRAS
AND THEIR REPRESENTATIONS

M.D. GOULD

The quantum double construction is applied to the group algebra of a finite group.
Such algebras are shown to be semi-simple and a complete theory of characters
is developed. The irreducible matrix representations are classified and applied
to the explicit construction of iZ-matrices: this affords solutions to the Yang-
Baxter equation associated with certain induced representations of a finite group.
These results are applied in the second paper of the series to construct unitary
representations of the Braid group and corresponding link polynomials.

1. INTRODUCTION

Recently, there has been renewed interest in the study of Hopf algebras because
of their role in obtaining solutions to the Yang-Baxter equation, which arises in areas
such as integrable lattice models [3], the quantum inverse scattering method [2, 12]
and the theory of knots and links [1, 18, 19, 20]. In particular, it is the so-called quasi-
triangular Hopf algebras as defined by Drinfeld [6] that have received most attention
since they admit a canonical element known as the universal (that is, representation-
independent) i?-matrix which automatically provides a solution to the Yang-Baxter
equation.

The representation theory of such algebras plays an indispensable role in applica-
tions: in particular a representation of the Braid group, and corresponding link poly-
nomial, can be obtained corresponding to each finite dimensional irreducible represen-
tation of a quasi-triangular Hopf algebra. Important examples of quasi-triangular Hopf
algebras are afforded by quantum groups [6, 11] which are obtained by deforming the
universal enveloping algebra of a simple Lie algebra through the introduction of a non-
zero deformation parameter q. The representation theory and applications of quantum
groups have been extensively investigated recently [6, 7, 8, 11]. However other families
of quasi-triangular Hopf algebras have received comparitively little attention although
they may be just as important both in physical applications and from the mathematical
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276 M.D. Gould [2]

view point of affording new examples of non-commutative and non-cocommutative Hopf
algebras.

Through the quantum double construction of Drinfeld [6, 9] one may construct
(under certain mild conditions) a quasi-triangular Hopf algebra from any Hopf algebra
and its dual. In this series of two papers we are concerned with the important special
case of quantum double algebras, denoted D(G), arising from the group algebra of a
finite group G. Below all such algebras are shown to be semi-simple and their character
theory is developed along traditional lines [5, 10]. The latter plays an important role
in decomposing tensor product representations and is indispensable for obtaining link
polynomials, as will be seen in the second paper of the series.

As well all irreducible -D(G)-modules are classified. In fact it is shown that rep-
resentations of a finite group G, induced from an irreducible representation of the
centraliser subgroup of an element g € G, gives rise to an irreducible module of the
quantum double: moreover all irreducible Z^G^-modules are obtained in this way. The
corresponding matrix representations are determined and applied to obtain an explicit
formula for the iE-matrix in any irreducible representation.

These results will be applied, in the second paper of the series, to obtain new
representations of the Braid group and corresponding link polynomials. Representations
of the Braid group constructed in this way are always unitary, unlike those arising from
quantum groups. It appears therefore that quantum double group algebras are to play
an important role in obtaining unitary representations of the Braid group.

The paper is set up as follows. In Section 2 we outline Drinfeld's quantum double
construction. The special case arising from a finite group algebra is investigated in
detail in Section 3. In Section 4 an orthogonality relation for matrix elements is derived
and applied in Section 5 to develop a complete theory of characters. In Section 6 all
irreducible Z)(G)-modules are classified and these results are applied in Section 7 to the
explicit construction of il-matrices.

2. QUASI-TRIANGULAR HOPF ALGEBRAS AND THE DOUBLE CONSTRUCTION

Let A be a Hopf algebra with identity 1 £ A, co-unit e: A —» C, coproduct

A: A —* A ® A and bijective antipode S: A —> A. Following the notation of Sweedler

[16] we write

(1) A(o) = 2joll)®ol2). aeA.

More generally we define

A, = A, An =
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[3] Quantum double group algebras 277

with I: A —> A the identity map, and write

(2) An(a) = Y,a(1) ® °(2) ® a(n+1)-
(a)

With this notation the counit and antipode properties are expressible

(a) (a)

(») (a)

respectively. Recall [16] that 5 determines an algebra anti-automorphism S: A —> A.

Let T: .4. <g> .4. —> .4 <g> .A be the twist map defined by

T(o ® 6) = 6 ® o, Vo, 6 £ A.

Then .4. also constitutes a Hopf algebra under the opposite coproduct A T = T • A with
antipode S~l and counit e. In the case that AT = A we call A cocommutative: recall
[16] that if A is commutative or cocommutative then S2 = / , the identity map on A.
Following Drinfeld [6] we have the following:

DEFINITION 2.1: A Hopf algebra A is called quasi-triangular if there exists an
invertible element

R =

satisfying AT(a)R - RA(a), Va £ A

and ( A ® / ) i E = il12i?23, (I ® A)R = R13R12

where #12 = ^ a; <g> 6; ® 1, #13 = ^ a< (S» 1 ® 6; et cetera

A direct consequence of this definition is that the canonical element R, called the
universal iZ-matrix, satisfies the Yang-Baxter equation

(3) R12R13R23 = R23R13R12

in A ® A ® A. Thus corresponding to each irreducible .A-module V, we obtain a
solution to the Yang-Baxter equation on V <8> V ® V, of importance in the theory of
exactly solvable models in statistical mechanics [3] and knot theory [1, 18, 19, 20]. It
is important to note that in order to obtain non-trivial iZ-matrices, it is necessary that
A be non-commutative and non-cocommutative.
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278 M.D. Gould [4]

A large class of such algebras is afforded by the quantum double construction
of Drinfeld [6, 9] whereby a quasi-triangular Hopf algebra is manufactured from any
Hopf algebra A and its dual A*. Hence we now say something about the dual of
a Hopf algebra and the double construction. Throughout, given a vector space V,
( , ) : V* <g> V —> C denotes the natural bilinear form defined by

(f,v)=f(v), Vfev*,vev.

We assume that

A0 = {a* G A* | kera* contains a cofinite two sided ideal of A}

is dense in A* ; that is, the subspace A0 satisfies [16]

(A0^ = {a£A\ {b*, a) = 0, V6* G ^ ° } = (0)

in which case A is called a proper algebra: note that every finite dimensional Hopf
algebra is proper since, in such a case, A* = A0. Following Sweedler [16] we have

THEOREM 2 . 1 . .4° becomes a Hopf algebra with multiplication m°, unit u°,
coproduct A 0 , antipode S° and counit £° defined respectively by

(4)
A0® A0 u"=e* , A0 = m*

5° =5* e°(a- ) - (aM), Va' G A0

A0 '
where m: A® A —> A is the multiplication map on A and m*, A*, e*, S* are the
natural dual maps of m, A, e, S respectively.

We note that the identity element of A0 is given by the counit e of A. It is crucial
to the double construction that we take the opposite Hopf algebra structure on A0,
with coproduct A<> = (A0) and antipode So = (5°) given explicitly by

(A0(O,6®c) = <aV6)
(So(a'), b) = (a*, S~l{b)), Va* G A\ b, c G A

respectively, while the multiplication, unit and counit remain the same. For uniformity
of notation we set

u0 = u°, mo=m0, eo=e°.

Then A <g> A0, A0 <g) A inherit Hopf algebra structures from those of A and A0

in a natural way: for example the coproducts A, A' on A (8) A0, A0 ® A are defined
respectively by

A = (/ ® r ® 7)(A ® Ao), A' = (/ ® r"1 ® /)(A0 ® A)
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where r: A® A* —> .A0 ® A is the twist isomorphism defined by

and where, for ease of notation, / denotes the identity map on both A and A0.
The quantum double construction affords a method of imbedding A and A0 in

a quasi-triangular Hopf algebra, denoted D{A), which is vector space isomorphic to
A ® A0 but with a different algebra structure. Explicitly we let D{A) be the vector
space spanned by all free products

ab\ a€A,b*eA*

which becomes an algebra by defining all products 6*0, a £ A, b* £ A*, according to
the rule

b*a - fj,(b* ® a)

where fi: A0 ® A —* D(A) is denned to be the composite map

(tr®/®2)(S0®J®3)A( ( )

A0 ® A - —> A°®A^—*A®A° —> A®A°^> D(A).

Here tr: A0 <g> A -» C is defined by

tr(a*®b) = (a*, b)

and A® A0 —» D(A) is the natural bijection, a®b* 1—> ab* . In the notation of equation
(2) we have explicitly, [9]

(6) b*a=

With this construction D(A) becomes a Hopf algebra under the naturally inherited
coproduct A, counit e and antipode 5 given respectively by [6, 9]

A(o6*) = A(a)A0(6*) = ^ a(1)&*(1) ® o(2)6*(2)

5(o6*) = fi(S0(b*) ® S{a)) = S0(b*)S{a), Va G A, b* € A*.

Moreover if {a*} denotes a basis for A0 with corresponding dual basis {a,} for A
defined by

{a*, at) = S.t,
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then it is easily checked [9] that

(7) R = JT a. ® o; G D(A) ® D{A)
m

has inverse RT1 = (S® I)R

and satisfies the conditions of Definition 2.1. Thus we arrive at [6, 9]

THEOREM 2 . 2 . D(A) with canonical element R constitutes a quasi-triangular
Hopf-algebra, called the quantum double of A.

We remark that here and below we regard A and A0 as naturally imbedded in
D(A) by identifying 1 • o* and b • e with a*, b respectively, for all o* G A*, b G A.

Important examples of such quantum double algebras are afforded by quantum
groups [6, 7, 11] which have been extensively studied recently. Below we apply the
double construction to the case A is the group algebra of a finite group which, in turn,
we use to construct some link polynomials. We shall need the following generalisation
of Maschke's theorem due to Sweedler [16]:

THEOREM 2 . 3 . A Unite dimensional Hop! algebra A is semi-simple (as an alge-
bra) if and only if there exists a left integral x G A, where x G A is called a left integral
provided e(x) ^ 0 and

ax = e{a)x, Va G A.

We conclude with some general remarks about the representation theory of a Hopf
algebra A. First we note that the counit e itself gives rise to a representation of A,
herein referred to as the identity representation. If V, W are j4-modules then obviously
V <g> W becomes an -A-module under the action determined by the coproduct A .

Given any finite dimensional .A-module V, V* becomes an A-module, called the
dual of V, with the definition [14]

(8) (af, v) = ( / , S(a)v), Va G A, v G V, f G V*.

If W is another finite dimensional .A-module then Hom(V, W), the space of linear
maps of V to W, becomes an A-module with the definition [14]

( ) , Va G A, f G Hom(V, W),
(a)

where we have adopted the notation of equation (1). With these constructions we have
[14]:
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LEMMA 2 . 1 . The mapping (: V* ® W -> Horn (V, W), defined by

w)(v) = (/, v)w, Vfev*,wew,vev

determines an A-module isomorphism.

DEFINITION 2.2: Given any .A-module V, we call v € V an invariant if

av = e(a)v, Va G A.

If A admits a left integral x £ A, then clearly x determines an invariant if we
regard A as a module under the left regular representation. If V, W are A-modules
then the invariants of Hom(F, W) are precisely the .A-module homomorphisms [14].
We thus arrive at the following version of Schur's lemma:

LEMMA 2 . 2 . Let V, W be Unite dimensional irreducible A-modules. Then the
space of A-invariants of Hom(V, W) has dimension 1 wiien V and W are isomorphic
and otherwise it is trivial.

3. QUANTUM DOUBLE GROUP ALGEBRAS

Let A be the group algebra of a finite group G over the complex field C. Then A

becomes a co-commutative Hopf algebra with coproduct, antipode and counit respec-
tively defined by

A(<7) = <7®<7, S{g) = g-\ e{g) = 1, V j G C

which we extend linearly to all of A in an obvious way: throughout 1 denotes the
identity element of G and A.

Recall [5, 10] that given any irreducible .A-module V*, of dimension d\, we have

the group character defined by

where ir\ denotes the representation afforded by VA . Then the operators

(9) ^ j ^
1 1 g€G

form a basis for the centre C of A and give rise to an orthogonal set of idempotents
adding up to the identity:
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where the sum on A is over all non-isomorphic irreducible .A-modules.
From the Hopf algebra viewpoint, the counit e corresponds to the character Xt of

the identity representation, herein denoted irL. The corresponding central idempotent

constitutes a left integral in A from which it follows (Theorem 2.3) that A is a semi-
simple algebra. Explicitly the decomposition of A into simple two-sided ideals is given

by

Moreover A\ is the direct sum of d\ copies of the irreducible (left) .A-module V\ so
that

dimAx = d\

and hence
• *-* i \ ] ' " ^ n
I /Hf 1 X J*

x

where \G\ = dim A is the order of the group G.
We now turn our attention to the dual space A* = A0 which has a basis of elements

g*, g € G, defined by
(g*, h) = 6(g, h).

Then A* inherits the structure of a Hopf algebra from that of A: explicitly, from
equation (4), A* becomes an algebra with product

(11) _

~ 1*,k)(h*,k)k* = 6(g,h)h\ Vg,h€G

so that A* is simply the algebra generated by \G\ orthogonal idempotents. In particular
A* is a commutative algebra, as expected (since A is cocommutative).

To complete the Hopf algebra structure on A*, the coproduct Ao, antipode So
and counit Co are given, from equation (5), respectively by

(12) *€G h€G
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As noted previously, the identity on A* is given by the counit e on A which is express-
ible

gea

From equation (12) we have

A0(e) = e ® e , S0(e) = e, eo(e) = 1.

In view of equations (11, 12) 1* , 1 the identity element of G, satisfies

and thus qualifies as a left integral in A*. It follows immediately from Theorem 2.3
that:

THEOREM 3 . 1 . A* is a semi-simple algebra.

Since A* is commutative we thus obtain

COROLLARY . Every Unite dimensional A*-module is a direct sum of irreducible
one-dimensional modules.

REMARK. It is worth noting that with the above structure A is a quasi-triangular Hopf
algebra with trivial canonical element R = 1 ® 1. However A* is not quasi-triangular
unless G is an abelian group: in that case R= e ® e is the canonical element of A*.

Following the double construction, the quantum double of the group algebra A,
herein denoted D(G), is the \G\ -dimensional algebra spanned by all free products

gh*, g,heG

where, according to equation (6), the products h*g are to be computed as follows:

h'g = g i g ) *

Equivalently, D(G) may be regarded as spanned by all free products h*g, h, g G G,
where gh* is computed according to

gh* = (ghg-^'g.

Then, from Theorem 2.2, D(G) gives rise to a quasi-triangular Hopf algebra with
coproduct A, antipode S and counit e given respectively by

A(gh') = A(g)A0{h*) = £ ^i"1*)* ® gk*

( 1 3 ) S(gh*) = So(h*)S(g) = (h^g-1 = g

') = e(9)eo(h*) = 6(h, 1), Vff, h € G.
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The corresponding canonical element R is given, from equation (7), by

(14) «
sec

which can be shown directly to satisfy the Yang-Baxter equation (3).

As before we here regard A and A* as subalgebras of D(G) by identifying g • e

and 1 • g* with g, g* respectively, for all g £ G. We note that the antipode S satisfies

(15) S2 = / ,

/ the identity map on D(G), and that the identity element of D{G) is given by 1 • e
which we identify with 1 £ G.

Now let VA be a (finite dimensional) irreducible D(G)-module of dimension d[\]
and let TTA be the representation of D(G) afforded by VA . Then it follows immediately
that the matrix

R\ =

satisfies the Yang-Baxter equation (3) on VA ® VA ® VA • Thus in order to obtain in-

teresting new solutions of the Yang-Baxter equation and, in turn, to construct link

polynomials, it is necessary to determine explicitly the irreducible matrix representa-

tions of D(G), which we investigate below.

We note here that

(16) x = EX = VEt,

with Et as in equation (10), satisfies e(x) = 1 and

xh'g = h'gx = e(h*g)x, Vg,heG

so that, by linearity,

(17) xa = ax = e(o)a!, Va e D{G).

Thus x constitutes a left integral in D(G) from which it follows, in view of Theorem
(2.3), that

THEOREM 3 . 2 . D(G) is a semi-simple algebra.

This result implies that D(G) is a direct sum of simple two-sided ideals

(18)
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where D(G)A is the direct sum of d[A] copies of the irreducible (left) Z)(G)-module VA
and the sum on A is over all non-isomorphic irreducible D(G)-modules. In particular

dim£>(G)A=d[A]J

so that

(19) |G|2

It is worth noting, from equation (17), that the left integral x spans a one-
dimensional simple two sided ideal of D(G) which must therefore occur in the de-
composition (18). The two-sided ideal D(G)x — Cx also gives rise, as we have seen,
to an irreducible (left) Z)(G)-module whose corresponding representation is simply the
identity representation. In view of equation (17), x satisfies

x2 — e(x)x = x

and thus x determines a central primitive idempotent which projects onto the iden-
tity representation. Thus, following Definition 2.2, given any finite dimensional D(G)-
module V, xV is the subspace of invariants of V; namely.

xV = {v £ V I av = e(a)v, Va G D(G)}.

REMARK. The left integral x is of independent interest for constructing representations
of the Temperley-Lieb algebra [17] and hence for obtaining i2-matrices with a spectral
parameter. In fact given any irreducible self-dual _D(G)-module V = V\ we have the
canonical generator

T = d[A]A(x)eEndV®V

where

(20) S ( X ) = 1 ^
1 '

Then T gives rise to a representation of the Temperley-Lieb algebra on V®N according
to

«-l N-i-l

where / denotes the identity map on V. It can be shown that indeed the Ti satisfy

the following defining relations of the Temperley-Lieb algebra [17]

TiTi±1Ti = Ti
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where, for the case at hand, Q = <f[A]2. It is then possible to construct from T an
i2-matrix R(u), u a spectral parameter, which satisfies the parameter-dependent Yang-
Baxter equation of interest in exactly solvable models in statistical mechanics [4].

4. MATRIX ELEMENTS AND UNITARY MODULES

We call a finite dimensional D(G)-module V unitary if V can be equipped with
an inner product ( , ) such that for all g,h € G

(gh'v, w) = (v, h'g-'w), Vv,w e V.

Equivalently, if ir is the representation of D(G) afforded by V, then V is called unitary
if it can be equipped with an inner product such that

where f denotes Hermitian conjugate. We have

LEMMA 4 . 1 . Every finite dimensional D(G)-module is equivalent to a unitary

one.

PROOF: Let ( , ) be any inner product on a finite dimensional £)(G)-module V.
Then it is easily seen that ( , )0 on V defined by

(v, w)0 = ^2 (h*gv, h*gw), Vw, w £ V

determines an inner product with the required properties. U

We may therefore assume, without loss of generality, that all finite-dimensional
£>(G)-modules are unitary. It follows, from standard arguments, that every such mod-
ule is an orthogonal direct sum of irreducible submodules. In particular every finite
dimensional Z)(G)-module is completely reducible: this affords an alternative direct
proof of Theorem 3.2.

Throughout we let {«^} be a fixed orthonormal basis for the irreducible D(G)-
module V\ . Since V\ is assumed unitary, we have in this basis

where the over-bar denotes complex conjugation. From equation (8), the dual space
V£ also gives rise to an irreducible X)(G)-module, herein denoted V\* . We let {vf }
be the basis for V\* = V^ dual to {vf} so that

(vf,vt)=6ij.
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Then it is easily seen that {«**} defines an inner product on V\* with respect to which
this basis is orthonormal and VA* is unitary. The corresponding matrix representation
in this basis is given by

or

(21) 7rA.(a) =7 r A (5 (a ) ) \ Va G D{G)

where t denotes matrix transposition.

We now demonstrate that the above matrix elements satisfy certain orthogonality
relations. From Lemma 2.1 the D(G)-modules V^ ®VM and Hom(VA, Vj,) are isomor-
phic. On the other hand Lemma 2.2 implies that the space of invariants of Hom(VA, VM)
is (0) for A ^ fj, in which case the identity module cannot occur in V£ ® Vj,; that is,

(22) A(a;)^* ® v? = 0, Vi, j , when (* £ A.

In the case fi = A we have:

LEMMA 4 . 2 . T ie identity module occurs exactly once in V^ <g> VA and is spanned

by the vector

PROOF: Lemma 2.2 implies that the space of invariants of Hom(VA» V\) is one
dimensional so that the identity module occurs exactly once in V^ <gi VA . With vK as
above we have, in the notation of equation (1)

= E E 'A- («(1)) .*A (a(2)) kvf 9 vt Va € D(G).
ijk (a) } i(a)

Using equation (21) we thus obtain

On the other hand from the antipode property and equation (15) we have

= S(e(a)) =
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Substituting into equation (*) we arrive at

avK = e(a)vK, Va 6 D(G)

which is sufficient to prove the result. Q

In the notation above, we note that the vectors

vf ®vA-vA/d{\), l < » <

are orthogonal to the vector vA of Lemma 4.2 so that

(23) A(x)vA' ®v$ = ^LvA.

Using the explicit form for A(«), as determined by equation (20), together with equa-
tions (22, 23) above, we obtain the following orthogonality relation

THEOREM 4 . 1 .

l J

PROOF: Equations (22, 23) immediately imply the orthogonality relation

IGI
= —-S^SijSki.

9,h€G [ J

The result is then seen to follow from equation (21). D

Theorem 4.1 is clearly a generalisation of a well known [10] orthogonality relation
for the matrix elements of a finite group. We now apply this result to the characters of
D{G).

5. CHARACTERS

Following the usual definition for finite groups, we may now define the character
XA , corresponding to the irreducible D(G) module V\, by

XA(a)=trnA(a), Va € D(G)

where TTA is the representation afforded by V\. If Ad denotes the adjoint representation
[14] of D(G) defined by

( y Va,b G D(G)
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then it is easily verified that

xAAdaob) = e(a)xA(b), Va,b e D(G).

Now setting t = Jfe, I = j in Theorem 4.1 and summing we obtain the following
result, herein referred to as the first orthogonality relation for characters:

THEOREM 5 . 1 .

REMARKS. Our definition of character and Theorem 5.1 are a particular case of a far
more general theory due to Larson [13]. In the language of [13], equation (15) is
equivalent to the statement that D(G) is an involutary Hopf algebra. Below we extend
the theory of characters for the special case of the algebras D(G).

If we set t = k in Theorem 4.1 and sum, we obtain

£ X i f S
g,h€G

from which we deduce that the operator

(24) EA

is a projection operator onto irreducible modules V\ . Moreover the first orthogonality
relation guarantees that these projections are orthogonal:

Thus the E\ constitute the central primitive idempotents of the algebra D(G)
which therefore form a basis for the centre C of D(G) and yield the following resolution
of the identity:

The simple two-sided ideals occurring in the decomposition (18) are then given explicitly
by

D(G)A = EAD(G) = D(G)EA.

These results imply the following important property of the characters XA :
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LEMMA 5 . 1 .

XA{9~1^1*) = 0) unless g and h commute.

PROOF: Since E^ belongs to the centre of D(G) we have

= E
k,g€G

g€G

Equating coefficients of g we arrive at

Since the h* form an orthogonal set of idempotents, we must have XAG?" 1 ' 1 * )
 = ^i

unless h = ghg~1 as required. U

We are now in a position to determine a second orthogonality relation for charac-
ters. It is convenient to introduce the set

(25) Q = {gh* \g,heG with gh = hg}

the linear span of which, denoted Qc, is the centraliser of A* in D(G); that is,

Qc = {a e D{G) | fc'a - ah*, VA € G}.

We note that Q is stable under the adjoint action of G; namely

gQg'1 = Q.

It follows that we may partition Q into G-conjugacy classes, herein denoted

Qlt Q2, , QN- We observe that gh' G Q if and only if g~lh* G Q. If gh* G Qi

we denote by Q-± the conjugacy class of g'^h*: note that \Qi\ = \QI\- Throughout we

let qi G Qi be a fixed conjugacy class representative.

Associated with each conjugacy class Qi we have the central element

a-
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By construction, o-f centralises G and thus belongs to the centre C of D(G). Clearly
the <Ti are linearly independent; we claim they form a basis for C. To see this suppose

c = Y, a(9, h)gh* £ C, a{g, h) e C.

Since h*c = ch*, for all h £ G, we have

a(ff> ft) = 0, unless g and /i commute.

Hence c is a linear combination of elements from Q, so we may write

N

(26) c = J2 a{a)a = ]£ £ a(°)°> a M e C

o6Q i=l o€Q<

Also, since c £ C, we must have, for all g € G

(26') c = g-1cg = jrY,«{*)9-1*g
t=l o€Q,

t= l o€Q<

Comparing coefficients of a in equations (26, 26') it follows that

( 1 ) , V5 G G.

Thus a takes a constant value, a; say, on a given conjugacy class Qi so that

N N
c =

t=l

which is sufficient to prove the result.

On the other hand the centre C of D(G) is spanned by the central idempotents E\

which are in 1 — 1 correspondence with the non-isomorphic irreducible D(G)-modules.

We thus arrive at

THEOREM 5 . 2 . The number of non-isomorphic irreducible D(G)-modules equals
the number of G-equivalence classes of Q.

With the above notation the orthogonality relation of Theorem 5.1 may be ex-
pressed, in view of Lemma 5.1, as
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where we have used the fact that xA takes the same value on all elements of a conjugacy
class Qi. It follows that the N x N matrix (N = number of conjugacy classes of Q =
number of irreducible D(G)-modules)

f\O W 1^2

Uip = ( -j-^j-) Xu(9»)\\G\J "v

satisfies U*gU = I, the identity matrix

where g is the symmetric matrix

satisfying g2 = I. We must therefore have U~1 = U*g, from which we deduce UUt — g,

or

A x ' ' '

We thus arrive at the second orthogonality relation for characters:

THEOREM 5 . 3 .

In this way we obtain a complete theory of characters for the quantum double alge-
bras D(G), parallelling the well known theory [5, 10] of finite group characters. As for
the case of finite groups, characters are very useful for decomposing finite-dimensional
representations. In particular the problem of decomposing tensor product modules is
of importance for obtaining link polynomials, as will be seen in the second paper of the
series. Since D(G) is semi-simple, given any two irreducible Z)(G)-modules VA , Vji we
have the decomposition

V

where the sum is over all irreducible £>(G)-modules Vv with mv the multiplicity of Vv

in the tensor product module. Using standard arguments we arrive at

LEMMA 5 . 2 .

1 v ^ *

g,h,k€G

PROOF: We clearly have

1
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On the other hand using equation (24) together with the action of the coproduct A,
as given in equation (13), we may write

=

from which the result follows. D

We now turn to the problem of explicitly constructing matrix representations and
classifying all irreducible D(G)-modules.

6. CLASSIFICATION OF IRREDUCIBLE D(G) -MODULES

We recall that G may be partitioned into conjugacy classes

G=(jCk
jt=i

with C\ = {1} the conjugacy class of the identity 1 6 G. It is worth noting that the

set Q of equation (25) may be written

Q = (J Z(h)h*

where Z{h) - {g £ G \ gh = hg}

is the centraliser subgroup of h (E G. We note that

and ii h eCk, then [5]

(27) \Z(h)\ = \G\/\Ck\.

Throughout we let gk £ Ck (1 ^ Jfc ̂  n) be a fixed conjugacy class representative
and write Zk = Z{gk) for the centraliser subgroup of <7t: we denote the group algebra
of Zk by Ak • For s G Ck we choose a fixed T, £ G such that

for simplicity when s = gk we take T, = 1. Some of the properties of the T, are listed
below.
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LEMMA 6 . 1 .

(i) G = |J r,Zk (disjoint union).
,ect

(ii) Given g G G, s G Ck, there exists t £ Ck unique with the property

r^gr. E Zk ;

explicitly t = g s g~x.

PROOF: (i) Since, from equation (27),

\r.Zk\ = \Zk\ = \G\l\Ck\

it suffices to show that

TtZk n r , Z k = 0 , s ^ t

where 0 is the empty set. Suppose therefore that there exists h, h' G Zk such that

Tth = r.h' e TtZk D T.Zk.

Then T " 1 ^ = A'/i"1 G Z4

so that T~ 1tr. =T~1Ttgk(T~ 1Tt)~ - gk

which implies t — TtgkT^1 = s.

This is sufficient to prove (i).

As to (ii), given g G G, s G Ck there exists, from part(i), a unique t G Ck with the

property

gr, G Tt̂ A, or r^gr, G Z*.

It remains to show that t = g s g~Y. To this end write

h = T-1gT. eZk.

Then 9 sg-1 - g(r3 gi^r'^g'1

1^1 - rtgk T^1 = t

as required. U

In dealing with irreducible representations of D(G) a fundamental role is played

by the representations of G induced from those of the centraliser subgroups Zk. Hence

let Vjj denote an irreducible Afc-module. Then we have the corresponding induced

i4-module [5]

(28) Vk<a = A ®Ak Va*
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which is spanned by vectors

(29) v{s) = r,®v, ve V£, seCk

so that dim VJb|Q = \Ck\ .dim V£, on which the action of G is given by

g{r. ®v)= Tg.g-i

or

(30) gv(s) = (r-l^gT.

Using Lemma 6.1 it is easily checked that this gives rise to a consistent j4.-module
structure as required.

The induced module (28) admits a vector space direct sum decomposition

Vk,a = 0 Vk,a(s)
,€Ck

where
Vk,a(s) = {v(s) | v G VQ*}.

This latter space gives rise to an irreducible module over (the group algebra of ) Z(s) =
TfZkT^1: in the case s — gk, so that Z{a) = Zjt, this module is isomorphic to Vj\
It is worth noting, from equation (30), that gVkia(s), g £ G, determines a non-zero
Z{gsg-1)-submodule of Vjt,a(<7•sfl~1) from which it follows, in view of irreducibility,
that

(31) gVk,a(s) = Vkta(gsg-1).

We now turn Viia into a £>(G)-module by setting

(30') h*v(s) = 6{h, s)v{s), VheG.

With the definition of equations(30, 30') it is easily seen that Vk,a in fact becomes a
.D(G)-module. Throughout we denote the dimension of this module by <f[A;a]: clearly,
by construction

(32) d[k,a] = \Ck\d
k
a

where d* = dimV^. With the action of equation (30'), we note that

geck

acts as the identity on VJt]Q; that is, c*kw = w, for all w £ Vk<a. We are now in a
position to prove
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THEOREM 6 . 1 . Vk>a is an irreducible D{G)-module.

PROOF: Let w / 0 be an arbitrary vector in Vki(x: we show that the (left) D(G)-
module D{G)w generated by w must equal Vk<a • Since c\w — w there must exist
s 6 Ck such that s*w ^ 0. Then we may write

0 ^ s*w = v(s)

where v(s) is a non-zero vector in VfclQ(a). Since the latter is an irreducible module
over the group algebra A(s) of Z(s) we must have

Vk,a(s) = A(s)v(a) C D(G)w.

Also from equation (31) we have, for all g g G

gVk<a{s) = Vk^gsg-1) C D(G)w

from which it follows that

Vk,a = ® Vk<a(s) C D{G)w
.€Ck

and hence D(G)w = Vk<a. Since 0 ^ w £ F*ia was chosen arbitrarily, Vk<a must be an
irreducible Z)(G)-module. D

Below we shall show that every irreducible D(G)-module is of the above form. We
first need (notation as above).

THEOREM 6 . 2 . The irreducible D(G)-modules VktC,, Vitp are isomorphic if and
only if k = I and the Ak-modules V*, V^, are isomorphic.

PROOF: Suppose we have a J9((?)-module isomorphism

Then for 0 ^ v(s) G Vjfe,a(a), s G Ck

we have 0 ^ t(v(s)) = ({s*v(s))

which can only occur if s £ Cj in which case k — £. We then have

and, in particular, when s = gk
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Then £ gives rise to an .Afc-module homomorphism, and hence isomorphism, £o : Va —>
V£, defined by

This shows that if Vjfc)a = Vitp then k = I and the j4*-modules Vjf, Vp are isomorphic.

Conversely suppose we have an .Afc-module isomorphism £o: V£ —> V]j. Then £o

extends to a £)(G)-module isomorphism £: Vk,a —> Vk,p given by

which is sufficient to prove the result. D

We are now in a position to show that the Vk,a exhaust all irreducible D{G)-
modules as A: runs through the conjugacy classes of G and a through the non-
isomorphic irreducible .Ajt-modules.

THEOREM 6 . 3 . Every irreducible D(G)-moduleis isomorphic to one of the Vjt,a .

PROOF: Using a simple counting argument we have, in the notation of equation

(32),

where the sum on fc is over the conjugacy classes of G and the sum on a is over the
non-isomorphic irreducible .Afc-modules. Since Zk is a finite group we have, in view of
equation (27),

Substituting into equation (*) we arrive at

= \G\2.

By comparison with equation (19), it follows that the Vk,a must exhaust all irreducible
£>(G)-modules. D

7. REPRESENTATIONS AND /^-MATRICES

Here we clarify the construction of the previous section by explicitly determining
the irreducible matrix representations of D(G): throughout we adopt the notation
of Section 6. We let nk,a be the representation of D(G) afforded by VJtiQ and we
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let {vi} be a fixed orthonormal basis for the irreducible .Ai-module V^ with 7r* the
representation of Ak afforded by V£. In view of equation (29) the vectors

(33) v(s)i=T,®vi, seCk

form a basis for the irreducible Z?(G)-module VJt)a-

According to equations (30, 30') the action of D(G) in the basis (33) is given by

g*v{s)i = 6{g, s)v(a)i

gv(s)i = 7T* [ T ^ S T T ] ^(gag-1)'

where here and below the summation convention over repeated indices is assumed. We
thereby arrive at the following construction for the matrix representation irk,a in the
basis (33):

so that

(34) T * > ,

for 1 ̂  t, j ' ^ d* , s,t E Ck- It is easily checked that if we take the basis (33) to be
orthonormal; that is,

thus defining an inner product on Vi)Q, then the above representation is unitary, pro-
vided 7r* is assumed unitary for Zk, in agreement with Lemma 4.1.

It follows from equation (34) that the irreducible matrix representations of D(G)

can be determined from those of the centraliser subgroups Zk together with a knowledge
of the conjugacy classes Ck • In particular we note that i^k,a when restricted to G C
D(G), coincides with the representation of G induced from 7r* .

As to the corresponding characters, herein denoted Xk,a, we have directly from
equation (34) that

(35a) X*.«(flf**)=O, »iCh

otherwise

(35 0 Xk,a(9s*) = S(s,gsg-1)X
k
a(

Tr19-r.)

where Xa denotes the character of the Ak -module V^. Thus the characters of the
irreducible Z)(G)-modules may be determined explicitly from those of the centraliser
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subgroups Zk • We note from equation (35 j,) that Xk,a {9s*) vanishes unless g and s
commute, in agreement with Lemma 5.1.

In the special case that a = LQ, corresponding to be identity representation of Zk,

the matrix representation (34) reduces to

(36) *kM(gh*)tt = 6{h, s)6(t, gsg-1),

s,t£Ck, and the corresponding module Vjtlto has dimension

d[k,L0] = \Ck\.

In this case the character is given simply by

(37) XkM{g» ) = < .
[ 0, otherwise.

Given a fixed, but arbitrary, irreducible D(G)-module V — VJtiQ, we have seen

from Section 2 that the iZ-matrix

(38B) R = J2
g€G

Yl nk,a(s)®7rk,a(
s*),€Ck

satisfies the Yang-Baxter equation (3) on V ® V (8) V and has inverse

(38*) R-1 = Y, T ^ * " 1 ) »**,«(«*)
,€Ck

as may be verified directly. We are now in a position to determine the .R-matrices (38)

explicitly. We work in the orthonormal basis (33) and we let E"t (l ^ i, j ^ <f£, s, t € C*

denote the corresponding elementary matrix with a 1 in the (is, jt) position and zeros

elsewhere.

In terms of elementary matrices we have the expansions

Us*) = XX9'

which follows directly from equation (34). Substituting into equations (38) we arrive at

R= E *£fa.1-i"OiX
fta~1®^

(39)

c
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Under the assumption that 7Tjfcia is unitary, note that R~* = R*; that is, R is a unitary
matrix.

In the special case that a = LQ , corresponding to the identity representation of Z^,
equations (39) reduce simply to the \Ck\ x |C*| matrices given by

(40)
1 £ EI u ® E;

which enables families of .R-matrices to be constructed corresponding to each conjugacy
class of any finite group. It may be checked directly that the il-matrices (39, 40) indeed
satisfy the Yang-Baxter equation (3) as required.

In the next paper of the series we shall consider some explicit examples of the R-
matrices (39, 40) and use these to construct unitary representations of the Braid group
and correpsonding link polynomials.

N O T E Added in Prepara t ion .

After completion of this paper, independent research of Lusztig [15] was brought

to my attention. This reference in particular develops the character and representation

theory of quantum double group algebras, along somewhat different lines.
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