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Abstract

We study Banach-Mazur compacta Q(n), that is, the sets of all isometry classes of n-dimensional Banach
spaces topologized by the Banach-Mazur metric. Our main result is that ¢(2) is homeomorphic to the
compactification of a Hilbert cube manifold by a point, for we prove that Qg (2) = Q(2) \ {Eucl.} isa
Hilbert cube manifold. As a corollary it follows that Q(2) is not homogeneous.
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1. Introduction

This paper studies topological properties of Banach-Mazur compacta Q(n), that is,
the sets of all isometry classes of n-dimensional Banach spaces topologized by the
Banach-Mazur metric. Recently, substantial progress was made concerning these
spaces. It was proved in [14] that Q(2) is an absolute extensor (defined below). Later
this result was generalized to all n > 2 (see [5]). The long-standing problem about
topological equivalence of Q(n) and the Hilbert cube /> was finally solved negatively
for n = 2 in [4].

THEOREM 1.1. Q(2) and I* are not homeomorphic.

For any space X to be homeomorphic to the Hilbert cube /°, the following neces-
sary conditions must be satisfied for every pointx € X:
(a) X \ {x} must be homotopically trivial; and
(b) X \ {x} must be a Hilbert cube manifold.
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The key idea of the proof of Theorem 1.1 was to show that Q(2) fails to possess the
property (a) at the Euclidean point {Eucl.}, which corresponds to the isometry class
of the Euclidean space. On the other hand, the main result of this paper, Theorem 1.2
stated below, implies that the complement Q(2) \ {x} of every other point x € Q(2)
turns out to be homotopically trivial. Furthermore, Theorem 1.2 demonstrates that as
far as the property (b) is concerned, everything turns out to be exactly the opposite:
Q) \ {Eucl.} is a Hilbert cube manifold, while the complement Q(2) \ {x} of every
other point x € Q(2) is not.

THEOREM 1.2. Q(2) = Q(2) \ {Eucl.} is a Hilbert cube manifold.

As a corollary we prove that Q(2) is not homogeneous (recall that a space X is said
to be homogeneous if for every pair of points x;, x, € X there exists a homeomorphism
h: X — X suchthat h(x,) = x,).

COROLLARY 1.3. Q(2) is not a homogeneous space.

PROOF OF COROLLARY 1.3. By [4], {Eucl.} is not a Z-set in Q(2). On the other
hand, it follows by our Theorem 1.2 above that for every point x € Q(2) \ {Eucl.}, {x}
isa Z-setin Q(2) \ {Eucl.}, hence also a Z-setin Q(2). Therefore (Q(2), {Eucl.}) #
(Q(2), {x}). o

2. Preliminaries

We identify the set BAN(n) of all n-dimensional Banach spaces with the set of all
norms in R”. The Banach-Mazur distance p (X, Y) between spaces X = {R”, | - |Ix}
and Y = {R", || - |[y} € BAN(n) is defined as follows:

p(X, Yy =inf {|T|-|T~"} | T : X — Y is an isomorphism},

where || T|, || T~!|| are norms of the operators Tand T~!, respectively. Itis well-known
that for every X, Y, Z € BAN(n), the following properties hold:

(1) p(X,Z) < p(X, Y)p(Y, Z);

2 pX,Y)=p({,X)>1;and

(3) p(X,Y) =1if and only if X and Y are isometric, X = Y, that is, there exists
an isomorphism 7 : X — Y which preserves the norm |x ||y = ||T(x)|y for every
x €X.

It follows that the function In p(X, Y) is a pseudometric on the space BAN(n),
which in the decomposition space Q(n) =BAN (n)/= becomes the metric d([X], [Y])
=Inp(X,Y), where

XZY &= pX,)=1 & Inp(X,Y)=0.
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The resulting metric space (Q(n), d) of all isometry classes of n-dimensional Banach
spaces is called the Banach-Mazur compactum.

This compactum allows for a different, more suitable presentation as a decompo-
sition of the space C(n) of all compact convex symmetric (rel 0) bodies in R". If one
measures the distance between subsets of R* by the Hausdorff metric o4 (A, B) and
defines the linear combination ) ;_, A;A; by means of the Minkowski operation, then
(C(n), py) becomes a locally compact convex space.

Moreover, C(n) can be equipped with an action of the general linear group GL(n) x
C(n) > C(n),givenby T-V = T(V),where T : R* - R" € GL.(n) and V € C(n),
which agrees with the convex structure on C(n). We show that the orbit space
C(n)/ GL(n) is naturally homeomorphic to the Banach-Mazur compactum.

Indeed, for an arbitrary body V € C(n), the Minkowski functional py(x) =
inf{r=! | tx € V} defines a norm on R” and consequently, induces a continuous
bijection M : C(n) — BAN(n) defined by M(V) = (R", py). Since it is well-known
that Banach spaces M (V) and M (W) are isomorphic if and only if V = T - W for
some T € GL(n), it follows that M induces a continuous bijection of the quotient
spaces

M : C(n)/ GL(n) > Q(n) = BAN(n)/ =,

which is a homeomorphism.

Hereafter, we shall consider only locally compact Lie groups (for example GL(n)),
metric spaces and continuous maps, unless otherwise specified. An action of G on
a space X is a homeomorphism 7 : G — AutX of the group G into the group
Aut X of all autohomeomorphisms of X such that the map G x X — X, given by
(g.x) = T(g)(x) = gx,is continuous. A space X with a fixed action of G is called
a G-space.

For any point x € X, the isotropy subgroup of x, or the stabilizer of x, is defined
as G, = {g € G | gx = x}, and the orbit of x as G(x) = {gx | g € G}. The
space of all orbits is denoted by X /G and the natural map = : X — X/G, given by
7 (x) = G(x), is called the orbit projection. The orbit space X/ G is equipped with
the quotient topology, induced by 7.

Actions of noncompact groups G do not agree very well with the orbit structure of
X: the orbit of a point x can be dense in X, the orbit space X/ G can be non-Hausdorff,
two orbits with the same stabilizer can be nonhomeomorphic, efc. Palais [22] singled
out a class of G-spaces with the action of a locally compact group which do not have
such deficiencies—he called such spaces proper.

DEFINITION 2.1. (a) Given subsets A, B C X consider the following subset of
the group G:

((A,B)) ={g € G|lgANB # B}
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Then A is said to be thin with respect to B, if ((A, B)) is precompact, that is, it lies
in a compact subset of G. Since ((A, B)) = ((B, A))"!, it follows that B is also thin
with respectto A.

(b) A C X is said to be small if for every point x € X, there exists a neighbourhood
O(x) C X of x, which is thin with respectto A.

(c) A G-space X is said to be proper if it possesses a basis, consisting of small
neighbourhoods.

In general, the orbit projection 7 : X — X/ G of a proper G-space X fails to be
a closed map. This forces us to seek those closed subsets F C X of X for which the
restriction w{r : F — X/ G is closed.

DEFINITION 2.2. A closed subset F C Z of a G-space Z is said to be fundamental
if F is small in Z and intersects every orbit, that is, F N G(z) # B foreveryz € Z.

PROPOSITION 2.3. Suppose that a G-space Z is proper and that the orbit space
Z/G is metrizable. Then
(d) there exists a fundamental subset F C Z; and
(e) for every fundamental subset F C Z, the restriction |l : F — Z/G is a
proper map.

DEFINITION 2.4. An exact slice at the'point x € X isa G-map ¢ : U - G(x) of
some G-neighbourhood U C X (thatis, G - U = U) of the orbit G(x), such that
@(x) = x. The preimage ¢~'(x) of the point x is also called a slice or a G,-kernel.

The principal results concerning slices belong to Abels [1] and Palais [22].

THEOREM 2.5 (Palais). A proper completely regular G-space X has a slice at every
point x.

THEOREM 2.6 (Abels). Let X be a proper G-space with a paracompact orbit space
and K a maximal compact subgroup of G. Then there existsa G-map f : X — G/K
(a so-called global K -slice). Conversely, if there exists a global K -slice, then X is a
proper G-space.

In the sequel, we shall work in the class ¢ of all metric proper G-spaces, whose
orbit space is also metric. The following properties of the class ¢ are well known
(see [22]).

PROPOSITION 2.7. Let X € 4 and let Y be a separable metric G-space. Then the
Jollowing properties hold:

https://doi.org/10.1017/51446788700002494 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002494

320 Sergei M. Ageev and Dusan Repovs [5]

(f) The orbit G(x) is closed in X, the stabilizer G, is compact and the natural map
G/ G, = G(x), given by g - G, — gx, is a homeomorphism.

(8) X can be equipped with an invariant metric, that is, d(gx, gx') = d(x, x"), for
everyge GandX xYe¥%.

(h) G/L € Y9, for every compact subgroup L < G.

Next, we introduce several notions connected with the property of absolute extend-
ability of maps. A space X is called an absolute neighbourhood extensor, X € ANE,
if every map ¢ : A — X, defined on a closed subset A C Z of a metric space Z,
and called a partial map, can be extended over some neighbourhood U C Z of A,
¢ : U— X, ¢la = ¢. If we can always take U = Z, then X is called an absolute
extensor, X € AE. We note that in the case when X is a metric space, the concepts
of the absolute (neighbourhood) retract and the absolute (neighbourhood) extensor
coincide.

If X € A[N]E, Z is a G-space from the class ¢ and ¢ is a G-map (which in this case
means that ¢ is constant along every orbit), then the extension ¢ can also be chosen
to be a G-map. This follows from the closedness of A/G in Z/G (which, in turn
follows by the closedness of A in Z). In connection with this example we introduce
some more general concepts.

DEFINITION 2.8. A G-space X is called an equivariant absolute neighbourhood
extensor, X € G-ANE, if every partial G-map Z <> A 5 X, where Z is a G-space
from the class ¢, can be extended to a G-map ¢ : U — X, defined on some G-
neighbourhood U C Z of A. If we can always take U = Z then X is called an
equivariant absolute extensor, X € G-AE.

DEFINITION 2.9. A G-space X is called an approximate G-A[N]E-space, X €
G-AA[N]E, if for every G-space Z from the class ¢, every fundamental subset F
of Z, and every covering w € cov(X), the following holds: For every partial G-map
Z <> A 5 X there is an ‘approximate’ G-extension ¢ : Z — X [respectively
¢ : U - X, where U C Z is a G-neighbourhood of A] such that the restrictions
@lanr and @|anr are w-close, that is, (¢|any, Planr) <  (see [13]).

3. Equivariant extensors for locally compact Lie groups

For our purposes, the most important example of a proper GL(n)-space is the space
C(n) of all convex bodies.

TROPOSTON B\ For every n, Cin) is a proper GLAn)-space.
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PROOF. It suffices to prove that the following closed set
C(r,R)={V e C(n) | B"(r) C VC B"(R)},

where B"(a) denotes the closed ball with center at 0 and of radius a, is thin for every
0 < r < R < o0, that is, that the set

Z = ({(C(r,R),C(r,R)) ={g e GL(n) | gC(r, R)NC(r, R) # 9}

is precompact.

Suppose not. Then for some sequence g, = || &ii | € # and some indices (ig, jo),
one of following cases occur

(@) gi;, — 00;0r

(B) detligill — O.
Suppose that g, V, € C(r, R) for some V, € C(r, R). Since the point A, for which
only the jo-th coordinate is equal to r, while all others are 0, lies in V,, it follows that
g:A € B"(R). But the iy-th coordinate of g,A is equal to g;; r and g, does not
converge to 00. On the other hand,

0 < vol B"(r) < vol(g, V,)
and
vol(g, V,) = det||g; | vol V,, < det||gj; [l vol B"(R).
Therefore, det || g7 || does not converge to O. O

The orthogonal group O(n) is a maximal compact subgroup of GL(n). By Theo-
rem 2.6 there exists a global O(n)-slice f : C(n) — GL(n)/ O(n).

PROPOSITION 3.2. Let X be a proper G-ANE-space. Then

(y) Forevery G-neighbourhood U of the orbit G(x), there exist a G-neighbourhood
Vand a G-map H : V x [0,1] — U such that Hy = Id, Im(H,) C G(x), and
Hlgwy =Id forallt € I.

PROOF. Consider in the proper G-space X x [0, 1] the partial G-map
Xx[0,1] <X x{0JUGK)x[0,1]JUl, x {1} 3> X

such that ¢|x . 0; = Id, @l Geyxi0.1) = Id, and @| 4, «y; is the existing retraction (provided
by Theorem 2.6) r : U; — G(x) of some G-neighbourhood U; C U.

Let ¢ : W — X be any extension of ¢ onto the G-neighbourhood W, which
contains a G-neighbourhood of the type V x I O G(x). We get the desired map H
by restricting ¢ onto V x I. O
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The following theorem of Abels [2, 4.4] allows us to reduce the studying of non-
compact group actions to compact ones.

THEOREM 3.3. For every X € 4, X € G-A[N]E if and only if X € L-A[N]E for
every compact subgroup L < G.

THEOREM 3.4. For every n, C(n) is a GL(n)-AE space.

By Theorem 3.3, C(n) € GL(n)-AE if and only if C(n) € L-AE, for every compact
subgroup L < GL(n). Another theorem of Abels [2, 4.2] asserts that every locally
convex complete topological vector G-space is G-AE, for every compact group G.
Let us apply the argument from this paper to prove that C(n) € L-AE.

Since C(n) is convex (with respect to the Minkowski linear combination of convex
bodies), Dugunji’s theorem implies that C(n) € AE. Therefore every partial L-map

APRY N C(n) can be continuously extended over Z, F : Z — C(n). Now define
F(z) = _/Lg“ - F(gz)apu,
where 3y is the normalized Haar measure and [, means the integral of the set-valued
mapping [9]:
®,: L~ R, d(g) =g F(gz) CR".

On account of the continuous dependence ¢,(g) on z and g, the convexity and the
closeness of its images, F is a continuous map with closed convex values [9]. It is
easy to see that F is an L-map from Z into C(n) andthat F | A = f. O

Let (X, d) be a metric G-space of diameter 1 from 4. Then we can introduce a
metric on the cone Con X = X x [0, 1]/X x {0} as follows:

2 —d*(x,x")

p((x, 0, ) = \/t2 + ()2 — 2tt' cosy, where cosy = 2

It is easy to see that (Con X, p) is a metric G-space (the group G acts along X) and
the natural embedding X +» X x {1} — Con X is an isometry, while Con X is not a
proper space.

PROPOSITION 3.5. If a metric G-space X is a G-ANE space, then Con X is a G-AE
space.

PROOF. Suppose that a proper G-space Z € ¢ and a partial G-map Z < A 5
Con X are given. Let Aq = ¢~ '(¥) C A, where (%) is the vertex of Con X. Then
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for every a € A \ Ay, ¢(a) can be represented in the form (¢, (a), ¢,(a)), where
@ - A\Ap — X isacontinuous G-map and ¢, : A — [0, 1] is a continuous function,
constant on the orbits and such that ¢,(A \ A¢) C (0, 1] and ¢,(A) = 0.

Since X € G-ANE, the map ¢,(a) canbe extendedto aG-map ¢ : U — X, defined
on an open subset U of Z/G, Z\ Ay D U D A\ Ap. Since the orbit space Z/G
is metrizable, there exists a continuous function £ : Z — [0, 1], constant on orbits,
such that £|, = ¢, and &|z y = 0 by the Urysohn theorem. The desired extension
¢ : Z — Con X of the G-map ¢ is then defined by the formula:

o= ¥ (2), () ze U
(*) z¢ U |

PROPOSITION 3.6. Let H be a compact subgroup of the locally compact Lie group G.
Then G/H is a G-ANE-space.

PROOF. Every compact subgroup H < G smoothly acts on the differentiable man-
ifold G/H. By [21, 1.6.6], G € H-ANE. By Theorem 3.3, G € G-ANE. a

It is convenient to reduce the studying of the equivariant extensors to the cor-
responding easier problem for approximate equivariant extensors. For example, if
some class & of G-spaces is invariant under the product on the semiopen segment
J = [0, 1), then & is contained in the class G-A[N]E if and only if 4 is contained in
the class of the approximate G-A[N]E.

THEOREM 3.7. Suppose that the product X x J of a metric G-space X and J =
[0, 1) is a G-AANE-space. Then X is a G-ANE-space.

For the trivial group G this is a well-known fact, which follows from [12] and [18].

PROOF OF THEOREM 3.7. First, we consider any (not necessarily locally finite) cov-
ering w € cov(X x J) adjoining to the subset X x {1} of X x [0, 1]. The latter means
by definition that:

(8) For every neighbourhood U(x, 1) of the point (x, 1) € X x {1}in X x [0, 1],
there exists a smaller neighbourhood V(x, 1) suchthat W C U(x, 1), forevery W € w
suchthat WN V(x, 1) #@.

Let F be a fundamental set of Z (see Proposition 2.3). Then F x J is a fundamental
set of Z x J. After these preliminaries, we begin the extending of the partial G-map
Z < A5 X Recallthat X x J € G-AA[N]E and construct for the other partial
G-map

v=pxld,
_

ZxJ«—AxJ X xJ
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aGmap¥:ZxJ—>XxJ [respectively ¥ : U — X x J] such that

(‘pl(AnF)xlv W(mnn) < w.

We give all details of the proof only for the case when X x J € G-AAE. The
case when X x J € G-AANE is dealt with similarly. Extending ¢ over A x {1} by
the formula &(a, 1) = (¢(a), 1), we obtain a G-map (which we denote by the same
letter) ¥ : Z x JUA x[0, 1] — X x J, the restrictions of which onto the closed G-set
A x [0, 1] and the open G-set Z x J are continuous. Now we apply the following
lemma.

LEMMA 3.8. Suppose thata G-map f : HUE — Y is defined on the union H UE
of a closed G-space H € 94 and open G-subset E of a proper G-space T € 9, such
that f |y and f | g are continuous. Then there exists a closed G-subspace K C T such
that HC K C HUE, HNU C Int(K) and f |¢ is a continuous G-map.

Apply Lemma38forT=Z x[0,1, H=AX[0,1,E=Z xJand f = 1,5
We get a closed G-subset L of Z x [0, 1]suchthat A x[0,1]C L, A x[0,1) C IntL
and ¥|, is a continuous G-map.

Next, we construct a decreasing sequence L = U; D ClU, D --- of open G-
neighbourhoods of the set A and a monotone sequence of numbers0 =4 < < ---,
such thatlim;_, ., =1 and U, x [0, 4] C L.

Let & 1 Z — [0, 1] be a continuous real-valued function, constant on the orbits and
such that (U \ U,) = 0, §(U; \ U;1) C [, t;] forevery i > 2, and £(A) = 1.
Clearly, the graph GR = {(z,£(2)) | z € Z} of f lies in L and the restriction of v
onto GR is a continuous G-map. The desired extension is now given by the formula:

@(2) is the projection of ¥ (z, £(z)) € X x [0, 1] onto X.
Using diam W, — 0, W, € o, whenever dist((x, 1), W,) — 0 for some point

(x, 1) € X x {1}, it is easy to check the continuity of ¢. a

4. Orbit spaces of equivariant absolute extensors

This section is dedicated to a proof of the following result.

THEOREM 4.1. Let G be a locally compact Lie group and X a proper G-A[N]E
Jrom 9. Then the orbit space X / G is an absolute [neighbourhood) extensor.

Since C(n) is a proper GL(n)-space from ¢ which is an equivariant absolute
extensor, we obtain as an immediate corollary of Theorem 4.1 that for every closed
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subgroup H < GL(n), the orbit space C(n)/H belongs to the class of absolute
extensors.
We begin with the following embedding theorem.

PROPOSITION 4.2. Let X € 4. Then there exist a countable number of finite-
dimensional G-ANE-spaces R,,, (n,m € Z%), from the class 4, and a topological
G-embedding i : X — []7,, Con R, .

Let X be equipped by the invariant metric (see Proposition 2.7 (g)). For every point
x and every € > 0, we fix a G-map ¢, : X — Con(G(x)) satisfying the properties of
the following proposition.

PROPOSITION 4.3. Let X € 4. Then for every point x € X and every ¢ > 0, there
exists a G-map ¢ : X — Con(G(x)) with ¢(x) = x, such that
(5) diamg~'((V -x) x (0, 1]) < &, for some neighbourhood V of the stabilizer G,
in G.

PROOF. Let r : U(x) — G(x) be a G-retraction. We may assume that not only
does the G, -kernel r—! (x) have diameter less than ¢, but also diam(V -r~'(x)) < &, for
some neighbourhood V of the compact stabilizer G,. This is possible by Theorem 2.5
and the following lemma.

LEMMA 4.4. For every neighbourhood O(x) C X, there exists a smaller neigh-
bourhood O,(x) such that

6) G:Ncl{g | g0i(x)\ Ox) # 08} =, and
7 G - 0(x)Nri(x)c Ox).

The desired G-map of X is then given by the formula:

(r(x),§(x)) x' e Ukx);

o= {(*) *' ¢ U(x).

Here, the function £:X — [0, 1] is constant on orbits, £ (x)=1 and §(X \U(x))=0. [

Since by hypothesis X/G is metrizable, there exists a ¢-disjoint basis & =
{W,)em Of open subsets, such that # = | | B,, where &, = (W, ) emcm is 2
disjoint family and [ [, M, = M.

n=1 n

DEFINITION 4.5. A pairv=(u;, it,) € MxM of indices is said to be canonical, if

(8) W, € W, (thatis, W,, C W,,); and
there exist x € X and £ > O such that:
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9 xen'W, C Vi and U, C n~'W,,, where
Vee =95, (G, x (1/2,11) and U, = ¢ (G, x (0, 1)),
and 7 : X — X/G is the orbit projection.
We denote the set of all canonical pairsby K C M x M.

PROPOSITION 4.6. There exists a correspondence v € K —> (x,,¢,) € X x R*
such that (x,, £,) satisfies (9) and

(10) For every closed subset F C X and x &€ F there exists a canonical pair v € K
with @, (x) & ¢x.e,(F) (that is, ¢, ., separates the point x from the closed subset F).

PROOF. Let
i(v) = inf{e > O | (x, ¢) satisfies (9) for some point x € X}.

It is evident that i(v) > 0. Therefore, every v € K yields a pair (x,, £,) possessing
(9) and such that

(1D ¢, < 2i(v).
Let 4a = p(x, F). Since 4 is a basis, there exist v = (i, u,) € Kand¢ < a
such that
xen'W, c Vi, cU.Cn'W,,.

It follows from (11) that ¢, < 2a.
Let us prove that v is a desired pair. Suppose that a neighbourhood V of G,,
satisfies the hypotheses of Proposition 4.3:

diamg_} ((Vx,) x (0,1]) < ev < 2a.

Since x € V, ., it follows that ¢, ., (x) = (gx,. 1), t > 1/2.
Pick a neighbourhood W = gVg~! of e € G. Then

(px,s.,(x) € (W gxu) X (1/29 1]
and
A= (p;uiv(W -gx, x (1/2,1])

Come (8- Voxyx(1/2, 1) =g ;L (V-x, x (1/2,1)).

By the invariance of the metric, the latter set has diameter smaller than 2a, hence the
diameter of the open neighbourhood A of x is also less than 2a4. As a consequence, it
follows that A N F = @ and ¢, (x) ¢ ¢, . (F). a
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PROOF OF PROPOSITION 4.2. Let us introduce a countable family of spaces:
Run =[[{GG) 1V = (w1, 10) € K, 11 € By 12 € B}
Since G(x,) € G-ANE, R,,, is also a G-ANE. Since %, is a disjoint family and
Pre, l0\n-tw,,) = (¥) € Con(G(x,)),
we obtain that
Vnm : X — Con R, Vumlz-1w,, = Oxe,s Vamlx\un-1w,, = (%)

is a well-defined G-map. Since {v,,) separates points from closed subsets, the
diagonal product

AV : X — ]_[ ConR,,,

is a topological G-embedding. a
PROPOSITION 4.7. Suppose that a G-space H is the limit of the inverse spectrum

{Hl Z H, vl Hy « ... } of G-spaces H; and G-maps q;, and that

(12) The stabilizer G, of any point h € H; \ HF is compact.

Then the orbit spaces H/G and lim {H,/G & H,/G & H,/G < ---} are homeo-
morphic.

PROOF. The homeomorphism¢ : H/G — I}EI{H,- / G, g;} is given by the formula:
e((h]) = ((M], [ha], ...), whereh = (h;) € H.

It is easy to verify that ¢ is continuous and surjective. We shall thus only verify that
@ is injective. Assume that [h] # [e], where h = (h;), e = (e;) € H and let us show
that then ¢([h]) # ¢([e]). It suffices to prove the following lemma. d

LEMMA 4.8. There exists an integer i such that e; ¢ G(h;).

PROCF. If e, h € HC, then ¢; # h; = G - h;, for some i. So we may assume that
h ¢ H®, thatis, G, = NG, # G. By (12) and inclusion G,,,, C G,, almost all
G,,’s differ from G and almost all G,, are compact.

Suppose to the contrary, that ¢; = g;h;, g; € G for every i. It is easy to show that
then

e = grhy = grpihy = - = g1l
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for every k < l. Therefore, g, € g - Gy,, forevery k < I.

Since the stabilizer G,, is compact for some m, it follows that the sequence
{8}ism C 8m - Ga, converges to go € g, - Gu,. Analogously, one can show that
8o € gp - Gy, for all p > m. Consequently, goh, = g,h, = ¢,, forall p > m, that
is, e = goh. Contradiction. O

PROOF OF THEOREM 4.1. Using the hypotheses, let us fix a topological G-embed-
ding (Proposition 4.2):

i:Xr—>nConR,,,,,=D

and a closed topological embedding j : X/G < L of the orbit space X/G into a
linear normed space L. It is obvious that

ix(jom)y=e:X—>LxD

is a closed topological G-embedding. Since the image ¢(X) does not contain points
with a noncompact stabilizer, e(X) does not intersect the closed set L x {*}, where
{x} is the product of the vertices of the cone-factors of D. Therefore, e(X) lies in the
proper open G-space U’ = L x (D \ {x}).

Since L x D € G-AE, it follows that U’ € G-ANE. Since X € G-ANE, there
exists a G-retraction r : U — X of some G-neighbourhood U, e(X) C U C U.
Hence, 7 : U/G — X/ G is aretraction and the inclusion X/ G € ANE is reduced to
another inclusion U/ G € ANE.

If we now prove that D/G € AE, then (L x D)}/G = L x (D/G) € AE, and
therefore, U/ G € ANE as an open subset of the orbit space. To complete the proof of
the theorem, it thus remains to verify that D/ G € AE.

Let us introduce the following notations: D, = [],,,,.,ConR,, and g, : Dy, —
D, is a projection. Since R,,, is metrized by a complete invariant metric, it follows
that Con R,,,, and D, are also metrized by a complete invariant metric. Thus, the orbit
space D,/ G is also metrized by a complete metric. It follows from D, € G-AE and
Proposition 3.2 that D,/G € LCNC. Due to its countable-dimensionality and the
Haver theorem [15] we obtain that D,/ G € AE.

Since Con R, € AE, the projection g, is a fiberwise G-contractible map, that is,
there exist fiberwise G-maps s : D, & D,;;,q,os =1ldand H : D,;, x [0,1] —
D,,1, g, 0o H = q,, such that H, = Id and Im(H;) = Im(s). Passing to the orbit
spaces we obtain fiberwise contractible maps g, : D,,,/G — D,/G, that s, g, is
a fine homotopy equivalence. Since all the conditions of Curtis’s theorem [11] are
satisfied, we conclude that L’@{Di /G, q;} is an AE. But by Proposition 4.7 this inverse
limit coincides with the orbit space D/ G. O
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5. Proof of Theorem 1.2

By Theorem 2.6 and Proposition 3.1, there exists a GL(n)-retraction r : C(n) —
GL(n)/ O(n) = &, which is nevertheless unacceptable for us because of its noncon-
structibility. Another geometric GL(n)-retraction, generated by the Lowner ellipsoid,
will be more convenient.

THEOREM 5.1 (see [17]). For every convex body V € C(n), there exists a unique
ellipsoid Ey € C(n), which contains V and has the minimal Euclidean volume.

The GL(n)-invariance of Ey (thatis, E,v = AE forall A € GL(N)) then follows
by minimality of the volume. A continuous dependence Ey on V with respect to
the Hausdorff metric was proved in [5]. Therefore, & : C(n) — €, (V) = Ey,
is a GL(n)-retraction of C(n) onto the ellipsoid orbit € (£ is called the Lowner
retraction).

Since the symmetry group Sym, of B" is O(n), the O(n)-slice L(n) = #~'(B")
is an O(n)-space. In other words, L(n) consists of all bodies V € C(n) whose
minimal Lowner ellipsoid coincides with B". The orbit space Q(n) = C(n)/ GL(n)
is homeomorphic to L(n)/ O(n). Therefore, by Theorem 4.1,

L(n)/O(n) = Q(n) e AE and Qs = Q(n) \ {Eucl.} = Lg(n)/O(n) € ANE,
where L, = L(n) \ {B"}, and so Theorem 1.2 is reduced to the following;:

THEOREM 5.2. Q,(2) = Ls(2)/ O(2) is a Hilbert cube manifold.

We prove Theorem 5.2 in three main steps which are carefully outlined below.

Step 1. Reduction of Theorem 5.2 to Proposition 5.3 and the Toruhiczyk
characterization for Q-manifolds

PROPOSITION 5.3. For every integern > 2 and every § > 0, there exist O(n)-maps
fi:Lg(n) > Lg(n), i €{1,2), such that
(1) fiandld,, ) are -close; and
2) fn=2thenImf, NImf, =0.

PROOF OF THEOREM 5.2. According to the Toruriczyk characterization criterion
[19], in order to prove Theorem 5.2, it suffices to check that for every ¢ > 0 and
for all pairs of maps ¢; : I® — Qg(n), i € {1,2), there are continuous maps
g I%® > Qs(n), e-closetog;, i € {1,2},suchthatifn =2thenImg, NImg, = 2.
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Since F = UImg; and F, = 7~ !(F) are compact(here 7 : Lg(n) = Lg(n)/ O(n)
is the orbit projection), there exists § > 0 such that dist(;r(a), # (b)) < &, for every
a, b € F|, with dist(a, b) < 8.

By Proposition 5.3 for every n > 2, there are O(n)-maps f; : Lg(n) & Lg(n),
i € {1, 2}, satisfying (1) for § > 0 and (2) for n = 2. The induced maps f: of the orbit
spaces, i € {1, 2}, have the following properties for n = 2:

p(f,-]p,ldp)<e and NImf, =0.

Finall):, the desired maps g; : I® — Q¢(2), i € {1, 2}, are defined by the formula
gi=ficwp. (]

Step 2. Construction of f,

Let us consider so-called contact map a : L(n) — exp(S*~'), defined by a(V) =
VNS, The following lemma, whose routine verification is omitted, records several
basic properties of «.

LEMMA 54. (3) « preserves the action of O(n), a(A - V) = A - a(V), for every
A € O(n);
4) a(V) #0, forevery V € L(n);
(5) a(V) is a central symmetric subset of S*~'; and
(6) a(V)=S"'ifandonlyif V= B".

LEMMAS.S5. (7) Let V € W C B*, where V € L(n) and W € C(n). Then
W e L(n).
(8) For every subset A C B", a(Conv(A)) = Conv(A)NS" '=AnNS" L

PROOF. (7) The minimal Lowner ellipsoid for W and V coincides with B*. Hence
W € L(n).

In order to prove (8), it suffices to observe that every point s € Conv(A) N S*lis
an extreme point of B" and therefore is also an extreme point of Conv(A) € B". But
all extreme points of Conv(A) are contained in A. Therefore s € A. ad

Unfortunately, the contact map « is discontinuous. The following reasoning com-
pensates for this unpleasant moment. Let us denote by ;(T)J the nonoriented angle
between the rays [Ox) and [Oy), where x, y € B" and x, y # 0. Next, we introduce a
version of the closed £-neighbourhood of a set, which will be convenient for us. Let
e > 0and V € L(n). By V. we denote

VU {x € B"\ {0} | thereexists y € V with |jx|| = [ly[| and x0y <&}.
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It is clear that V, preserves the action of O(n) : (g - V), = g - V,, for every g €
O(n), V € L,(n). The compactness of V implies that V, is compact; the inequality
lx =yl < x’O\y, for every {lx|| = ||lyl|, implies that

(9) V C V. C N(V;¢), where N(V;e¢) is a closed e-neighbourhood of V in B".

We need V, to be continuously dependent on V and ¢.
PROPOSITION 5.6. Let g, —> ¢ > Oand V, € L(n) — V. Then (V,),, = V..

PROOF. Let R, = (V;),, and R = V,. Suppose that the assertion of the proposition
is false, that is, that Ry ¥ R. Then there exist « > 0 and a sequence k; — 00 such
that
(10) xo ¢ N(R,,; @), for some xo € R; or
(11) there exists x; € Ry, i = 1, withx; ¢ N(R; a).

In the first case, g();, < g, for some yg € V, with ||yo|| = |Ixplj. Since V, — V,
there exists a sequence y; € Vi — y,. It is easy to see that there exists a sequence
x; € B® = x¢, ;0 < &, %]l = |lyi]l- It means that x; € (Vi),, = Ry, forevery k
and the limit point x, of {x;} belongs to N(R,,; @), for some k;. This contradicts (10).

In the second case, there exists a sequence {y; € V;,} such that [ly;[| = |lx;l
and )ﬂ)?, < &,. By compactness of B", we can suppose that there exist the limits
yi > y € Vand x; > x € B*. Then |y|| = l|x|| and ;O\y < ¢. Therefore,
x € V. = R. This contradicts the fact that x; ¢ N(R;@). O

Consider the following set-valued map:

def

F:L(n)~R*, F(V)={t>0]B"\N(V;1)#0}

where N (V) is the open z-neighbourhood of V in B".

Since N(V;¢) is a continuous set-valued map from L.(n) x R* into B” (in the
Hausdorff metric) and B"\ V # @, the map F is lower semicontinuous and has domain
L.(n). Let us consider the function f : Graph(F) — R* given by f(V,t) = ¢ and
defined on the graph F. Then the function g : L.(n) — R*, defined by

g(V)=sup{t > 0| B"\ N(V;1) # 0} =sup{f (V,1) | (V,t) € Graph(F)}

is well defined and lower semi-continuous [9, page 48] (in set-valued analysis g is
called a marginal function [24]).

By the Dowker theorem [13], there exists a continuous function y : L.(n) —
R* with y(V) < 8- g(V), V € L.(n). By Proposition 5.6, it is clear that V,y,
continuously dependson V € L,(n). The desired continuous O(n)-map f, : L.(n) —
L, (n) is defined by setting f,(V) = Conv(V,(v)). By (9), f1 and Id,, () are é-close.

https://doi.org/10.1017/51446788700002494 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002494

332 Sergei M. Ageev and DuSan Repovs [17)

Let dist(v, w) be the spherical distance between v, w € 5! and ﬁsph(A; R) be the
closed R-neighbourhood of the subset A C $"~! with respect to the spherical distance.
By Lemma 5.5 (8),

@ o fi(V) = Conv(Vy1)) N 8" = Vi1 N 8" = N (V5 7 (V).

The last equality means the boundary of f,(V) to contain an open (nonempty) subset
$*-1, forevery V € L4 (n). The mapping f, will be constructed without such property
and therefore Im f, NIm f, = @.

Step 3. Construction of f,

THEOREM 5.7. Foreveryo > 0, there exists an O(n)-mapping F : Lg(n) — C(n)
such that
(12) p(F,1ds, ) <0 and
(13) forevery V € Lg(n), F(V) = Conv(}_;_, »:D;), where D; is an H;-orbit, H;
is a proper subgroup of O(n) and Z:":l A=1LA;>0.

In connection with this theorem we formulate a geometric conjecture, which is

trivially true in dimension 2. If Conjecture 5.8 is valid then our proof of Theorem 1.2
immediately generalizes to arbitrary n > 2.

CONJECTURE 5.8. The body Y ;.| A, D; (hence also Conv(}_;_ A;D,)) in the for-
mula (13) ‘essentially differs’ from the ball, that is, its boundary does not contain
open subsets of the sphere.

PROOE. By the Palais theorem (Theorem 2.5) any orbit O(n) V, V € Lg(n), allows
an O(n)-retraction ry, : %y — O(n)V, r,(V) = V. Here we can assume that:

(14) py(W,r,(W)) < o0/2,forall W € %,.

LEMMA 5.9. For every 8 > O there exists a finite set K C Bd V such that:

(i) W = Conv(Sty K) and V have equal stabilizers; and
(i) pu(V,W) <0.

PROOF. It follows from the existence of slices that for some numbers 8 > 6, > 0
from py(V, V') < 0 and Sty 2D Sty, it always follows that Sty» = Sty. Consider a
discrete subset K C Bd V such that p5(V, Conv K) < 6,. Then

V 2 Conv(Sty K) = W 2 Conv K

and therefore py (V, W) < 6,. Next, it follows from Sty = Stegnyest, k) = Stse, x 2 Sty
and p(V, W) < 9[ that Stw = Stv a
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For every V € Lg(n), fix V' = Conv(HKy) € C(n) such that H = Sty, Ky C
Bd V,|Ky| < ooand py(V, V') < 0/2. Let us introduce the composition

r=hyor % — Om)V —> On)V,

where hy(gV) = gV’ is an O(n)-homeomorphism.
If we get V’ sufficiently close to V then we obtain the following:
(15) dist(W, ry W) < o, for every W € %y.
We inscribe a locally finite cover {7, } into the open cover {%y/ O(n)} of the orbit
space Lg(n)/ O(n) = Qg(n). Let T, C w(Uy,).
We now define the desired O(n)-map F : Lg(n) — C(n) as follows:

F(W) =) y,(xW)-ry (W), WeLsn),
n

where {y,(-)} is a continuous partition of unity, subordinate to the cover {7, }.

We verify the conditions (12) and (13) of Theorem 5.7. Let T,..., T,, € {T,}
be all the elements which contain 7 W and let T; C m(Uy,). It follows by (4) that
ou(W, ry.(W)) < o, for all i. Then by convexity of the ball of radius o at C(n) we
have that dist(W, F W) < o. Thus (12) has been verified.

Condition (13) follows, since H Conv K is a union of a finite number of H -orbits
for every proper subgroup H < O(n) and finite K. 0

It is well known [2] that there exists a O(n)-retraction R : C(n) — L(n) which
takes Cg(n) into Lz (n). But we need the following precise result which follows from
geometric considerations:

THEOREM 5.10. There exists a continuous O(n)-retraction R : C(n) — L(n),
such that V and R(V) are affinely equivalent, for every V € C(n).

PROOF. Let L(V) be the Lowner ellipsoid, circumscribed around V, g € GL(n),
g(L(V)) = B". As is well known, g can be represented as g = g, o g,, where
&2 € O(n) and g, is self-adjoint. Here R(V) = g,(V). (]

Since L(n) is compact, for every § > O there exists 0 > 0, 0 < §/2, such that for
every V € L(n) and every W € C(n),

ou(V, W) < o = pu(W, R(W)) < §/2.

By Theorem 5.7 there is a mapping F : Lg(n) — C(n) such that p(F,1d, ,(,,)) <o.
The desired map f,is Ro F.
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Indeed,

pu(V, f2V) = py(V, R o F(V))
< pua(V, F(V)) + pu(F(V), R(FV)) <0 +8/2 <.

Since for n = 2, the boundary F(V), V € Lg(n), does not contain an open subset
of a sphere, f,(V) which is affinely equivalent F(V), also does not contain any open
subsets of the sphere. Therefore, Im f, NIm f, = @. O
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